Open problems in particle physics

Martti Raidal

NICPB, Tallinn

The Universe

Inflation Accelerated expansion of the Universe

Formation of light and matter

Light and matter
are coupled

Dark matter evolves
independently: it starts
clumping and forming
a web of structures

Light and matter separate

form atoms

Dark ages

Atoms start feeling the gravity of the
cosmic web of dark · Protons and electrons • Light starts travelling
freely: it will become the
Cosmic Microwave
Background (CMB) matter

First stars The first stars and galaxies form in the

cosmic web

densest knots of the

Galaxy evolution

The present Universe

Frequent collisions

between normal matter

and light

As the Universe expands, particles collide less frequently

Last scattering of
light off electrons → Polarisation

Light from first stars and
galaxies breaks atoms
apart and "reionises"
the Universe The Universe is dark as stars and galaxies are yet to form

Light can interac<mark>t</mark>
again with electro

+ Polarisation

The energy budget of the Universe

The whole Universe is a lab for fundamental physics

- To describe the Universe, we have 3 standard models:
- 1. The SM of particle physics, a gauge theory based on SU(3)xSU(2)xU(1)
- 2. The standard cosmological concordance model (ΛCDM), 6 parameters
- 3. General Relativity, a classical theory of gravity

The three models are not consistent and they complement each other

The Standard Model of particle physics

The SM is a gauge theory $SU(3)_c$ xSU(2)_LxU(1)_Y

The Higgs mechanism

Higgs and the flavour problem

• In the SM flavour is described by Yukawa interact.

 $H\psi_{L}^{i}Y_{ii}\psi_{R}^{j}$

 v_{μ} v_{τ} e μ τ • Yukawa couplings are hierarchical, up and down, quark and lepton sectors are all different

- No symmetry or other fundamental principle exist to describe them
- Despite of huge amount of data, we have no understanding of the origin of flavour physics

Dominant idea: the Froggatt-Nielsen mechanism

• Based on U(1) flavour symmetry and nonrenormalizable operators of the form $\left(\frac{\phi}{M}\right)^2 H \psi_2 \psi_2 + \left(\frac{\phi}{M}\right)^3 H \psi_1 \psi_3 + \left(\frac{\phi}{M}\right)^4 H \psi_1 \psi_2 +$

• Choosing $\varepsilon = \frac{\langle \phi \rangle}{M}$ appropriate particle quantum

numbers results in:

- Extendable to SU(2), SU(3) and discrete flavour symmetry groups
- Is this paradigm testable? Falsifiable?

$$
Y = \begin{pmatrix} \varepsilon^6 & \varepsilon^4 & \varepsilon^3 \\ \varepsilon^4 & \varepsilon^2 & \varepsilon \\ \varepsilon^3 & \varepsilon & 1 \end{pmatrix}
$$

Have we tested the SM Higgs sector experimentally?

1. Yes, assuming the SM. In the SM there is a relation between the Higgs mass and self coupling λ

- 2. No, in general. Other EWSB scenarios are possible
- 3. One needs to measure the self coupling λ directly

Open question: Inflation?

GR: vacuum energy expands space exponentially

- 1. Flat potential: Inflation with almost const energy density
- 2. Oscillations: Reheating creates thermal plasma and matter
- 1. There are two measured quantities in inflation:
	- a) Spectral index n_s measures tilt of the pot.
	- b) Amplitude A of the spectrum gives the scale
- 2. Bounds on the tensor-to-scalar ratio *r*

Open question: Baryon asymmetry?

Where is the antimatter?

- Sakharov conditions:
	- 1. B violation
	- 2. C and CP violation
	- 3. Out of equilibrium condition
	- 4. Sphalerons violate B-L, convert L to B
- Neutrinos are massive and may be Majorana particles: Lepton number violation
	- Introduce heavy Majorana neutrinos N with *½M^N NN + Lⁱ Y ij N^j H*
	- The seesaw mechanism

$$
\mathcal{M}_{\nu} = Y_{\nu}^{T} (M_{N})^{-1} Y_{\nu} v^{2} \sin^{2} \beta
$$

- ν_R ν_R^C H_{μ} \cdot H
- Leptogenesis in decays of N in the early Universe

CP asymmetry in N_1 decays

Evolution of abundances for vanishing initial N abundance

Additional supression factors:

- 1. Initial abunance of N in thermal plasma of order 0.01
- 2. Wash-out effects of order 0.001

$$
\frac{n_B}{n_\gamma}~=~6.1^{+0.3}_{-0.2}~\times~10^{-10}
$$

achievable

Open question: Dark Matter?

Dark Matter of the Universe

Dark Matter candidates and their masses

Axions and the strong CP problem

Strong CP problem

Non-perturbative effects related to the vacuum structure of
QCD leads a CP-violating term in L_{QCD} :

 $\mathcal{L}_{\theta} = \frac{\alpha_s}{2} \theta G \cdot \tilde{G}$ 2π

Neutron electric dipole moment

Experimental limits on electric dipole moment

1. LR symmetry and P symmetry 2. Promote θ to a dynamical field

Possible solutions:

Ultralight oscillating scalars – DM candidate

• If scalar is light, its phase space density is high

$$
\rho_{\rm DM} \approx 0.3 \, \frac{\rm GeV}{\rm cm^3} \approx \left(0.04 \, \rm eV\right)^4 \qquad m \lesssim 0.01 \, \rm eV
$$

Such a DM should be described as a field

• To be viable DM, particles must be created at rest

Initial misalignment mechanism

Oscillating QCD axion is a detectable DM candidate

 f_a [GeV]

Strategies for WIMP searches

Complementarity of DM experiments

 $16.10.2024$ $16.10.2024$ 26

The WIMP miracle

$$
m_X \sim 100 \text{ GeV}, g_X \sim 0.6 \Rightarrow \Omega_X \sim 0.1
$$

This mass scale has nothing to do with EWSB -- a miracle

DM as a thermal relic

 $n_{\text{DM}} \propto \exp(-m/T)$

$$
\Gamma \sim \langle n_{\mathsf{DM}} \sigma \rangle \ \lesssim \ H \sim T^2 / M_{\mathsf{Pl}}
$$

$$
\frac{\rho_{\sf DM}}{\rho_{\gamma}} \sim \frac{m}{T_{\sf{now}}} \frac{n_{\sf{DM}}}{n_{\gamma}} \sim \frac{1}{M_{\sf{PI}} \sigma T_{\sf{now}}}
$$

$$
\frac{M}{T_f} \approx \ln \frac{\text{dof}_{\text{DM}} M M_{\text{Pl}} \sigma_0}{240 g_{\text{SM}}^{1/2}} \sim 26
$$

$$
\Omega h^2 \simeq 0.1 \times \left(\frac{\langle \sigma v \rangle_{\text{freeze}}}{3 \times 10^{-26} \text{ cm}^3 \text{s}^{-1}}\right)^{-1}
$$

WIMP candidates

Dark Matter direct detection

 σ_{SI} = spin-independent DM-nucleon cross section

allows to compare experiments: DM/nucleus cross section $\sigma_{\mathcal{N}} = A^2 \sigma_{SI}$.

Experimental results

Dark Matter indirect detection

Strategy - injecting DM contribution to CR

DM interpretation of the GeV excess

1) Morphology of the signal is consistent with DM halo profile

2) The ann. xs. is the thermal freeze-out xs

Triple coincidence?

Or the first signal of DM?

Collider tests of DM

The experimental signature is a mono-jet or a single photon plus missing energy

Only bounds on DM theories from the LHC

Complementarity of different DM tests

Open question: Primordial Black Holes and other GW observables?

History of gravitational waves

20TH CENTURY

1916: GWs predicted by Einstein

theoretical status uncertain until the second half of the 20th century

1970s: first indirect observation of GWs

2015: first direct detection of GWs

21 ST CENTURY

2017: first merger of neutron stars

2023: first evidence for a GW background

In 2015 the LIGO discovered GWs in BH merges

The observed BH masses where $30 M_{sol}$, "too large" for astrophysical expectations

Did LIGO discover the DM in the form of PBHs?

16.10.2024
CBC 2024 CBC 2024 Create PBHs when entering to the horizon Inflation creates large density fluctuations which

PBHs can be all of the DM in the asteroid mass window

Small PBH fraction at large masses can provide seeds for galaxies

Very rich physics

Cosmic phase transitions and GW signals

Open question: Dark Energy?

Scenarios of Dark Energy are not predictive

Dark Energy is kind of slow inflation

- 1. Cosmological constant Λ of General Relativity
	- a. Why the density is so small, 10^{-4} eV << M_{planck}?
- 2. Quintessence small value of the scalar potential
	- a. Analoguous to the inflation but at small scale

All DE explanations suffer from the hierarchy problem, why $<< M_{planet}$?

Conclusions

- The SM of particle physics is not complete and must be extended
- Its extensions receive contributions from Λ CDM and GR
- \bullet The SM, Λ CDM and GR complement each other

The whole Universe is one big laboratory