
Ionisation chamber model

• Free charge is generated in a volume between two electrodes
– Volume is the detecting medium, e.g. silicon or a gas
– Charges: ions + electrons or e-h pairs
– Apply an electric field to drift the charge to the electrodes
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• What is generating the signal?
– The movement of charges 

induces the current isig(t)
– The current depends on the 

geometry



Shockley-Ramo Theorem

• Determines isig(t) induced on an electrode A
• Construct a hypothetical field, the weighting field: EW

– Set electrode A to unit potential
– Set all other potentials to ground 
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For a full derivation and discussion, see e.g. H. Spieler’s lectures
http://www-physics.lbl.gov/~spieler/Heidelberg_Notes_2005/index.html

http://www-physics.lbl.gov/~spieler/Heidelberg_Notes_2005/index.html


Shockley-Ramo Theorem

• Calculate the actual field that the charges will drift in: ED
– The electrode configuration as it is in the detector

• The drift field and weighting field will look very different
– The drift filed determines the trajectory of the particles
– Special case: they are identical for a parallel plate capacitor
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Shockley-Ramo Theorem

• Use these two fields to calculate the induced current
– Velocity vector of the charge drifting along the field lines

• Shockley-Ramo Theorem
– The time-dependent induced current is given by
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�⃗�! 𝑡 = 𝜇 & 𝐸" �⃗� 𝑡 , where . 𝜇	is	the	mobility
𝐸"	is	the	drift	:ield

𝑖#$% 𝑡 = q & �⃗� 𝑡 & 𝐸& �⃗� 𝑡 ,	 where	𝐸&	is	the	weighting	:ield

Example of a calculated current 
from electrons and holes in a 
silicon detector
(note the difference in mobility)



Charge integrating amplifier

• Integrating amplifier is commonly used to integrate the 
induced current
– Gives a signal proportional to the ionised charge
– Shaping required to bring the signal back to the baseline
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Simple common emitter stage
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Transfer functions
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𝐹 𝑠 = 	A
'

(
𝑓 𝑡 𝑒)#*𝑑𝑡

where	𝑠 = 	𝜎 + 𝑖𝜔

Laplace transform

𝐹 𝜔 = 	A
)(

(
𝑓 𝑡 𝑒)$+*𝑑𝑡

Fourier transform



Properties of the Laplace transformation

• Laplace transforms of derivatives:

• Transforms (linear) differential equations to polynomial equations
• Solve the equations and find poles and zeroes

– Defines the dynamical behaviour of the system
• Solution becomes combinations of exponential and sinus functions
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Combining the transfer functions of two systems

• Time domain: convolution integral
– 𝑓 𝑡 = ∫)(

( ℎ(𝜏) & 𝑔 𝑡 − 𝜏 𝑑𝜏

• Laplace (also frequency) domain: multiplication
– 𝐹 𝑠 = 𝐻(𝑠) & 𝐺(𝑠)
– Deconvolute: 𝐻 𝑠 = 𝐹(𝑠)/𝐺(𝑠)
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Transfer functions – time and frequency domain
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Fourier transformation
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