# Towards the optimization of a Muon Collider Calorimeter

Federico Nardi, Tommaso Dorigo, Julien Donini, Jan Kieseler











#### What **Pipeline scheme**

- signal-to-background discrimination and instrumentation cost



#### End objective: design optimization study approached with AD techniques

# Development of a pipeline to propose an optimal configuration in terms of

- Based on 3 main lacksquarecore methods
- Provide information  $\bullet$ encoded in a utility function
- Minimized using AD libraries (PyTorch, Tensorflow)

#### What CRILIN: reference design

- Reference design chosen for our studies is CRILIN for the Electromagnetic Calorimeter (ECal)
- Array of 1x1x4.5cm<sup>3</sup> PbF<sub>2</sub> voxels, arranged in a dodecahedron
- 5 layers per wedge
- Modular design, easy to modify and rearrange



#### **Modules BIB Generation**

- Starting from a 1.5GeV simulation, BIB deposition in 5 ECal layers
- Cylindrical symmetry allows us to focus on a single layer
- Assuming uniformity in xdirection
- Initially polynomial fits layer-bylayer. Not ideal if we want to vary geometry



#### **Modules BIB Generation**

- Set up a simple neural network (5 dense hidden layers) to generalize and allow for interpolation
- Trained to predict an energy value for each cell z-centroid





#### **Modules BIB Generation**

- Decent interpolation between simulated layers
- Visualization in question has been trained on all layers but the central one
- Energy density per cell left as normalization factor



#### **Modules** Shower Generation

- For our signal chose to focus on monochromatic photons, 8 points in energy: [0.5, 10, 25, 50, 75, 100, 125, 150]GeV
- 1k events for each point generated with Geant4 in a block of PbF2
- Define 'average event' bootstrap average of 100 simulated showers
  - 500 average events per energy points
  - Area [-25,25]x[0,500]mm2





- 6



|  | ŀ | 5  |        |       |
|--|---|----|--------|-------|
|  |   | 4  | [MeV]) |       |
|  |   | 3  | Enerav | 6     |
|  | - | 2  | loa(   |       |
|  |   | 1  |        |       |
|  | L | 0  |        |       |
|  | ļ | 6  |        |       |
|  |   | 5  |        |       |
|  | ļ | 4  | [MeV]  |       |
|  |   | 3  | nerav  | 6     |
|  |   | 2  | loa(E  | 5     |
|  |   | 1  |        |       |
|  |   | 0  |        |       |
|  |   | 4. | .0     |       |
|  |   | 3. | 5      |       |
|  |   | 3. | 0      | 5     |
|  |   | 2. | 5      | (Mp)  |
|  |   | 2. | 0      | neruv |
|  |   | 1. | 5      | lool  |
|  |   | 1. | 0      |       |
|  |   | 0. | 5      |       |
|  | L | 0. | 0      |       |

#### **Modules** Shower Generation

- Exploring different paths:
  - Fitting (x,y) component for each shower axis (z-) bin
  - In parallel testing a WGAN to produce new shower images



#### **Modules** Shower Generation

- 2D distribution generalized to 3D shape
- Evaluated on a grid with custom dimensions (n\_x, n\_y, n\_z)
- BIB needs to be overlayed on the same grid

#### 75.0 GeV





#### Photon Reconstruction Where we left https://arxiv.org/abs/2204.01681

- Employed DeepJetCore for object reconstruction:
  - Essentially a Graph Neural Network performing clustering
  - Signal photon vs BIB discrimination
  - Trained on 10k photons uniformly distributed in [10, 175]GeV
  - Tested on 8 fixed energy points
  - Reconstruct photon energy given cell coordinates (x,y,z) and total deposit





#### **Photon Reconstruction** Adding time variables

- Result obtained with overlay of full BIB and shower dataset, without time information
- Introduce time into the game
  - First by implementing the time window [-250,250]ps in the overlay
- Train 2 models
  - With cut and (t,x,y,z) inputs
  - With cut and only (x,y,z) inputs



![](_page_10_Figure_8.jpeg)

energy deposition vs time

![](_page_10_Figure_10.jpeg)

![](_page_10_Figure_11.jpeg)

#### Photon Reconstruction Introducing time

- Significant performance improvement
- Time variable seems to introduce noise
  - However might be due to some bug in the overlay of time variable

![](_page_11_Figure_4.jpeg)

![](_page_11_Picture_5.jpeg)

![](_page_11_Figure_8.jpeg)

![](_page_11_Picture_9.jpeg)

## **Towards full pipeline Toy steps**

- Idea: represent Crilin detector as a 3D grid of voxels, and optimizing the spacing  $(\Delta x, \Delta y, \Delta z)$  between them.
- Started to work on a toy model:
  - **Defining the geometry**: simple 3 with custom # voxels
  - Evaluating a function on the grid: 3D gaussian with  $\sigma_x \neq \sigma_y \neq \sigma_z + random$  noise

![](_page_12_Figure_6.jpeg)

![](_page_12_Figure_7.jpeg)

| D | grid |  |
|---|------|--|
| D | grid |  |

| S  | igma_ | _X | = | 100. |
|----|-------|----|---|------|
| SI | igma_ | _у | = | 120. |
| SI | igma_ | _Z | = | 100. |

## **Muon Collider Towards setting up a pipeline**

- Reconstruction: Use maximumlikelihood estimators to infer the gaussian parameters  $\hat{\mu}, \hat{\sigma}$
- Evaluating loss: MSE for gaussian parameters + regularizer to prevent spacing to collapse towards degeneracy

$$\sum_{i=x,y,z} (\hat{\mu}_i - \mu_i)^2 + (\hat{\sigma}_i - \sigma_i)^2 + \frac{1}{\Delta x_i^2}$$

Minimization of loss and identification of ideal parameters

![](_page_13_Figure_6.jpeg)

Final spacing: [0.47563136 0.5433373 0.44885612]

![](_page_13_Figure_11.jpeg)

## **Summary and further steps**

- Simplifying the Object Reconstruction to regress a signal fraction per voxel Less computationally demanding, enough for our simplified problem with
  - single photons
- Generate a signal+BIB dataset with different voxel sizes to train the reconstruction including those parameters (parametric ML)
- Connect all modules and run the full pipeline

![](_page_14_Picture_5.jpeg)

![](_page_14_Picture_6.jpeg)

## **Thank you!**