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1 Kirchoff’s Current & Voltage laws

i1

i2

i3

Figure 1. Kirchoff’s Current law

Kirchoff’s Current Law (KCL) - currents entering and exiting a node sum to 0:

i1− i2− i3 = 0

this is always true (it’s a statement of conservation of charge) - see Figure 1.

Kirchoff’s Voltage Law (KVL) - voltages round a closed loop sum to zero, or equivalently
any two points connected only by a “wire” are at the same voltage. Only true if there is no external
magnetic flux coupling to the circuit!!

V1−V2−V3 = 0
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Figure 2. Kirchoff’s Voltage law

Tend to use KCL in “by hand” analysis, but either is fine. When using KCL to convert a circuit
to a matrix (e.g. for SPICE) it’s called “node analysis”. When using KVL to convert a circuit to
a matrix, it’s called “mesh analysis”.

It doesn’t matter which way round you define currents and voltages provided your
entire circuit is consistent - current flows from positive to negative voltage (see Figure 3).
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Figure 3. consistent arrangement of voltage V and current i in a circuit diagram
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2 Complex Impedance and Passive Circuits

Sinusoidal voltages (or currents) can be written as complex numbers (without loss of generality
due to Fourier synthesis):

Ṽ (t) = V0exp(jωt)

(with j2=−1, angular frequency ω=2πf , amplitude V0). The measured voltage on an instrument is

then given by R{Ṽ } (the real part). Complex impedance Z̃ is defined (analogous to Ohm’s law) as:

Ṽ = ĨZ̃

Z̃︸︸︷︷︸︸
impedance

= R︸︸︷︷︸︸
resistance

+ j X︸︸︷︷︸︸
reactance

Each passive component then has its own complex impedance. A resistor is purely resistive, capa-
citors and inductors are purely reactive. Complex impedances can be easily derived from the
component’s constitutive equation. For the capacitor:

Q︸︸︷︷︸︸
charge

= C︸︸︷︷︸︸
capacitance

× V︸︸︷︷︸︸
voltage

⇒
∫

Idt = C ×V

⇒I = C
dV

dt

⇒Ĩ = CjwṼ

∴ZC̃ =
1

jωC

and for the inductor, similarly:

Φ︸︸︷︷︸︸
fluxlinkage

= L︸︸︷︷︸︸
inductance

× I︸︸︷︷︸︸
current∫

Vdt = L× I

⇒ Ṽ = jωL× Ĩ

∴ZL = jωL

complex impedances combine like resistances, in series:

Z̃series = Z̃1 + Z̃2

and in parallel:

1

Z̃‖

=
1

Z̃1

+
1

Z̃2

Component Symbol Constitutive Equation Complex Impedance

Resistor V = I ×R ZR = R

Capacitor Q = C ×V ZC =
1

jωC

Inductor Φ =L× I ZL = jωL

Table 1. Summary of complex impedances of components
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The “bode plot” is a plot of the magnitude and phase of the complex impedance of a circuit. It
gives the information about how signals of different frequencies will be filtered by the circuit.

Complex impedance can become difficult when we start talking about power. Because there
are now several possible measurements, summarised in table 2. The instantaneous power flowing
through a circuit is as per a DC circuit the real parts of the voltage multiplied by real part of

current. This is called active power. The complex power is given by ṼĨ∗ (where * represents the
complex conjugate), and contains information both about active power and reactive power (the
imaginary part). Reactive power transfers no net energy to the load but represents cyclical transfer
of energy. The apparent power is the magnitude of the complex power. It is measured in Volt-
Amperes, and it is important because it is the amount of power that your circuit must be able to
handle! The power factor is the ratio of active power to apparent power (i.e. it is the cosine of
the phase angle of the complex power). When designing power supplies or considering power loads
required, the power factor must be taken into account - a low power factor circuit will draw more
current, for the same amount of active / “useful” power transfer. Improper power factor correction
is the cause of many problems in power engineering, up to and including many grid-scale blackouts.

Quantity Name Units

R{Ṽ }×R{Ĩ } active power Watt (W)

Ṽ × Ĩ∗ Complex Power Volt-Ampere (VA)

I{Ṽ × Ĩ∗} Reactive power Volt-Ampere reactive (var)

|Ṽ × Ĩ∗| Apparent power Volt-Ampere (VA)
R{Ṽ }×R{Ĩ}

|Ṽ × Ĩ∗|
power factor dimensionless

Table 2. Power with complex signals

2.1 examples
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Figure 4. passive filter examples. Left - RC low pass filter. Middle - Parallel resonant LC filter. Right -

series resonant LC filter

Looking at the examples in Figure 4. On the left we have the humble RC filter. We can work out
the response using complex impedances using Kirchoff’s current law. For simplicity we assume the
output is high impedance (i.e. iout≈ 0) for now:

Vin− iinR = Vout

Vout− ic
jωC

= 0

iin = ic (iout≈ 0)

⇒iin = VoutjωC

⇒Vin = Vout(1+ jωRC)

⇒Vout

Vin
=

1

1 + jωRC
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note the form of that expression, it will become very familiar. For the middle circuit, we can
combine the C and L in parallel:

1

ZLC
=

1

jωL
+ jωC

and the analysis proceeds as before. Try these for yourself. You will find that both the other circuits
are resonant (i.e. they have strongly peaked impedances). These can be used as selective filters,
or as e.g. radio tuning circuits with some slight extra work.

3 Linear Systems Theory (Review)

The Fourier transform of a quantity and its inverse are given by:

F̂ (ω) =

∫

−∞

∞

f(t)e−jωtdt

f(t) =

∫

−∞

∞

F̂ (ω)ejωtdω

Some results on Fourier Transforms are so useful we need them very often:

Operation time domain frequency domain

integration
∫

f(t)dt
1

jω
F̂ (ω)

differentiation
df

dt
jωF̂ (ω)

time shift f(t + t0) e−jt0ωF̂ (ω)

convolution f ∗ g≡
∫
−∞

∞
f(t)g(t− τ )dτ F̂ (ω)Ĝ(ω)

Table 3. Fourier Transform ingredients

the last line (convolution) is important because it gives a link between filtering circuits in frequency
domain and impulse response in time domain. For example, if we have an output signal ṽout(t),
input signal ṽin(t), then some circuit with impulse response h gives:

ṽout(t) = (h ∗ ṽin)(t)

⇒V̂out(ω) = Ĥ(ω)V̂in(ω)

the quantity Ĥ(ω) is known as the transfer function of the circuit, and (at least for passive
networks and linear active ones) can be always written as a rational function, like:

Ĥ(ω) =
n0 + n1s +n2s

2 + · · ·
d0 + d1s + d2s2 + · · · where s = jω (1)

note we have used the Laplace transform notation s there even though we’re using Fourier Trans-
forms. This is justified in electronics because actual signals are real valued, therefore Fourier
Transforms always hermitian, but it can need care when dealing with complex impedances and
making sure you are in the right domain.
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Anyway, the factorization of the numerator of (1) gives the zeros of the function (the values
of s where the imaginary part of transfer function goes to zero!). And the factorization of the
denominator gives the so-called poles of the function (where it may blast off to infinity, or else
have a instantaneous phase shift). Because it’s just the imaginary part, it is not necessary that
this causes the magnitude of the output to head to infinity (though that can happen if it’s an even
power of s of course!). Knowing the poles and zeros of a passive filter is equivalent to knowing
everything about it. Each component added with a different value will add either a pole or a zero
to the transfer function.

4 Linear Amplifiers (op amps)

The most useful and widely used type of linear amplifier is the “operational amplifier” or op-amp.
They are internally complicated objects (see e.g. the half century old design of the OP741 in Figure
5), but the principles apply to other types of linear or differential amplifiers. Note we will not
touch any non-inverting configurations in the course but they are equally as important as inverting
configurations, there are a couple of problems given at the end on them.

1

Offset
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5

5k 50k 50
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4.5k

30p
25

50
Output

4

V
S-

39k
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3
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Non-inverting

7
V

S+

6

Figure 5. Internal schematic of the “classic” OP741 op-amp.

4.1 Basics

−

+Vin

Vout

Figure 6. Op-amp in source follower configuration
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The transfer function of an ideal differential amplifier (“op amp”) is given by:

Vout = A(ω)(V+−V−)

where Vout is output voltage, V+ and V− are non-inverting and inverting input voltages respectively,
and A(ω) is the open loop gain. Note this on its own violates conservation of energy, but that’s
fine because the op-amp has its own separate power supply. Some op-amps are designed to be so-
called “fully compensated” and if that is the case, then A(ω) has the form:

A(ω) =
A0

1 + j
ω

ωc

A0 and ωc are rarely specified in the datasheet, but often their product A0ωc is. This quantity
is called the Gain-Bandwidth Product (see section 4.7). When op-amps are used as filters or
amplifiers, the circuit topology will be designed with negative feedback of some sort. Consider
the simplest possible arrangement in Figure 6, the “source follower”. With the op-amp transfer
function, we get:

Vout = A(V+−V−)

⇒Vout = A(Vin−Vout)

⇒Vout(1 + A) = AVin

⇒Vout

Vin
=

A

1+ A
≈ 1 (forA≫ 1)

If A≫1, then we see that the voltage gain approaches unity. In general, for any arrangement with
negative feedback, Kirchoff’s current law + the op-amp transfer function will give arrangements

like
A

1 + A
in the final gain equation, and which for an ideal op-amp with very high open loop gain

(A≫1), will all cancel out. This is where the Golden Rule #2 comes from: “assume V+ is at the
same voltage as V−”. This is equivalent to saying that A→∞ as it turns out. Golden Rule #1
is “assume the inputs draw no current”, which means they are very high impedance. The principle
of negative feedback is used in many types of amplifiers, not just with op-amps.

4.2 Feedback - Inverting Op Amp

−

+

Zin
iin

Vin

Zf

Vout

Figure 7. Op amp in inverting configuration

Now consider the example in Figure 7. The impedances round the feedback ZF and at the input
Zi are general. To work out the gain, use Kirchoff’s current law:

Vout− ifZf = V−

Vout = A(V+−V−)=−AV−
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Vout− ifZf = −Vout

A

Vout

(
1 +

1

A

)
= ifZf

we now invoke “golden rule #1” and say that the inputs draw no current (i.e. i+ = i− = 0). Most
op-amps are built to make this a good assumption (though be careful and read the data sheet!).
Therefore:

Vin− iinZin = V−

iin = −if (inputs drawno current)

Vin+ ifZin = V−

Vin+ ifZin = Vout− ifZf

⇒Vin−Vout = −if(Zin+ Zf)

⇒Vin−Vout = −Vout

(
1+

1

A

)
Zin +Zf

Zf

⇒Vin = Vout

(
1−

(
1+

1

A

)
Zin +Zf

Zf

)

⇒AV =
Vout

Vin
=

1(
1−

(
1+

1

A

)Zin + Zf

Zf

) =
−Zf

Zin +
1

A
(Zin+ Zf)

⇒AV ≈ − Zf

Zin
(A≫ 1)

note that if we used both “Golden Rules” we could get to this much faster:

Vout− ifZf = V−= V+ = 0 (using golden rule 2, assumeV−=V+)

Vin− iinZin = V−= 0

⇒iin =−if =
Vin

Zin
(golden rule 1, inputs drawno current)

⇒Vout+ Vin
Zf

Zin
= 0

⇒Vout

Vin
= − Zf

Zin

in the case of Zf and Zi being resistors, we can see that this amplifier inverts and amplifies (or
attenuates) the input voltage. Now consider what happens when Zf is instead a capacitor Cf (with
Zin a resistor Rin):

AV = − 1

jωRinCf

the circuit is now acting as a low pass filter (at higher ω the gain drops). Consider using Kirchoff’s
laws, “golden rules” but not complex impedance to analyze this circuit (same derivation as above
but using Q = C ×V for capacitor):

Vin− iinRin = V−= 0

⇒Vin + ifRin = 0 if =
−Vin

Rin

Vout− 1

Cf

∫
ifdt

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Q=C×V

= 0
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Vout+
1

CfRin

∫
Vindt = 0

⇒Vout = − 1

CfRin

∫
Vin dt

for obvious reasons, then, this circuit is also known as an “integrator”. If we put the capacitor
at Zin instead, we’d get a “differentiator”. It is possible to also use non-linear cirucit elements
(like diodes) to get logarithmic and exponential responses. From the theory on linear systems
& Fourier Transforms, we can see that low pass filtering and integration are equivalent (since
F{

∫
f(t)dt}=

1

jω
F̂ (ω).

4.3 Charge Sensitive Amplifier

−

+

iin

if

Cf

Vout

Rf

Figure 8. inverting charge sensitive amplifier / transconductance amplifier

Now we consider the case with a resistor and capacitor in parallel round the feedback (Figure 8).
We also remove the input resistor Rin. Note now there cannot be a sensible concept of “voltage
gain” (try the maths yourself if you like!). But what we can write down is the ratio between the
output voltage and the input current iin. The feedback impedance is now:

1

Zf
=

1

Rf
+ jωCf

⇒Zf =
Rf

1 + jωRfCf

and so we get:

Vout− ifZf = V−=−Vout

A

⇒Vout

(
1 +

1

A

)
= ifZf

⇒Vout

(
1 +

1

A

)
= −iinZf

⇒Vout

iin
= − Rf

1 + jωRfCf

(
A(ω)

1 + A(ω)

)
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If we just have a resistor round the feedback Rf, we call this a “transimpedance” amplifier, since
it converts an input current into an output voltage along with some signal gain. If on the other
hand we just have the capacitor (i.e. Rf ≫ 1 like an open circuit), then we end up with

⇒Vout

iin
= − 1

jωCf

(
A(ω)

1 +A(ω)

)

so that we are back to just the integrator. Except now we’re integrating the input current, rather
than an input voltage. Such an amplifier is called a “transconductance” amplifier, since it gives
an output voltage in response to an input charge rather than a current. This is the basis of the
charge sensitive amplifier used in many particle (and astro) detector electronics frontends. It is
worth considering the interaction with a semiconductor detector in this configuration. We model
the detector as basically being like a pulsed current source with some capacitance. Thus, the two
diagrams shown in Figure 9 are equivalent.

−

+

Vbias

if

Cf

Vout

Rf

−

+

iin

Cd

ic

if

Cf

Vout

Rf

Figure 9. Simple models of a detector attached to charge sensitive frontend.

We can work out the changes that happen due to the detector’s impedance (here, just capacitance)
quite easily. From above we had that:

⇒Vout

(
1+

1

A

)
= ifZf
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but we now have (from KCL) that if + iin = ic. We also know (simple Q = CV or V = IZ) that
V−=

ic

jωC
. Putting this together with Vout =−AV− we have:

ic
jωCd

= −Vout

A

if + iin +
VoutjωCd

A
= 0

∴Vout

(
1+

1

A
+

jωCdZf

A

)
= −iinZf

⇒Vout

iin
= − AZf

1 +A + jωCDZf

as can be seen, increasing the detector capacitance reduces the voltage to current gain at high
frequencies, and introduces an extra pole into the transfer function. Let’s also analyse this via
“superposition”. In a linear circuit, we may take any voltage (or current) node, and work out the
contributions from each active current or voltage source to it in the circuit. We may then add these
all together separately and the result is the same as if we analysed the entire circuit. Of course
this doesn’t work for non-linear circuits! (which is all of them to some degree). Anyway,
consider firstly replacing the input current source with a high impedance (so no current flows) -
the left panel of Figure 10. We can regard the voltage at the inverting input v− as the answer to
a simple voltage dividier problem:

v−
(1) = Vout

Zd

Zd + Zf

(here we have just used Zd as shorthand for the capacitance, since it could also have other com-
ponents). Instead, with the current source turned on but the output voltage source of the op amp
turned off. Then we have a simple parallel impedance problem:

v−
(2)

= iinZ

⇒v−
(2)

= iin
1

1

Zf
+

1

Zd

≡ iin
ZfZd

Zf + Zd

summing the two situations together, we get:

V− = Vout
Zd

Zd + Zf︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
v
−

(1)

+ iin
ZfZd

Zf + Zd︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
v
−

(2)

⇒−Vout

A
= Vout

Zd

Zd + Zf︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
v
−

(1)

+ iin
ZfZd

Zf + Zd︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
v
−

(2)

∴Vout

(
1

A
− β

)
= −iinβZf

⇒Vout

iin
= −Zf

Aβ

1−Aβ
,with β =

Zd

Zf +Zd

this analysis is presented because it gives the “standard form” for stability analysis (see Section
4.9). β is often called the “feedback factor” in amplifier analysis. However, don’t mistake it for β

as used for the current gain of a transistor! Going back to the previous form, the full gain for the
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RC feedback loop then is:

Vout

iin
= − ARf

(1 + jωRfCf)(1 + A)+ jωCdRf

from this you can deduce a few things. If we want the biggest signal possible (we usually do for
noise reasons!) then you want the lowest possible CD (so make sure the detector’s fully depleted!),
the highest possible Rf, and the lowst possible Cf . You might ask here why have Rf at all since
we don’t want transimpedance but charge sensitivity. Fair question, the answer to which is, if we
didn’t have it, the amplifier would soon reach the voltage rails and never reset! More clever reset
implementations (e.g. using a transistor switch) are possible, which improve performance over this
version but are more complicated. From the above equations we can also get the input impedance:

Zin =
V−

iin
=

Zf

(A+ 1) + jωZfCd

for best performance we want Zin as low as possible, this is consistent with lowest possible detector
capacitance, and also highest possible op amp gain (as expected).

−

+Cd

+

−

v
(1)
−

if

Cf

Vout

Rf

iin

Cd

+

−

v
(2)
−

Cf

Rf

Figure 10. superposition analysis of the CSA. Firstly with input current source switched off (open circuit),

and secondly with output voltage source switched off (closed circuit).

Before leaving CSA, let’s do one more thing, explicitly calculate the charge to voltage gain. Noting
that charge is the time integral of current, we can then w.l.o.g in the frequency domain say that

Q̂ =
1

jω
Î (remember that low pass filtering and integration are equivalent). So, start from gain

equation:

⇒Vout

iin
= − AZf

1+ A+ jωCDZf

⇒Vout

Qin
=

Voutjω

iin
= − jωAZf

1+ A+ jωZfCD

⇒Vout

Qin
=

AZf

jω(1 + A)−ω2ZfCD

again, we can see that the charge gain is affected not only by the detector capacitance and the
feedback impedance Zf, but also by the finite open loop gain of the op-amp.
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4.4 2nd order Bandpass filter (“CRRC shaper”)

−

+

Rin
Cin

Vin

Rf

Cf

Vout

Figure 11. 2nd order shaping amplifier “CRRC”

Final examples are more complicated filters. Firstly, sticking with inverting configuration. What
happens if we make the arrangement in Figure 11 We now have:

Zin = Rin +
1

jωCin

Zf =
Rf

1+ jωRfCf

and so, the voltage gain will be:

AV = − Zf

Zin

⇒AV = − jωCinRf

(1 + jωCinRin)(1 + jωRfCf)

The resulting transfer function is quite complicated (and 2nd order, it goes up to ω2 in the
denominator). It can be used to make low-pass, high-pass, band-pass or band-cut filters, with
steeper slopes than the 1st order integrator/differentiator. It is mentioned here because it is a
common fixture in particle and nuclear physics readouts, where we usually call it the “CR-RC”
shaper.

4.5 Non-Inverting Amplifier Configuration

Just for completeness we mention here the non-inverting standard configuration.

+

−

Vin

Z1

Z2

Vout

Figure 12. non-inverting op amp configuration
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we will just do the quickest derivation, using both golden rules and KCL:

Vin = V+ =V− (GR2: V+ =V−)

V− = Vout
Z1

Z1 + Z2
(voltage divider)

∴Vin = Vout
Z1

Z1 + Z2

⇒Vout

Vin
=

Z1 +Z2

Z1
≡ 1 +

Z2

Z1

note that this circuit has a minimum absolute gain of 1 (whereas the inverting configuration can
go lower in principle, but careful of stability - see Section 4.9).

4.6 Op amp linear current source

A powerful use of the op amp is as a “linearizer” or “control loop” for other circuitry. We are not
going into transistor theory today but consider the circuit in Figure 13. Both the diode D1 and
the MOSFET Q1 are highly non-linear devices whose voltage and current depend on each other
in complicated ways. The only fact that we do need to know here, is that the MOSFET doesn’t
take any current through its gate contact (the one connected to the op amp output). Therefore,
the same current flows through the diode and the MOSFET.

+

−

Vin

R1 VA
iLED

R2

D1

V+

Figure 13. linear current source with an op amp

assuming the inputs draw no current (as usual), then we can write using KCL:

VA = iLEDR2

VA =
R2

R1 +R2
V−

∴VA =
R2

R1 +R2
Vin (V+ = V−= Vin, via golden rule)

⇒iLEDR2 =
R2

R1 +R2
Vin

⇒iLED =
Vin

R1 +R2
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in the full analysis there are some extra details, but see what happened there. Without knowing the
transfer functions of the transistor or the LED, we have used an op-amp to linearly put a current
through the LED that depends on our input voltage. The op amp will “magically” adjust its output
to ensure that this remains true (at least, within constraints of bandwidth, power rails, etc etc).

4.7 Gain-Bandwidth Product

Recall that a fully compensated op-amp has an open loop gain of:

A(ω) =
A0

1 + j
ω

ωc

Note from previous section that inverting gain of a purely resistive feedback configuration is:

AV =
−Rf

Rin +
1

A
(Rin+ Rf)

≈− Rf

Rin
forA≫ 1

AV is called “closed loop gain”. Bear in mind that open loop gain always falls with frequency.
Consider:

AV (ω) = − Rf

Rin

1

1 +
1

A

Rin + Rf

Rin

⇒AV (ω) = − Rf

Rin

1

1 +
1

Aβ

≡− Rf

Rin

Aβ

1 + Aβ

⇒AV (ω) = − Rf

Rin




A0

1 + j
ω

ωc

β

1+
A0

1 + j
ω

ωc

β


≡− Rf

Rin




A0β
(

1 +A0β + j
ω

ωc

)

(1 +A0β)2 +
(

ω

ωc

)
2




|AV (ω)| = − Rf

Rin

A0β

(1+ A0β)2 +
(

ω

ωc

)
2

√

|AV (ω)| ≈ − Rf

Rin

A0ωcβ

(A0ωcβ)2 + ω2
√

note that approximation is much better since A0 is a constant, and for a good op amp it actually
is ≫1 (typically in the millions!). Although in a general configuration β can depend on frequency,
note that for the resistive combination it is necessarily |β | < 1, and this is generally true for
complex combinations as well except where the denominator of β goes to zero and causes the
whole expression to blow up. The open loop gain then can be considered the “limiting gain” of an
amplifier configuration. It is a fairly general rule that as we increase bandwidth ω, we
decrease gain. Note further:

A(ω) =
A0

1+ j
ω

ωc

=
A0

(
1− j

ω

ωc

)

1+
(

ω

ωc

)
2

|A(ω)|2 =
A0

2

1+
(

ω

ωc

)
2

⇒|A(ω)|2
(

1+

(
ω

ωc

)
2
)

= A0
2

⇒|A(ω)|2ω2 ≈ A0
2ωc

2

⇒|A(ω)|ω ≈ A0ωc

A0ωc is (roughly) a constant for a particular amplifier design. From the above we can see that,
since all configurations are ultimately limited by open loop gain, it is the case that the gain
multiplied by bandwidth of an op-amp circuit is approximately constant, and hence the quantity
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A0ωc is known as the gain-bandwidth product (GBP). In general, higher bandwidth means
less stability (see Section 4.9), and as such we have the somewhat un-intuitive result that op amps
are more stable at higher closed loop gain. Indeed, there are some (mainly specialist high
speed) op-amps that are designed to not be able to operate at low gains. An op amp that can
operate at all possible non-inverting gains is advertised as “unity gain stable”.

4.8 Comparators (& relaxation oscillator)

All amplifier configurations we looked at have negative feedback, otherwise the high value of A

means that the output goes off to infinity. What if we want that to happen? Then we have a
comparator. An ideal comparator is the identical component to an ideal op-amp. In the real
world, we can make various design choices differently when we want the thing to efficiently swing
from rail to rail rather than do linear amplification. Many comparators are open collector output
to facilitate interfacing to whatever output level you want. Don’t worry about that for now.

−

+C

R

i
−

Vout

R1

R2

Figure 14. Relaxation Oscillator circuit using a comparator

Consider the circuit in Figure 14. You can solve it exactly quite easily (but no golden rule #2,
since this is an oscillator!). First work out the voltage at the inverting terminal. Assuming inputs
draw no current, the branch round the inverting side is just a potential divider.

V− = Vout
ZC

ZC + R

V+ = Vout
R2

R1 + R2

Vout = A(V+−V−)

⇒1 = A

(
R2

R1 + R2
− 1

1 + jωRC

)

what does this mean? Note we derived a condition just between frequency and open loop gain
here. This result can be interpreted using Barkhausen Stability (see Section 4.9) but it’s probably
easier here to derive it without using complex impedances instead:

V−− 1

C

∫
i−dt = 0

V−+
1

RC

∫
(V−−Vout)dt = 0

Vout = A

(
R2

R1 + R2
Vout−V−

)

∴
1

RC

∫
Vout

(
− 1

A
+

R2

R1 +R2
− 1

)
dt =

Vout

A
− R2

R1 + R2
Vout

15



if you try solving that differential equation you’ll get oscillations. A simpler way to see it intuitively
is to see that when Vout goes high (when V+ > V−), then the capacitor C will charge up with time
constant RC. When the voltage V− gets high enough (V− > V+), the output voltage will flip to
negative (see op amp transfer function), and then the capacitor starts discharging again. The
output therefore basically looks like a square wave. This is the simplest non-linear oscillator
circuit that you can build just about.

It is often necessary to add hysteresis to a comparator circuit, because otherwise it can flip up
and down rapidly sensitive to environmental noise.

−

+

Vin

R1

−

+
Vref

iref

R2

Vout

Figure 15. comparator with hysteresis

looking at the circuit in Figure 15, applying Kirchoff Current Law we get:

Vref− irefR1 = V+

Vref− iref(R1 + R2) = Vout

Vref +
V+−Vref

R1
(R1 + R2) = Vout

⇒Vout+ Vref

(
R1 + R2

R1
− 1

)
=

(
Vout

A
+ Vin

)
R1 + R2

R1

what we are doing here is slightly offsetting the reference voltage into the non-inverting input.
It depends exactly on the specific comparator and its input offset voltage how much hysteresis
we get, but the function of R1 and R2 here is to allow the “upswing” voltage to be different
to the “downswing” voltage. This circuit is extremely common, but clearly a full analysis isn’t
possible assuming “perfect” op amps and comparators. Always consult the datasheet! Using a
comparator is the simplest way to convert analog pulses from your amplifiers into timing pulses,
and we can enter the digital domain. Note this is not a good analog to digital converter, since we
don’t have any vertical resolution at all. Often in particle physics though, we use a circuit like this,
and, knowing the pulse shape, we can convert a timing measurement (length of the pulse) into a
guess of how high it was. You also need to care about timewalk in that case. That is beyond the
scope of these notes but ask if interested.

4.9 Barkhausen Stability

As mentioned above, in general the higher the bandwidth of the circuit, the lower the gain. But
signals of all frequencies get injected into our circuits (e.g. via RF interference or other noise).
For any negative feedback amplifier, there is a mathematical theorem called the Barkhausen
Stability Criterion which specifies conditions that are sufficient for a circuit to not oscillate.
However, many people erroneously use it as a condition for a circuit to oscillate, because it often
works (Interestingly - there is no known simple criteria that guarantees a circuit will oscillate! But
trust me op amps mostly will if you don’t obey Barkhausen). The technical statement is:
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Theorem 1. A circuit may sustain steady state oscillations if a pair of complex poles exist in its

transfer function on the imaginary axis.

that statement is mostly useless for normal people. A better one is probably this, though it’s
equivalent:

Theorem 2. For an amplifier which has an open loop gain of A and a feedback fraction β, it is

possible to oscillate at some frequency ωosc iff at ωosc both:

|βA| = 1

∠βA = 2πn

in practice, it’s even simpler: The loop gain goes down as frequency goes up. The phase lag of the
output with respect to the input also increases. If there is any frequency where the loop gain is
unity and the phase lag is more than π then we can get oscillations and instability. Why just π and
not 2π? Well, in the case of the op amp, because it’s differential we get a phase lag of π “for free”,
so the so-called phase margin we have left is only π. Consider it this way: the transfer function
of an op amp is:

Vout = A(ω)(V+−V−)

⇒Vout = A(ω)(V+− f(Vout))

(we’ve connected the inverting terminal by some feedback loop). Note that if the function f

introduces a phase lag of π, it would be equivalent to write:

Vout = A(ω)(V+ + |f(Vout)|)

(i.e. we turn negative feedback into positive feedback. Hence, the output will go to infinity. The
best way to study and check for Barkhausen stability is to look at the Bode plot, and make sure
you have some phase margin left when the value of A(ω) drops below unity.

4.10 Miller Effect

−

+

iin

if

Cf

Vout

Figure 16. Demonstration of the Miller Effect
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Consider the arrangement in Figure 16. It is a simple transconductance amplifier like we had above.
What is the effective input impedance (i.e, what does the impedance of this circuit “look like” to
the input circuitry?) Using KCL (yet again):

Vin = V− = Vout−
if

jωCf

⇒Vin = −VinA(ω)− if
jωCf

⇒Vin =
iin

jωCf(1+ A(ω))

⇒Zin =
Vin

iin
=

1

jωCf(1+ A(ω))

not that much of a surprise. But notice: this impedance looks just like a capacitor, but one that has
a capacitance of Cf(1+A), rather than just Cf. It is a general property of negative feedback systems
that capacitances in the feedback loop are made to “look like” much bigger capacitances from
the input impedance perspective. This is called the Miller Effect, and the apparent capacitance
Cf(1+A) is called the Miller Capacitance. For a charge sensitive amplifier, this is usually fine.
But in many cases, consider that you might not want to effectively put a huge capacitor straight
on your input! It may well affect the input circuitry and affect its bandwidth. Indeed, in more
sophisticated amplifier designs, we use things like the “cascode” arrangement to negate the Miller
effect.

4.11 Noise Sources and Amplifier Noise Gain

There are several sources of noise in an electronic system, briefly the important ones:

• Johnson Noise - thermal noise that occurs in all conductors. It provides an rms noise
voltage of vrms = 4kBTRB

√
where R is resistance, T is temperature in Kelvin, kB is

Boltzmann’s constant, B is bandwidth. The 4 is difficult to derive (but possible, look it up if
you want). Related is so-called “kTC” noise, which is Johnson noise across a capacitor, where

it produces an rms noise charge of qrms= kBTC
√

on a capacitor C. The main cause of noise
in many low-noise readout systems (particularly in astro, but also in particle sometimes)

• shot noise - white / gaussian noise arising as a result of the quantisation of charge. Char-
acterised by the fact that electron arrival is a Poisson process, and hence its mean is equal
to its variance. You need a very low noise system in general to be limited by this, but it is
the ultimate noise limit in all detector systems (that don’t use some kind of quantum effects
to reduce the fluctuations below shot-noise statistics)

• microphonic noise - noise arising as a result of mechanical or acoustic vibrations changing
circuit parameters, e.g. a capacitor with parallel plates vibrating and that modulates the
capacitance. Rare nowadays with SMD components but worth knowing about

• RTS / flicker/ “1/f” noise - Noise which has a correlated power spectrum (usually

proportional to
1

ω

α
, where α may actually be 1, but usually is >1. Caused by various

mechanisms, e.g. channel modulation in transistors. We do not fully understand the origin
of this in all cases. Your amplifiers are made of transistors and will have this

• EMI and RFI - coupling of your circuit to external electromagnetic emissions, which may
be of the form of free electric fields (rare in household items, common in particle physics
detectors!), free magnetic fields (are there any motors nearby?), or mobile phones (look out
for 868MHz, 1.8GHz, 2.4GHz/5GHz for the GSM, 4G/LTE/5G and WiFi/bluetooth bands
specifically. Likely you need to get rid of this by filtering, shielding, or clever circuit design.
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In general, the noise spectrum of basically any amplifier system will be of the form:

P = K

(
1 +

(
1

ω

)α)

which has a white noise term (Johnson noise and shot noise) + a 1/f term that dominates at low
frequencies. The frequency where the dominant noise changes from 1/f to white noise is generally
called the “corner frequency”.

In amplifier systems, especially op amps there are a couple of specific considerations. Noise signals
are by their nature random in time, and so they do not have well defined phase relationships with
other signals. The result is that the signals add up in power, not in voltage. In an op-amp, we
specify the noise properties as the input referred noise. This means, we imagine a fictitious
voltage source directly at one of the inputs, and work out what the consequences are.

−

+

Zin
iin

Vin

Vn

Zf

Vout

Figure 17. amplifier with voltage noise source at the inverting input

Looking at Figure 17, although we worked out the closed loop signal gain above to be:

AV ≈ − Zf

Zin

we can separately define the “noise gain” as the output signal due to just the fictitious noise
source at the input. In this process, we regard all other input voltages as set to ground (c.f. the
superposition principle above):

Vout− iinZf = V−= Vn

Vn− iinZin = 0 (Vin is ground for this purpose)

⇒Vout− Vn

Zin
Zf = Vn

⇒Vout = Vn

(
1 +

Zf

Zin

)

⇒Vout

Vn
≡Anoise = 1 +

Zf

Zin

the keen among you will recognise this as the gain of a non-inverting configuration. We would
have got the same result if we placed the noise source at the non-inverting input. The noise gain
of the amplifier is always non-inverting, as a consequence of the above fact that noise sources do
not have coherent phase relationships. Using the input-referred noise of the op amp specified in
the data sheet, you can then use the noise gain equation to work out how much noise you expect
at the output.
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The most important thing to know about noise gain in op amps, is that since it’s always positive
and thus has a phase lag of 0 by default, it is usually the thing which limits the Barkhausen
stability, rather than the signal gain. You will note also that by carefully selecting Zf and Zin it’s
possible to manipulate the noise gain separately from the signal gain. It’s also possible to add
extra components that will appear in the noise gain equation but not in the signal gain. This is
particularly useful to improve the stability of the amplifier (by increasing the noise gain). You will
end up buying more phase margin at high frequencies, and hence better stability, but at the expense
of higher output noise. This is called by engineers “forcing the noise gain”. It is an advanced topic
that I mention here only because you will come across it pretty soon in detector frontends.

4.12 The Shannon-Nyquist Sampling Theorem

I have not had time to write this section but I have to mention it because it’s possibly the most
important and profound thing to know in all of detector physics . . .

For now - the sample rate fs required to accurately reconstruct an analog signal from a digital
signal is fs=2fsig, where fsig is the highest frequency that is present in the input signal. Otherwise
you get aliasing. Aliasing is in the general case impossible to detect, and impossible to correct.
In practice, due to noise and quantisation of voltages, you need fs >2fsig. For example, CD digital
audio is sampled at a rate of 44.1kHz. The highest sound that a human being can hear is about
20kHz.

4.13 Other important “real world” parameters

In a real dessign, you may have to care also about these (look at the TL081, OPA851 and LM7171
datasheets to compare these!)

• input bias current - the amount of current that actually does go in the input (it’s not
zero!)

• input & output offset voltage - the actual differences between V+ and V− that “counts
as” zero, and induces a DC offset at the output for a zero input.

• Slew Rate - this is really complicated. The maximum rate at which the output voltage
can change for large signals. Note this can contradict the available bandwidth (and often
high power or high voltage amplifier circuits are limited by slew rate not bandwidth)

• Total Harmonic Distortion - put in a pure sine wave, you get out a small amount of
higher harmonics as well due to non-linearity. How much of that is there?

• Power Supply Rejection Ratio - If you inject a frequency into the power supply line,
how much of it appears at the output?

• Common Mode Rejection Ratio - an ideal op-amp does Vout = A(V+ − V−) (purely

differential). A real one does Vout=A(V+−V−)+
ACM

2
(V+ +V−). i.e. if you have a common

mode signal at both inputs some amount of it will get erroneously amplified. CMRR is
the ratio between A and ACM. Can be a real problem for both DC accuracy and noise
performance. Inverting configurations all but eliminate common mode signals so they’re
usually “better” to use in this sense

• Rail to Rail (R2R) capability - some op-amps cannot produce signals at their outputs
all the way to the power supply rails. Some can. Check, if this is important to your circuit!

• Input referred noise - usually specified as some amount of integrated 1/f + some amount
of white noise per ω

√

and there are many others, but we are just covering the basics here!
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