

Full simulation study of a hadronic calorimeter for a future muon collider

Performances test of an MPGD-based HCal through physics events

A.Colaleo, <u>L. Generoso</u>, L.Longo, M. Maggi, A. Pellecchia, R. Radogna, F. Simone, A. Stamerra, R. Venditti, P. Verwilligen, A. Zaza

Univeristà degli Studi di Bari Aldo Moro - INFN Sezione di Bari

BIB overlay:

• Available Generated BIB :

1500 events at $\sqrt{s} = 1.5 TeV$ Muon Collider for :

positive muon beam $\mu^+ \rightarrow e^+ \overline{\nu_{\mu}} \nu_e$

negative muon beam $\mu^- \rightarrow e^- \nu_\mu \overline{\nu_e}$

 Simulation step in 3 TeV Detector configuration at (ECal-HCal-Solenoid) with technologies :

- CRILIN-MPGD1x1cm²

- Merging of SIGNAL and BIB in the digitization step :
 - BIB + Pion Guns at 5 and 20 GeV
 - BIB + Neutrino Guns at 0.1 GeV (BIBonly study)

BIB SIMULATION

SIMULATED HIT IN ECAL AND HCAL

PION GUN AT 20 GEV + BIB

- Large number of SimHits in ECAL → **filtered** out to perform signal reconstruction
- One order of magnitude less of SimHits in HCAL with respect to ECAL

RUN: 0	EVENT: 0	DETECTOR: MuColl_v1	
COLLECTION NAME		COLLECTION TYPE	# OF ELEMENTS
AllTracks CaloHitsRel	ations	Track LCRelation	1 247
ECALBarrelHits ECALEndcapHits		CalorimeterHit CalorimeterHit	3 0
ECalBarrelC ECalEndcapC	ollection collection	SimCalorimeterHit SimCalorimeterHit	1251 236
HCALBARTECHILS HCALEndcapHits		CalorimeterHit CalorimeterHit CalorimeterHit	189 23 32
HCalBarrelCollection HCalEndcapCollection		SimCalorimeterHit	206 27
HCalRingCollection		SimCalorimeterHit	36

- BIB filter for the ECAL Barrel based on the energy and the position of the SimHits implemented by the CRILIN group in Padova
 - → look at particles traversing the barrels regions only in HCAL
- Most of the ECAL Hits are rejected by the filter

BIB IDENTIFICATION

• Looking for signature variables capable of discarding BIB:

SIMULATED HITS:

- Occupancy (x-y and $z-\varphi$)
- Longitudinal distribution (z)
- Energy
- Arrival time

RECONSTRUCTED CLUSTERS :

- Cluster Size
- Cluster Energy

Università degli Studi di Bari Aldo Moro | Lisa Generoso | Full simulation study of a hadronic calorimeter for a future muon collider

BIB COMPARISON WITH SIGNAL

STUDY OF $\mu\mu \rightarrow H \rightarrow b \overline{b} - \sqrt{s} = 3 \text{ TEV}$

From previous studies of $\mu\mu \rightarrow H \rightarrow b\overline{b}$ at $\sqrt{s} = 3$ TeV, the energy distribution of pions in the jets shows :

- mean energy is 7.77 GeV
- 94.5% of particles below 20 GeV
- Energy points to work with are chosen accordingly :
 - Pion guns at 5 GeV
 - Pion gun at 20 GeV

14/05/24

BIB CHARACTERIZATION

SIMULATED HITS IN MPGD 1X1 CM² HCAL BARREL

DISTRIBUTION IN X-Y

- Uniform distribution of BIB SimHits on each layer
- BIB contained within the first 20 Layers

ENERGY IN X-Y

- Uniform distribution in plane x-y of the energy deposits of BIB SimHits
- Mean enegy deposits of ~ 4 keV

SIMHIT OCCUPANCY

SIMULATED HITS IN MPGD 1X1 CM² HCAL BARREL

• In all the samples, the occupancy is generally quite low :

Most of the cells are never fired within one event, and a fraction of cells are fired mostly once

 In all the samples, the occupancy is generally quite low :

> **BIB-only:** ~ 5 x 10⁻⁶ **Pion 5 GeV :** ~ 2 x 10⁻⁶ **Pion 20 GeV :** ~ 8 x 10⁻⁶

LONGITUDINAL DISTRIBUTION

SIMULATED HITS IN MPGD 1X1 CM² HCAL BARREL

For each sample, the spatial distributions result in being quite uniform along the whole z range, minor differences can be noticed :

- → BIB hits have a small hump on the left side, which is unexpected given the symmetry between positive and negative muon beams → more investigation on how DDMarlin Pandora merges the two beams
- ightarrow 20 GeV pions are more concentrated in the region close to the IP

SIGNAL AND BIB MERGED

ENERGY DISTRIBUTION

SIMULATED HITS IN MPGD 1X1 CM² HCAL BARREL

- The energy of the BIB SimHit is larger than the one of pure signal: •
 - \rightarrow No possible cut of BIB hits based on SimHit energy

SIGNAL AND BIB SEPARATELY

ARRIVAL TIME DISTRIBUTION

SIMULATED HITS IN MPGD 1X1 CM² HCAL BARREL

 Most of the signal SimHit have arrival times between 5 and 10 ns

> Assuming relativistic pions, the average time of flight to reach the first layer (~ 1.7 m from IP) is around 6 ns

- Overflow events with t > 20 ns are unexpected, they may derive from bugs in the simulation step
- BIB SimHit time distribution is uniform in the range from about 7 to 20 ns

→ A cut on t > 10 should exclude half of the BIB SimHit while neglecting a small fraction of signal

SUMMARY OF THE SIMHIT PROPERTIES

- BIB containment within the first 20 layers
- Very low occupancy in the z- φ view :
 - $\sim 5 \times 10^{-6}$ probability for a cell to be fired (1st layer)
 - ~ 3 hits per event (1st layer)

 \rightarrow Larger than values at 5 GeV \rightarrow problematic for pion reconstruction at 5 GeV

- Uniform longitudinal distribution without prominent differences from the pion guns
 → No possible cut on the z
- SimHit average energies of $\sim 4 \text{ keV} \rightarrow$ twice the value of the signal hits

→ No possible cut changing the RO energy thresholds

- Arrival time distribution is uniform in the range 7-20 ns, while signal peaks at 6 ns
 - Possible cut at t > 10 ns

Università degli Studi di Bari Aldo Moro | Lisa Generoso | Full simulation study of a hadronic calorimeter for a future muon collider

CLUSTER MULTIPLICITY

COMPARISON AT 20 GEV

BIB-only: Low clustering efficiency: ~80% of 0-cluster events

SIGNAL-only vs SIGNAL+BIB:

- Increase of multicluster events: on average from 1.61 (SIGNAI-only) to 2.30 (SIGNAL+BIB) clusters per event
- Decrease in clustering efficiency: from ~50% (SIGNAl-only) to ~40% (SIGNAL+BIB) 1-cluster events

Università degli Studi di Bari Aldo Moro | Lisa Generoso | Full simulation study of a hadronic calorimeter for a future muon collider

14/05/24

CLUSTER SIZE

COMPARISON BETWEEN BIB AND SIGNAL

- Selection of events with one single cluster
- Signal clusters matched to MC pions within $\Delta R < 0.2$

BIB-only clusters are made of ~10 reconstructed hits:

- one order of magnitude smaller than cluster sizes of 20 GeV pions
- comparable to sizes for 5 GeV pions
- → CLUSTER SIZE can be only a signature at high energies

SIGNAL AND BIB SEPARATELY

CLUSTER SIZE

COMPARISON : SIG+BIB

Overlaying BIB on the signal > slight increase in size and decrease in clustering efficiency (1% at 5 GeV -5% at 20 GeV):

- **MIXED CLUSTERS** contain RecHits originating both from the pion or the BIB ٠
- Hits from the BIB are uniformly distributed in space and arbitrarily far from the pion path •
- Mixed clusters have on average a larger $\Delta R < 0.2$ not passing the matching selection criterion •

SIGNAL AND BIB MERGED

Università degli Studi di Bari Aldo Moro | Lisa Generoso | Full simulation study of a hadronic calorimeter for a future muon collider

14/05/24

CLUSTER ENERGY

COMPARISON : SIG - BIB - SIG+BIB

BIB-only clusters have average energies of ~ 0.5~GeV

- small high-energy tail partially overlapping with cluster energies of 5 GeV pions
- well distinguishable from cluster energies of 20 GeV pions

Overlaying BIB on the signal \rightarrow almost negligible increase in energy :

- Due to MIXED CLUSTERS containing additional RecHits from BIB with energies that exceed the RO thresholds
- \rightarrow Overall BIB does not affect Custer energy reconstruction at $E_{MC} > 5 \text{ GeV}$

Università degli Studi di Bari Aldo Moro | Lisa Generoso | Full simulation study of a hadronic calorimeter for a future muon collider

14/05/24

CONCLUSIONS

• BIB containment within the first 20 layers

SIMULATED HITS

- Very low occupancy of BIB SimHits
- No possible cut on the z-coordinate of SimHits
- No possible cut changing the RO energy thresholds
- Possible cut at arrival times > 10 ns

CLUSTERS

- BIB cluster size compatible with signal cluster size at low energies
 - → No possible cut on cluster size for the whole energy range
- The energy of the clusters is negligibly affected by BIB overlay even at 5 GeV

Thanks to Lorenzo Sestini for providing support with CRILIN reconstruction

BACK UP SLIDES

Università degli Studi di Bari Aldo Moro | Lisa Generoso | Full simulation study of a hadronic calorimeter for a future muon collider

4/05/24

BIB OCCUPANCY

SIMULATED HITS IN MPGD 1X1 CM² HCAL BARREL

Analysis of 500 events from BIB-only and signal-only samples at 5 and 20 GeV

- Each bin of the histogram has roughly the dimensions of an MPGD-HCAL cell in z- ϕ
- Most of the cells are never fired within the 500 events, and a fraction of cells are hit just once

14/05/24

BIB OCCUPANCY

SIMULATED HITS IN MPGD 1X1 CM² HCAL BARREL

- The simhit multiplicty of the signal at 20 GeV dominates at each layer
- The SimHit multiplicity within the first 20 layers is larger for the BIB than for the 5 GeV pions

→ BIB → Sig 5 GeV → Sig 20 GeV

NUMBER OF HIT PER EVENT

14/05/24

6