

Università degli Studi di Padova

Phase transitions

Ville Vaskonen

Co-funded by the European Union October 16, 2024.

Electroweak phase transition in the SM

$$V = \mu_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2$$

SU(2)_L \otimes U(1)_Y
$$\bigcup$$

U(1)_{EM}
Cross-over transition.

Cross-over transition.

Classically conformal $U(1)_{B-L}$ extension of the SM

 $SU(2)_L \otimes U(1)_Y \otimes U(1)_{B-L} \implies SU(2)_L \otimes U(1)_Y \implies U(1)_{EM}$

- new gauge boson Z' and a new scalar ϕ
- only dimensionless parameters:

$$V = \lambda_H (H^{\dagger} H)^2 + \lambda_\phi (\phi^{\dagger} \phi)^2 - \lambda_p (\phi^{\dagger} \phi) (H^{\dagger} H)$$

• radiative corrections break the conformal symmetry:

$$V \approx \underbrace{\frac{3g^4}{4\pi^2} |\phi|^4 \left[\log \frac{|\phi|^2}{w^2} - \frac{1}{2} \right]}_{\text{CW potential}} + \underbrace{\frac{g^2 T^2 |\phi|^2}{w^2}}_{\text{thermal correction}}$$

$U(1)_{B-L}$ breaking phase transition

$U(1)_{B-L}$ breaking phase transition

Bubble nucleation rate: $\Gamma = H_0^4 e^{eta(t-t_n)}$

Ville Vaskonen (KBFI)

Evolution of finite patches

Distribution of density constrast

small $\beta/H_0 \implies$ slow transition \implies large variance of δ

Primordial black holes

Ville Vaskonen (KBFI)

GW spectrum

Lewicki, Toczek, Vaskonen, arXiv:2402.04158

1. **Primary** GWs from bubble collisions:

 $k_{\rm peak} \approx k_{\rm max} \, \beta / H_0$ $\Omega_{\rm PGW} h^2 \propto \left(\frac{\beta}{H_0}\right)^{-2}$

2. **Secondary** GWs induced by curvature fluctuations:

 $k_{\mathrm{peak}} \approx k_{\mathrm{max}}$

 $\Omega_{\rm SGW} h^2 \propto e^{-\beta/H_0}$

GW prospects

GW signal in the $U(1)_{B-L}$ model

Summary

- Extensions of the SM can include first-order phase transitions.
- delayed transition \implies thermal inflation caused by the vacuum energy
- slow bubble nucleation \implies large density fluctuations \implies PBHs
- GWs from bubble collisions/fluid motions and from large curvature fluctuations
- GW experiments can probe parameter space not accessible by colliders.