Open problems in particle physics

Martti Raidal NICPB, Tallinn

The Universe

CBC 2024

The Universe is dark as

stars and galaxies are

yet to form

Light from first stars and galaxies breaks atoms

apart and "reionises" the Universe Light can interac again with electro

→ Polarisation

Last scattering of light off electrons

→ Polarisation

As the Universe expands,

particles collide less

frequently

Frequent collisions

between normal matter

and light

The energy budget of the Universe

The whole Universe is a lab for fundamental physics

- To describe the Universe, we have 3 standard models:
- 1. The SM of particle physics, a gauge theory based on SU(3)xSU(2)xU(1)
- 2. The standard cosmological concordance model (ΛCDM), 6 parameters
- 3. General Relativity, a classical theory of gravity

The three models are not consistent and they complement each other

The Standard Model of particle physics

The SM is a gauge theory $SU(3)_c xSU(2)_L xU(1)_Y$

The Higgs mechanism

Higgs and the flavour problem

• In the SM flavour is described by Yukawa interact.

 $H\psi_L^i Y_{ii}\psi_R^j$

- No symmetry or other fundamental principle exist to describe them
- Despite of huge amount of data, we have no understanding of the origin of flavour physics

Dominant idea: the Froggatt-Nielsen mechanism

- Based on U(1) flavour symmetry and nonrenormalizable operators of the form • Choosing $\mathcal{E} = \frac{\langle \phi \rangle}{M}$ appropriate particle quantum numbers results in:
- Extendable to SU(2), SU(3) and discrete flavour symmetry groups $Y = \begin{pmatrix} \varepsilon^6 & \varepsilon^4 & \varepsilon^3 \\ \varepsilon^4 & \varepsilon^2 & \varepsilon \\ \varepsilon^3 & \varepsilon & 1 \end{pmatrix}$

16.10.2024

Have we tested the SM Higgs sector experimentally?

1. Yes, assuming the SM. In the SM there is a relation between the Higgs mass and self coupling λ

- 2. No, in general. Other EWSB scenarios are possible
- 3. One needs to measure the self coupling λ directly

Open question: Inflation?

GR: vacuum energy expands space exponentially

- 1. Flat potential: Inflation with almost const energy density
- 2. Oscillations: Reheating creates thermal plasma and matter
- 1. There are two measured quantities in inflation:
 - a) Spectral index n_s measures tilt of the pot.
 - b) Amplitude A of the spectrum gives the scale
- 2. Bounds on the tensor-to-scalar ratio r

Open question: Baryon asymmetry?

Where is the antimatter?

- Sakharov conditions:
 - 1. B violation
 - 2. C and CP violation
 - 3. Out of equilibrium condition
 - 4. Sphalerons violate B-L, convert L to B

- Neutrinos are massive and may be Majorana particles: Lepton number violation
 - Introduce heavy Majorana neutrinos N with $\frac{1}{2}M_N NN + L_i Y^{ij} N_j H$
 - The seesaw mechanism

$$\mathcal{M}_{\nu} = Y_{\nu}^T \left(M_N \right)^{-1} Y_{\nu} v^2 \sin^2 \beta$$

• Leptogenesis in decays of N in the early Universe

CP asymmetry in N₁ decays

CBC 2024

Evolution of abundances for vanishing initial N abundance

Additional supression factors:

- Initial abunance of N in thermal plasma of order 0.01
- 2. Wash-out effects of order 0.001

$$\frac{n_B}{n_{\gamma}} = 6.1^{+0.3}_{-0.2} \times 10^{-10}$$

achievable

Open question: Dark Matter?

Dark Matter of the Universe

Dark Matter candidates and their masses

Axions and the strong CP problem

Strong CP problem

Non-perturbative effects related to the vacuum structure of QCD leads a CP-violating term in \mathcal{L}_{QCD} :

 $\mathcal{L}_{\theta} = \frac{\alpha_s}{2} \theta G \cdot \tilde{G}$ 2π

Neutron electric dipole moment

Experimental limits on electric dipole moment

Possible solutions:

- LR symmetry and P symmetry 1.
- 2. Promote θ to a dynamical field

CBC 2024

Ultralight oscillating scalars – DM candidate

• If scalar is light, its phase space density is high

$$\rho_{\rm DM} \approx 0.3 \, \frac{{
m GeV}}{{
m cm}^3} \approx \left(0.04 \, {
m eV}\right)^4 \qquad m \lesssim 0.01 \, {
m eV}$$

Such a DM should be described as a field

• To be viable DM, particles must be created at rest

Initial misalignment mechanism

Oscillating QCD axion is a detectable DM candidate

 $f_a[\text{GeV}]$

Strategies for WIMP searches

CBC 2024

Complementarity of DM experiments

production at colliders

The WIMP miracle

$$m_X \sim 100 \text{ GeV}, g_X \sim 0.6 \rightarrow \Omega_X \sim 0.1$$

This mass scale has nothing to do with EWSB -- a miracle

DM as a thermal relic

 $n_{\text{DM}} \propto \exp(-m/T)$

$$\Gamma \sim \langle n_{\rm DM} \sigma \rangle \lesssim H \sim T^2 / M_{\rm Pl}$$

$$\frac{\rho_{\rm DM}}{\rho_{\gamma}} \sim \frac{m}{T_{\rm now}} \frac{n_{\rm DM}}{n_{\gamma}} \sim \frac{1}{M_{\rm Pl} \sigma T_{\rm now}}$$

$$\frac{M}{T_f} \approx \ln \frac{\mathrm{dof}_{\mathrm{DM}} M M_{\mathrm{Pl}} \sigma_0}{240 \ g_{\mathrm{SM}}^{1/2}} \sim 26$$

$$\Omega h^2 \simeq 0.1 \times \left(\frac{\langle \sigma v \rangle_{\text{freeze}}}{3 \times 10^{-26} \text{ cm}^3 \text{s}^{-1}} \right)^{-1}$$

10.10.2024

WIMP candidates

Dark Matter direct detection

 $\sigma_{\rm SI} = {\rm spin-independent} \ {\rm DM-nucleon} \ {\rm cross} \ {\rm section}$

allows to compare experiments: DM/nucleus cross section $\sigma_{\mathcal{N}} = A^2 \sigma_{\text{SI}}$.

Experimental results

Dark Matter indirect detection

Strategy - injecting DM contribution to CR

33

DM interpretation of the GeV excess

1) Morphology of the signal is consistent with DM halo profile

2) The ann. xs. is the thermal freeze-out xs

Triple coincidence?

Or the first signal of DM?

Collider tests of DM

The experimental signature is a mono-jet or a single photon plus missing energy

Only bounds on DM theories from the LHC

Complementarity of different DM tests

Open question: Primordial Black Holes and other GW observables?

History of gravitational waves

20TH CENTURY

1916: GWs predicted by Einstein

theoretical status uncertain until the second half of the 20th century

1970s: first indirect observation of GWs

orbital decay of the Hulse-Taylor binary pulsar

2015: first direct detection of GWs

21 ST CENTURY

GW150914 - merger of $\mathcal{O}(30)$ solar mass BHs

2017: first merger of neutron stars

2023: first evidence for a GW background

pulsar fiming array experiments [NANOGrav]

CBC 2024

In 2015 the LIGO discovered GWs in BH merges

CBC 2024

16.10.2024

The observed BH masses where $30 M_{sol}$, "too large" for astrophysical expectations

Did LIGO discover the DM in the form of PBHs?

Inflation creates large density fluctuations which Create PBHs when entering to the horizon

PBHs can be all of the DM in the asteroid mass window

Small PBH fraction at large masses can provide seeds for galaxies

Very rich physics

L

Cosmic phase transitions and GW signals

Open question: Dark Energy?

Scenarios of Dark Energy are not predictive

Dark Energy is kind of slow inflation

- 1. Cosmological constant Λ of General Relativity
 - a. Why the density is so small, $10^{-4} \text{ eV} \ll M_{\text{planck}}$?
- 2. Quintessence small value of the scalar potential
 - a. Analoguous to the inflation but at small scale

All DE explanations suffer from the hierarchy problem, why << M_{planck}?

Conclusions

- The SM of particle physics is not complete and must be extended
- Its extensions receive contributions from Λ CDM and GR
- The SM, ACDM and GR complement each other

The whole Universe is one big laboratory