

Bergen ITk Status June 2024

<u>Simen Hellesund</u>, Simon Huiberts, Sohaib Hassan On behalf of the Bergen group

June 2024 – Norway

Personnel

Bjarne Stugu: Professor

Attiq Ur Rehman: Senior engineer

Thomas Poulianitis: Chief engineer

Simen Hellesund: Postdoc

Simon Huiberts: PhD

Sohaib Hassan: PhD

Simen Hellesund

- Clean Room
 - ISO 7 Standard. Manual particle counter. Environment monitor with automatic email notification system.
 - Microscope probe station
 - Smart Scope metrology station with custom vacuum chuck.
 - KERN digital scales for precision mass measurements.
- Detector Lab
 - ISO 9 standard (Not certified, but confirmed over a 2 week particle counting campaign summer 2023).
 - Temperature, humidity and particle count monitored 24/7 by a <u>canary board</u>, logging to an influx server.
 - Flex cleaning/drying and storage.
 - Visual inspection microscope
 - Vacuum sealer.
 - Climate chamber.
 - Module cold test setup.

Facilities and Equipment – Clean Room

4

Probe Station - inside cleanroom

Probe Station - outside cleanroom

- 1)- PC with control and data acquisition software
- 2)- Platform with probe station needles
- 3)- Deltapix camera (usually used setting: 1.6M, 1536×1024)
- 4)- Microscope (Olympus SZ-CTV stereo c-mount)
- 5)- Dark (light-tight) box and a light source
- 6)- Cold chuck (under development)

- 1)- Dry vacuum pump for the chuck
 2)- Dry nitrogen line for the cold chuck
 3)- LCR 4263b for C-V measurements
 4)- Decoupling box to protect LCR
 5)- Keithley 2635A for I-V measurements
 6)- Motor controller to move the chuck and microscope
 Simen Helles 7)- Power unit for the Peltier element of the cold chuck
 - 8)- Chiller for the cold chuck

Facilities and Equipment – Clean Room

Smartscope - Metrology

- Ø Manufacturer's description: <u>Smart</u> <u>Scope Flash CNC 200/ CERN Box</u> <u>copy</u>
 Ø XYZ Travel: 200 × 200 × 150 mm
- \emptyset XY Area Accuracy: E2 = (2.0 + 6L/1000) μ m, Z Linear Accuracy:
- $E1 = (3.5 + 6L/1000) \,\mu m$
- Ø Scale resolution: 0.5 μ m
- Ø Fitted with grid projector for enhanced focusing on specular surfaces
- Ø Custom-made vacuum chuck for metrology
- Ø Equipped with ZONE3[®] metrology software

- Ø Field of view from 0.905 mm × 0.679 mm (7.00x) to 7.961 mm × 5.974 mm (0.80x)
- Ø Standard definition (640 × 480) 0.92 Mega pixel resolution
- Ø Ring, coaxial and backlight
- Ø ZONE3[®] metrology software for clicking images

Facilities and Equipment - Detector Lab

Facilities and Equipment – Detector Lab

- Flex PCBs for all triplet module flavours designed by the Oslo group.
- We are qualifying for reception test of loaded flexes.
 - Cleaning
 - Visual inspection
 - Metrology
 - Electrical tests
 - Registration in the production database

Flex QA/QC

C317_scratch

20UPIP53264105 J103_dust_hair

Received: 20 linear + 20 Ring 0.5 (pre-prod)

- In Stock: 15 linear + 15 Ring 0.5
- Shipped: 5 linear + 5 Ring 0.5 (to oslo)

- All instock flexes have been visually inspected, waiting for metrology.
- No electrical testing setup so far.

Simen Hellesund

Bergen ITk Commitments and Activities - Sensors

- The Bergen group are contributing to the testing of SINTEF 3D pixel sensors
- We can do sensor IV and CV measurements with our probe station setup.
- We are involved in ITk test beams. (<u>poster with test beam results</u> <u>from 2023</u>)
- Currently contributing to a paper on the latest production run of SINTEF sensors.

nj#1

Ini#2

- Our engineer Attiq has contributed to simulations and performance verification of the RD53 chip and of calculation of the data read-out rates of the ITk Pixel detector (link).
- Simon has studied the efficiency of consecutive hits with small separation in time.
 - •Also mapped local ground variation in the chip.

ThresholdMap after subtraction from chip 0x12283

Column

Failing pixels = 0

Pixel Occupancy Map, -400V, 1h run

13

- Simon recently came back from a research stay at Berkeley.
- He worked on how to improve ITkPix chip tuning to reduce the number of dead pixels.
- He also studied the possibility of making a pixel detector by coating an ITkPix readout chip with a thin film of selenium.

Simen Hellesund

- For his qualification tast, Sohaib developed fast feedback test procedure for bare modules.
- Bergen is qualified for bare module reception.
 - Can receive bare modules here for testing before shipping to Oslo for assembly.

Bare Modules QA/QC

- One of the main Bergen contributions to the ITk is in the form of module QC.
 Oslo will assemble Ring 0 triplet modules and ship them to Bergen to undergo full QC:
 - Thermal cycling
 - Electrical tests
 - Source testing
 - Stability test

- We have two test beds for cold tests, thermal cycling and source testing, one working (but currently set up for linear triplets) and one under construction for Ring 0 modules.
 - Thermoelectric/liquid cooling.
 - Monitor module and air temperature and humidity, dry air flow, and vacuum pressure (in progress).
 - Software and hardware (in progress) interlock to shut down power supply and peliter power when temperature or humidity falls outside of allowed range.
 - First qualification of the setup has been <u>submitted</u> (step 10.1), working hard on the rest.
- If one module takes 2 day to fully test, then with two test beds we will have a testing capacity of 5 modules per working week.

Bergen ITk Commitments and Activities - Module QC

- Joint order for triplet shipping insert foam. Has been distributed to triplet sites.
- Crates will be reused. •
 - Tracked in the production database •

Basic Info @

Name	Triplet Shipping Crate	1
Code	TRIPLETCRAFE	
Description	Hard plastic Peli case with custom foam insert for shipping assembled triplet modules.	
	Comes in two sizes: A small size (Peli 1507) holding four modules and a large size (Peli 1605) holding 11 modules.	
id	66741817ead3ed0035d78cff	
Category	Item	
Project	Pixels	1
Subproject	POTT GENERAL	
State	ACTIVE	1
ATLAS Serial Number	Automatic	1
SN Assigned Later	No	
SN Component Identifier	Not set	
Child registration	(Not available	
		~

- Involved in the development and maintenance of the ITk production database.
- Define database objects for ITk interlock crates.
- Create a webapp for the common electronics project, based on the pixel and strips webapps developed by Kenny Wraight.

Name	Interlock Module
Code	INTERLOCKMODULE
Description	A database object for modules of the Lissy and MIC crates of the ITk interlock.
Id	6628d12d2ab1c10035cd99a3
Category	Assembly
Project	Common electronics
Subproject	
State	ACTIVE
ATLAS Serial Number	Automatic
SN Assigned Later	No
SN Component Identifier	LM
Child registration	No

nmon Electronics multi- me webApp		👲 Manage C	rate			
owered by <u>itkdb</u> 🗲						
		toggle debug for details				
app by theme:						
omeeApp ommonApp						
enericApp		Select compone	nt			
nterlockApp						
: page:	s	elect input method:				
uthenticate		Enter identifier Select from inventory				
lanage Crate						
room Cupboard	l l	Enter identifier				
	E	nter component identifier				
rtion:		20UCELY9000004				
BERGEN					0.1	
		Lissy Cra	te Nur	nberir	g Schem	ne
*				DO	1111-04	
				P5		
how page history						
			23	2	4	25
oggle debug		21	Back	nlanes		22
					1 1 1 1 1	
nint						
print.						
mlitTemplate: 15-11-23						
bTemplate: 14-02-24		1 2 3 4 5 6	7 8 9 10	11 12 13	14 15 16 17 18	19 20
on: 19-06-24			Front	Panel		

Qualification Progress

block	sub-block name Sub-block number	Database Code	Qualification docume	Bergen Stat	uComm
1 Lab Infrastru	ucture				
	1.1 Lab rooms + services	LAB_ROOM		Done	
	1.2 ASIC Compliance & Handling	LAB_ASIC		Done	
	1.3 Storage of Bare Module, Module PCB and assemble	<pre>«LAB_STORAGE</pre>		Done	
	1.4 Shipping	LAB_SHIP		Done	
	1.5 Production Rate Planning	LAB_PRO		Done	?
2 Database					
	2.1 ITkPD account and necessary privileges	DB_ACC		Done	
	2.2 Setting up InfluxDB+Grafana and Local Database+	DB SETUP		Done	
	2.3 Setting up QC Helper/WebApps for non-DAQ data	DB HELP		Done	
	2.4 Input format validation for non-DAQ data	DB NON		Done	
3 Flex		_			
	3.3 Metrology	FLEX MET			OBS!
	3.4 Visual inspection on populated flexes	FLEX VIPOP			OBS!
	3.5 LV/HV test	FLEX LVHV	AT2-IP-AP-0018 v.1		
8 Reception o	f Triplet components				
	8.1 Instruments for metrology and reception	TREC INST		Done	
	8.6 Metrology & mass of hare module	TREC BMMM		Done	
	8.7 Visual inspection of bare module	TREC_BMVI		Done	
	8.8 Bare module Electrical test	TREC BMET		Done	
Testing Set		IIVEO_DIMET	AT2-IB-0A-0024	Done	
J lesting Sett	10.1 Cold testing setup	TEST COLD	AT2 ID OA 0027 v 1	Submitted	
	To. T Cold testing setup	TEST_COLD	A12-IF-QA-0037 V.1	Submitted	
	10.2 Thermal cycling	TEST TC	AT2-IP-QC-0019 v.1		
	10.3 Interlocks	TEST INT	AT2-IP-OA-0031 v 1		
	10.4 DCS	TEST DCS	AT2-IP-OC-0017 v 1		
	10.5 Testing Parallelization Setups	TEST PAR	AT2-IP-OC-0020 v 1		
	10.6 Stability Test	TEST_STAR	AT2-IP-OA-0054 v 1		
	10.7 Source or x-ray test setup	TEST YRAV	AT2-IP-OA-0052 v 1		
	10.8 Room temperature test setup (Digital)	TEST RT	AT2-IP-OA-00/2 v.1		
	10.9 Quad & Triplet Complementary stage	TEST_KI	A12-11-QA-0042 V.1		2
1 Digital Modu	le teste	1231_10			r
	11.1 First sever up	DIG 1DU		Dana	
	11.1 Pirst power-up	DIG_IPU	ATZ-IP-QA-0025 V.1	Done	
	11.2 Minimal tests			Done	
	11.3 Simple scans			Done	
	11.4 Advanced scans	DIG_ADV		Done	0
	11.6 Quad & Triplet Complementary stage	DIG_TQ			7
2 Full QC	10 Describer for factorian sites				
	12 Reception test for testing sites	FULL_RREC			
	12.1 Temperature controlled testing	FULL_ICI			
	12.2 Disconnected bump tests (source, crosstalk, no-bia	FULL_DIS			
	12.3 Thermal cycling	FULL_TC			
	12.4 Long-term stability test	FULL_LONG			
	12.5 Full QC on 1 module	FULL_QC1			
	12.6 Full QC on 5 quads/3 triplets in total	FULL_QC5			
	12.7 Full QC data merging	FULL_QCP			
	12.8 Quad & Triplet Complementary stage	FULL_TQ			?
	12.9 Swapping module	DIG SWAP			

 Qualification material collected here: <u>https://cernbox.cern.ch/s/mlvdGm0FLX11Dai</u>

Summary

- The Bergen group is, or has been, involved, at some level, at almost every stage of module production, from sensor die to assembled modules.
- Main contribution as a testing site for (Ring 0) triplet modules, but also contribute to flex and bare module reception, test beams, database work, etc.
- Many qualification steps have been completed. Working hard on the qualification of our test setup and of full module QC.