
Quantum information at collider 
experiments 

4th CERN Baltic Conference, 15-17/10/2024, Tallinn.

Luca Marzola
luca.marzola@cern.ch

Based on:  
- “Quantum entanglement and Bell inequality violation at colliders”, A. Barr,  M. Fabbrichesi, R. 
Floreanini, E. Gabrielli, LM. — Prog.Part.Nucl.Phys. 139 (2024) 
-“Bell inequality is violated in B0 → J/ψ K*(892)0 decays”, M. Fabbrichesi, R. Floreanini, E. 
Gabrielli, LM. — Phys.Rev.D 109 (2024), 
-“Bell inequality is violated in charmonium decays”,  M. Fabbrichesi, R. Floreanini, E. Gabrielli, 
LM. — Phys.Rev.D 110 (2024) 

￼1

mailto:luca.marzola@cern.ch


What are you even talking about?

2



What are you even talking about?
Quantum Information Theory (QIT) describes how information can be 
encoded in quantum systems, manipulated, transferred and decoded. 

2



What are you even talking about?
Quantum Information Theory (QIT) describes how information can be 
encoded in quantum systems, manipulated, transferred and decoded. 
Focus on a qubit (two-level system):

<latexit sha1_base64="AIFnKNa54HhdwS9xEfP2fSQoFag=">AAACh3icbZHBattAEIbXatMmbtI6zTGXpSZQKDhSaNNACSTtpccU4iRguWZ2NYoXr6TN7qhghF6sb9Jbr+1TdCXrUCcZWPj3+/+FnRlhtHIUhr96wZOnG8+eb271X2zvvHw12H195YrSShzLQhf2RoBDrXIckyKNN8YiZELjtVh8afzrH2idKvJLWhqcZnCbq1RJII9mg8t4gVTFxqman/IYtJkDb1lY83c8FkjQXqP6E4/v7kpIfEq4ahWtvx81qRY00eZ+Gs0Gw3AUtsUfiqgTQ9bVxWy3tx8nhSwzzElqcG4ShYamFVhSUmPdj0uHBuQCbnHiZQ4ZumnVtl/zA08SnhbWn5x4S/9/UUHm3DITPpkBzd19r4GPema+dEo673VqzW3y1qXeXsNCFDpZZ5OS0pNppXJTEuZy9eO01JwK3iyFJ8qiJL30AqRVvmku52BBkl9d348zuj+8h+LqaBQdjz58ez88+9wNdpPtszfsLYvYR3bGvrILNmaS/WS/2R/2N9gKDoPj4GQVDXrdmz22VsH5P3+mxcc=</latexit>

|ω→ = ε |0→+ ϑ |1→ ; |ε|2 + |ϑ|2 = 1
Born rule

The Block sphere 
of a qubit

α = cos
θ
2

β = eiφ sin
θ
2

2



What are you even talking about?
Quantum Information Theory (QIT) describes how information can be 
encoded in quantum systems, manipulated, transferred and decoded. 

???

Focus on a qubit (two-level system):
<latexit sha1_base64="AIFnKNa54HhdwS9xEfP2fSQoFag="></latexit>

|ω→ = ε |0→+ ϑ |1→ ; |ε|2 + |ϑ|2 = 1
Born rule

The Block sphere 
of a qubit

α = cos
θ
2

β = eiφ sin
θ
2

2



Particles are inherently quantum systems and properties such as spin 
or flavor can be used to encode information!  
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“What information?!?” you say? At the moment it doesn’t really matter 
as the identification “electron = qubit” allows us to: 

• use QIT methods to explore particle physics
• use particle physics to explore QIT (quantum mechanics)
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“What information?!?” you say? At the moment it doesn’t really matter 
as the identification “electron = qubit” allows us to: 

• use QIT methods to explore particle physics
• use particle physics to explore QIT (quantum mechanics)

In fact, it is quite remarkable that the LHC detectors —built to measure 
cross sections— can also be used to investigate notions that are central 
to QIT: entanglement and Bell inequality violation.
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|ni→ = |ai→ ↑ |bi→ can describe ( )A ∪ B

Mathematically, it follows from the postulates of quantum mechanics and 
from the superposition principle. Take a bipartite system formed by A and B    

|ai⟩ ∈ ℋA, |bi⟩ ∈ ℋB
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for some collection of operators {Vi}. Clearly, the map E in (2.6) preserves the hermiticity and positivity of ω, and,
provided

∑
i
V †
i
Vi = 1n, with 1n → Mn(C) the identity matrix, also its normalization; such a map is called a quantum

operation, or simply a quantum channel.
In particular, the unitary dynamics, ω ↑ Ut[ω], generated by a system Hamiltonian operator H → Mn(C), is of the

form (2.6), with just one operator Vi:
ω ↑ Ut[ω] = e→itH ω eitH . (2.7)

The set of transformations {Ut} forms a one-parameter group of linear maps, Ut ↓ Us = Ut+s, for all t, s → R, reflecting
the reversible character of the unitary Schrödinger dynamics; as such, it preserves the spectrum and the purity of the
density matrix:

ω = ω2 =↔
(
Ut[ω]

)2
= Ut[ω] . (2.8)

Another common transformation a!ecting quantum states involves measurement. Assuming the system S be initially
prepared in a pure state |ε↗↘ε|, after measuring a non-degenerate observable O =

∑
k
Ok|k↗↘k|, expressed in its spectral

form with Ok being its eigenvalues and |k↗ the corresponding eigenvectors, then the outcome Ok occurs with probability
wk = |↘k|ε↗|2 and, if the measurement indeed produces Ok, then the post-measurement system state is the projector
Pk = |k↗↘k|. By repeating the measurement operation on copies of the system S equally prepared in the state |ε↗↘ε|, the
collection of the resulting post-measurement states is described by the statistical mixture {wk, |k↗}:

|ε↗↘ε| ↑
∑

k

wkPk =
∑

k

Pk

(
|ε↗↘ε|

)
Pk . (2.9)

This transformation can be extended by linearity to cover any initial density matrix ω for the system S; as a result, after
the given set of measurements the system state is subjected to the transformation:

ω ↑ P[ω] =
∑

k

Pk ωPk . (2.10)

Contrary to the unitary dynamics Ut, the map P generally transforms pure states into mixtures, thus involving decoherence
e!ects resulting in the suppression of any initially present phase-interference. This happens because the quantum operation
P e!ectively describes S as an open system, in this case as a system interacting with the apparatus used to measure
the observable O. Quite in general, dynamics generating noise and dissipation through decoherence can be modelled as
those of systems in interaction with large external environments; their evolution must be of the form (2.6), the only one
guaranteeing physical consistency in any situation.

2.2. Quantum correlations

One of the characteristic properties of quantum mechanics is the possibility of having correlations among constituent
quantum systems, that is, correlations among their observables, that cannot be accounted for by classical physics. Initially
dismissed as a pure curiosity, the presence of such quantum correlations, that is of entanglement [2, 75, 76], has rapidly
become a fundamental resource in the development of disciplines like quantum information and technology, as it allows
the implementation of protocols and the realization of various apparatus outperforming classical ones [8, 77].

Many experiments have shown the presence of quantum correlations in systems involving photons, atoms and more
recently elementary particles. Indeed, as entanglement is most likely to emerge as the result of a direct interaction among
the constituents of a quantum system, the interaction among elementary particles as seen at colliders seems a promising
place to study the e!ects of quantum correlations.

In the following we shall merely deal with bipartite composite quantum systems S = SA +SB consisting of two finite-
dimensional parties SA and SB , usually identified with two distant, well-separated quantum subsystems. An observable
Ô of S can then be expressed in a tensor product form, Ô = ÔA ≃ ÔB , where ÔA, ÔB are observables of SA and SB ,
respectively; notice that Ô is the product of two local operators, ÔA ≃ 1B and 1A ≃ ÔB .

A state (density matrix) ω of S is called separable if and only if it can be written as a linear convex
combination of tensor products of density matrices:

ω =
∑

ij

pij ω
(A)
i

≃ ω(B)
j

, with pij > 0 and
∑

ij

pij = 1 , (2.11)

where ω(A)
i

and ω(B)
j

are density matrices for the subsystems SA and SB . States ω that cannot be written in
the form of (2.11) are called entangled or non-separable, and exhibit quantum correlations.

Notice that, by expressing the density matrices ω(A)
i

and ω(B)
j

in terms of their spectral decomposition, that is in terms
of their respective eigenprojectors, separable states as in (2.11) can always be written as linear convex combinations of

8
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Physically, entanglement is the hallmark of quantum mechanics as classical 
configurations are described by product states.
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So, is quantum mechanics incomplete?

2.3. Bell nonlocality

One of the most striking and unexpected results of modern physics is the manifestation of a fundamental indeterminacy in
natural phenomena. Thanks to the advent of quantum mechanics, the use of a statistical language became the standard,
compelling tool for explaining the behavior of physical phenomena. Yet, the possibility of recovering a fully deterministic
description of natural phenomena is amenable to experimental test, which rests on the presence of classes of correlations
among observables underlying what is now known as Bell nonlocality [98, 99].

The simplest situation in which the dichotomy between locality and nonlocality can be appreciated is that of a bipartite
physical system, one part controlled by an agent A (Alice), while that other by the agent B (Bob), well separated and
distinct.3 Both agents perform measurements on their respective subsystem parts and by comparing the corresponding
results draw conclusions on the presence of possible correlations. It is the structure of these correlations that allows
distinguishing local from nonlocal; indeed, J. S. Bell in 1964 [100] was able to introduce a logical formulation, the Bell
inequalities, allowing a disprovable test for correlations being local or nonlocal [101–104]. A violation of one of these
inequalities, as testified in many experiments, not only reveals something about the internal structure of quantum physics,
but strikingly, tells us that correlations in spatially separated systems can exhibit a fundamental nonlocal character.

Bell locality essentially means that the measurement outputs at one party, say A, do not depend on the outcomes
at the remaining one, at B; in other terms, all correlations between Alice and Bob are consequence of shared resources,
which, for a quantum system, can even include its wavefunction. This form of locality can be formalized in full generality.
Let us denote with the (for simplicity, continuous) variable ω the set of unspecified common resources, shared among
Alice and Bob. Further, assume that Alice can choose to measure MA di!erent observables Â1, Â2, . . . ÂMA , each one
giving rise to mA di!erent outcomes ai = 1, 2, . . . ,mA, i = 1, 2, . . . ,MA, and similarly for Bob. Let Pω(A|a) be the
probability for Alice of getting the outcome a having chosen to measure the observable Â and similarly be Pω(B|b) the
probability for Bob of getting b out of the measurement of the observable B̂. What is important is that Pω(A|a) does not
depend on the measurement chosen by Bob and similarly Pω(B|b) does not depend on the Alice choices; in other terms,
the outcome a for Alice and b for Bob are generated locally, by sampling from the probability distribution Pω(A|a) and
Pω(B|b), respectively.

Within these settings, the probability P (A,B|a, b) of the joint result (a, b), having measured Â and B̂, can be expressed
as

P (A,B|a, b) =
∫

dω ε(ω) Pω(A|a) Pω(B|b) , (2.36)

where ε(ω) is the probability distribution of the shared resources. This is the formal statement of Bell locality; the
corresponding statistics of outcomes is called local if it obeys (2.36), nonlocal otherwise. Checking the validity of the
hypothesis (2.36) is usually done by performing a Bell test, that is, by putting under experimental scrutiny the validity
of suitable Bell inequalities that result directly from the hypothesis (2.36).

2.3.1. Qubits

In order to be more specific, let us study the simplest Bell test, involving two parties, Alice and Bob, each one having at
their disposal two possible observables to measure, (Â1, Â2), and (B̂1, B̂2), respectively, each giving rise to two possible
outcome (0, 1); in the notation introduced above: MA = MB = mA = mB = 2 [38, 39, 46]. The test results in checking
the following combination of joint expectation values, involving an observable of Alice and one of Bob [38]:

I2 = →Â1B̂1↑+ →Â1B̂2↑+ →Â2B̂1↑ ↓ →Â2B̂2↑ . (2.37)

In order to obtain the maximum value of I2 achieved using only local resources, it is su"cient [99, 105] to see what is the
outcome when Alice and Bob share a pre-determined set (a1, a2; b1, b2) of possible answers to the measurement queries;
clearly, as these answers can be either 0 or 1, I2 can be at most 2, so that Bell locality implies the Clauser-Horne-
Shimony-Holt (CSHS) inequality:

I2 ↔ 2 . (2.38)

If in an actual experiment one finds I2 > 2, one has to deduce that some sort of nonlocal resource had been shared
between the two parties, and this is precisely what is predicted in a quantum mechanical setting.4

A paradigmatic model in which the inequality (2.38) can be easily checked is a bipartite system made of two spin-1/2
particles, one belonging to Alice, the other to Bob. As it will discussed in detail in the following, this physical situation
is routinely reproduced at colliders, where analysis of the spin correlations among products of high-energy collisions is
performed.

3The two parties are usually assumed not to be able to exchange messages, being in the so-called “non-signaling settings”.
4Quantum mechanics predicts for I2 the maximal value 2

→
2 [106]. Interestingly, hypothetical models “more nonlocal” than quantum

mechanics have been advocated [107], for which the upper value of I2 may exceed 2
→
2.
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• When we compute the same quantity with the rules of quantum mechanics 
we obtain                , hence measuring                        would strongly favor 
quantum mechanics over hidden-variable theories. 
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J/ψ 3.097 cc ̅ 1-

φ 1.019 ss ̅ 1-

ρ0 0.770 1-

K*(0.892)0 0.892 ds ̅ 1-

𝗎𝗎̄ − 𝖽𝖽

𝟤

The case of a B meson that walks into a bar…
… and decays into two vector mesons. It happens plenty of times at 
the LHCb(ar).

LHCb Monte Carlo: Bs →J/ψ φ — stolen from the LHCb website
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We focus on these decays:
<latexit sha1_base64="nSndtICMPWha4rGSEj5clweYD/Y="></latexit>

B0 ! J/ K⇤(892)0

B0 ! �K⇤(892)0

B0 ! ⇢K⇤(892)0

Bs ! ��

Bs ! J/ �

R. Aaij et al. [LHCb], Phys. Rev. D 88, 052002 (2013)

R. Aaij et al. [LHCb], JHEP 05, 026 (2019) 

R. Aaij et al. [LHCb], [arXiv:2304.06198 [hep-ex]]. 

G. Aad et al. [ATLAS], Eur. Phys. J. C 81, no.4, 342 (2021) 

K. F. Chen et al. [Belle], Phys. Rev. Lett. 94, 221804 (2005) 
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2

to an integrated luminosity of 1 fb�1. The branching
fraction for this decay is (1.27± 0.05)⇥ 10�3 [13].

The selection of B0
! J/ K

⇤(892)0 events, as ex-
plained in [5], is based upon the combined decays of
the J/ ! µ

+
µ
� and the K

⇤(892)0 ! K
+
⇡
� fi-

nal states. The muons, as they leave two oppositely-
charged tracks originating from a common vertex, are
selected by taking their transverse momentum pT >

500 MeV/c. The invariant mass of this pair of muons
is required to be in the range between 3030 and 3150
MeV/c

2. The kaon and the pion leave two oppositely-
charged tracks that originate from the same vertex.
It is required that the K

⇤(892)0 has transverse mo-
mentum pT > 2 GeV/c and invariant mass in the
range 826-966 MeV/c2. The B

0 are reconstructed
from the J/ and K

⇤(892)0 candidates, with the in-
variant mass of the µ

+
µ
� pair constrained to the J/ 

mass. The resulting B
0 candidates are required to

have an invariant mass of the system J/ K
+
⇡
� in

the range 5150-5400 MeV/c2.
The polarizations of the spin-1 massive particles

J/ and K
⇤(892)0 can be reconstructed using the

momenta of the final charged mesons and leptons in
which they decay. The differential decay rate is de-
scribed in terms of three angles: two angles are defined
by the direction of the µ

+ momentum with respect to
the z and x axes in the J/ rest frame, one by the
direction of the momentum of the K

+ with respect to
the opposite direction of the momentum of the J/ in
the K

⇤(892)0 ! K
+
⇡
� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)

�k [rad] = �2.94± 0.02 (stat) ± 0.03 (sys)
�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
2+ |A?|

2+ |Ak|
2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with

|H|
2 = |h0|

2 + |h+|
2 + |h�|

2
. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be
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amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)

�k [rad] = �2.94± 0.02 (stat) ± 0.03 (sys)
�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
2+ |A?|

2+ |Ak|
2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with

|H|
2 = |h0|

2 + |h+|
2 + |h�|

2
. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be
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+
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+
⇡
� in
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J/ and K
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the K

⇤(892)0 ! K
+
⇡
� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
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must be compared with the typical range of the vir-
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We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
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for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)
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in the B
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A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
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because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2
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h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with
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2 = |h0|
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The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be
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found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)

�k [rad] = �2.94± 0.02 (stat) ± 0.03 (sys)
�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
2+ |A?|

2+ |Ak|
2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with

|H|
2 = |h0|

2 + |h+|
2 + |h�|

2
. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be
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plained in [5], is based upon the combined decays of
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� and the K
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nal states. The muons, as they leave two oppositely-
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selected by taking their transverse momentum pT >

500 MeV/c. The invariant mass of this pair of muons
is required to be in the range between 3030 and 3150
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2. The kaon and the pion leave two oppositely-
charged tracks that originate from the same vertex.
It is required that the K

⇤(892)0 has transverse mo-
mentum pT > 2 GeV/c and invariant mass in the
range 826-966 MeV/c2. The B

0 are reconstructed
from the J/ and K

⇤(892)0 candidates, with the in-
variant mass of the µ

+
µ
� pair constrained to the J/ 

mass. The resulting B
0 candidates are required to

have an invariant mass of the system J/ K
+
⇡
� in

the range 5150-5400 MeV/c2.
The polarizations of the spin-1 massive particles

J/ and K
⇤(892)0 can be reconstructed using the

momenta of the final charged mesons and leptons in
which they decay. The differential decay rate is de-
scribed in terms of three angles: two angles are defined
by the direction of the µ

+ momentum with respect to
the z and x axes in the J/ rest frame, one by the
direction of the momentum of the K

+ with respect to
the opposite direction of the momentum of the J/ in
the K

⇤(892)0 ! K
+
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� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:
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2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
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h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
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, (3)

with
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2 = |h0|
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The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.
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Experimentalists measure the polarization amplitudes A0, A∥, A⊥
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written in terms of the helicity amplitudes as

⇢ =
1

|H|2

0

BBBBBBBBBBB@
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0 0 0 0 0 0 0 0 0
0 0 h+h

⇤
+ 0 h+h

⇤
0 0 h+h

⇤
� 0 0

0 0 0 0 0 0 0 0 0
0 0 h0h

⇤
+ 0 h0h

⇤
0 0 h0h

⇤
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⇤
+ 0 h�h

⇤
0 0 h�h

⇤
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1
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, (5)

on the basis given by the tensor product of the polar-
izations (+, 0, �) of the produced spin-1 particles.

The helicity amplitudes are mapped into the polar-
ization amplitudes used in Eq. (1) by the correspon-
dence
h0

|H|
= A0 ,

h+

|H|
=

Ak +A?
p
2

,
h�
|H|

=
Ak �A?

p
2

.

(6)
Having written the density matrix, we can study

the entanglement among the polarizations of the two
massive vector particles by means of a simple observ-
able. For a bipartite pure state, like the one in Eq. (5),
the von Neumann entropy [4]

E = �Tr [⇢SA log ⇢SA ] = �Tr [⇢SB log ⇢SB ] , (7)

quantifies entanglement; in Eq. (7), ⇢SA and ⇢SB are
the reduced density matrices for the two sub-systems
SA and SB , which are the two spin-1 mesons in the de-
cay under consideration. The von Neumann entropy
of a two-qutrit system satisfies 0  E  ln 3. The first
equality is true if and only if the bipartite state is sep-
arable, the second if the bipartite state is maximally
entangled.

The optimal generalization of the Bell inequality in
the case of a bipartite system made of two qutrits
is the Collins, Gisin, Linden, Massar and Popescu
(CGLMP) inequality [19, 20]. In order to explicitly
write this condition, consider again the components
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qutrit SA, select two spin measurement settings, ŜA1

and ŜA2 , which correspond to the projective measure-
ment of two spin-1 observables having each three pos-
sible outcomes {0, 1, 2}—that, in our case, take values
in {+1, 0, �1}. Similarly, the measurement settings
and corresponding observables for the other qutrit SB

are ŜB1 and ŜB2 . Then, denote by P (Ai = Bj+k) the
probability that the outcome SAi for the measurement
of ŜA1 and SBj for the measurement of ŜBj , with i,
j either 1 or 2, differ by k modulo 3. One can then
construct the combination:

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2)

+ P (B2 = A1)� P (A1 = B1 � 1)� P (A1 = B2)

� P (A2 = B2 � 1)� P (B2 = A1 � 1) . (8)

For deterministic local models, this quantity satisfies
the generalized Bell inequality

I3  2 , (9)

which instead can be violated by computing the above
joint probabilities using the rules of quantum mechan-
ics. In quantum mechanics, I3 in Eq. (8) can be
expressed as an expectation value of a suitable Bell
operator B as

I3 = Tr
⇥
⇢B

⇤
. (10)

The explicit form of B depends on the choice of the
four measured operators Âi and B̂i. Hence, given the
two-qutrit state ⇢, it is possible to enhance the vi-
olation of the Bell inequality (9) through a specific
choice of these operators. The numerical value of the
observable I3 is bound to be less than or equal to
4. For the case of the maximally entangled state, the
problem of finding an optimal choice of measurements
has been solved [19]. By working in the single spin-1
basis formed by the eigenstates of the spin operator in
the direction ẑ with eigenvalues {+1, 0,�1}, the Bell
operator takes a particular simple form:

B =

0
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0 0 0 0 0 0 0 0 0
0 0 0 � 2p

3
0 0 0 0 0

0 0 0 0 � 2p
3

0 2 0 0

0 � 2p
3

0 0 0 0 0 0 0

0 0 � 2p
3

0 0 0 � 2p
3

0 0

0 0 0 0 0 0 0 � 2p
3

0

0 0 2 0 � 2p
3

0 0 0 0

0 0 0 0 0 � 2p
3

0 0 0

0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCA

,

(11)
after rotating it into the helicity basis from the so-
called computational basis employed in [21].

Within the choice of measurements leading to the
Bell operator, there is still the freedom of modify-
ing the measured observables through local unitary
transformations, which effectively corresponds to local
changes of basis in the measurement of the polariza-
tions. Correspondingly, the Bell operator undergoes
the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) , (12)

where U and V are independent 3⇥ 3 unitary matri-
ces. In the following we make use of this freedom to
maximize the value of I3.

R
esults.— Our results can now be given in a
very concise form. The polarization amplitudes

in Eq. (1) determine the polarization density matrix

and so we can easily reconstruct the density matrix

The weights of the components are the helicity amplitudes

with H being the interaction Hamiltonian and λ∈{+,0,-} denoting the
spin state with respect to the quantization axis of one of the produced vector 
boson in its rest frame. 
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to an integrated luminosity of 1 fb�1. The branching
fraction for this decay is (1.27± 0.05)⇥ 10�3 [13].

The selection of B0
! J/ K

⇤(892)0 events, as ex-
plained in [5], is based upon the combined decays of
the J/ ! µ

+
µ
� and the K

⇤(892)0 ! K
+
⇡
� fi-

nal states. The muons, as they leave two oppositely-
charged tracks originating from a common vertex, are
selected by taking their transverse momentum pT >

500 MeV/c. The invariant mass of this pair of muons
is required to be in the range between 3030 and 3150
MeV/c

2. The kaon and the pion leave two oppositely-
charged tracks that originate from the same vertex.
It is required that the K

⇤(892)0 has transverse mo-
mentum pT > 2 GeV/c and invariant mass in the
range 826-966 MeV/c2. The B

0 are reconstructed
from the J/ and K

⇤(892)0 candidates, with the in-
variant mass of the µ

+
µ
� pair constrained to the J/ 

mass. The resulting B
0 candidates are required to

have an invariant mass of the system J/ K
+
⇡
� in

the range 5150-5400 MeV/c2.
The polarizations of the spin-1 massive particles

J/ and K
⇤(892)0 can be reconstructed using the

momenta of the final charged mesons and leptons in
which they decay. The differential decay rate is de-
scribed in terms of three angles: two angles are defined
by the direction of the µ

+ momentum with respect to
the z and x axes in the J/ rest frame, one by the
direction of the momentum of the K

+ with respect to
the opposite direction of the momentum of the J/ in
the K

⇤(892)0 ! K
+
⇡
� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)

�k [rad] = �2.94± 0.02 (stat) ± 0.03 (sys)
�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
2+ |A?|

2+ |Ak|
2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with

|H|
2 = |h0|

2 + |h+|
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2
. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be
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to an integrated luminosity of 1 fb�1. The branching
fraction for this decay is (1.27± 0.05)⇥ 10�3 [13].
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the J/ ! µ

+
µ
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nal states. The muons, as they leave two oppositely-
charged tracks originating from a common vertex, are
selected by taking their transverse momentum pT >

500 MeV/c. The invariant mass of this pair of muons
is required to be in the range between 3030 and 3150
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2. The kaon and the pion leave two oppositely-
charged tracks that originate from the same vertex.
It is required that the K

⇤(892)0 has transverse mo-
mentum pT > 2 GeV/c and invariant mass in the
range 826-966 MeV/c2. The B

0 are reconstructed
from the J/ and K

⇤(892)0 candidates, with the in-
variant mass of the µ
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� pair constrained to the J/ 

mass. The resulting B
0 candidates are required to

have an invariant mass of the system J/ K
+
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� in

the range 5150-5400 MeV/c2.
The polarizations of the spin-1 massive particles

J/ and K
⇤(892)0 can be reconstructed using the

momenta of the final charged mesons and leptons in
which they decay. The differential decay rate is de-
scribed in terms of three angles: two angles are defined
by the direction of the µ

+ momentum with respect to
the z and x axes in the J/ rest frame, one by the
direction of the momentum of the K

+ with respect to
the opposite direction of the momentum of the J/ in
the K

⇤(892)0 ! K
+
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� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)

�k [rad] = �2.94± 0.02 (stat) ± 0.03 (sys)
�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
2+ |A?|

2+ |Ak|
2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with
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2 = |h0|
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2
. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be
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to an integrated luminosity of 1 fb�1. The branching
fraction for this decay is (1.27± 0.05)⇥ 10�3 [13].

The selection of B0
! J/ K

⇤(892)0 events, as ex-
plained in [5], is based upon the combined decays of
the J/ ! µ

+
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� and the K

⇤(892)0 ! K
+
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� fi-

nal states. The muons, as they leave two oppositely-
charged tracks originating from a common vertex, are
selected by taking their transverse momentum pT >

500 MeV/c. The invariant mass of this pair of muons
is required to be in the range between 3030 and 3150
MeV/c

2. The kaon and the pion leave two oppositely-
charged tracks that originate from the same vertex.
It is required that the K

⇤(892)0 has transverse mo-
mentum pT > 2 GeV/c and invariant mass in the
range 826-966 MeV/c2. The B

0 are reconstructed
from the J/ and K

⇤(892)0 candidates, with the in-
variant mass of the µ

+
µ
� pair constrained to the J/ 

mass. The resulting B
0 candidates are required to

have an invariant mass of the system J/ K
+
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� in

the range 5150-5400 MeV/c2.
The polarizations of the spin-1 massive particles

J/ and K
⇤(892)0 can be reconstructed using the

momenta of the final charged mesons and leptons in
which they decay. The differential decay rate is de-
scribed in terms of three angles: two angles are defined
by the direction of the µ

+ momentum with respect to
the z and x axes in the J/ rest frame, one by the
direction of the momentum of the K

+ with respect to
the opposite direction of the momentum of the J/ in
the K

⇤(892)0 ! K
+
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� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)
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�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
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2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with

|H|
2 = |h0|

2 + |h+|
2 + |h�|

2
. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be

3

written in terms of the helicity amplitudes as

⇢ =
1

|H|2

0
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, (5)

on the basis given by the tensor product of the polar-
izations (+, 0, �) of the produced spin-1 particles.

The helicity amplitudes are mapped into the polar-
ization amplitudes used in Eq. (1) by the correspon-
dence
h0

|H|
= A0 ,

h+

|H|
=

Ak +A?
p
2

,
h�
|H|

=
Ak �A?

p
2

.

(6)
Having written the density matrix, we can study

the entanglement among the polarizations of the two
massive vector particles by means of a simple observ-
able. For a bipartite pure state, like the one in Eq. (5),
the von Neumann entropy [4]

E = �Tr [⇢SA log ⇢SA ] = �Tr [⇢SB log ⇢SB ] , (7)

quantifies entanglement; in Eq. (7), ⇢SA and ⇢SB are
the reduced density matrices for the two sub-systems
SA and SB , which are the two spin-1 mesons in the de-
cay under consideration. The von Neumann entropy
of a two-qutrit system satisfies 0  E  ln 3. The first
equality is true if and only if the bipartite state is sep-
arable, the second if the bipartite state is maximally
entangled.

The optimal generalization of the Bell inequality in
the case of a bipartite system made of two qutrits
is the Collins, Gisin, Linden, Massar and Popescu
(CGLMP) inequality [19, 20]. In order to explicitly
write this condition, consider again the components
SA and SB of the bipartite qutrit system. For the
qutrit SA, select two spin measurement settings, ŜA1

and ŜA2 , which correspond to the projective measure-
ment of two spin-1 observables having each three pos-
sible outcomes {0, 1, 2}—that, in our case, take values
in {+1, 0, �1}. Similarly, the measurement settings
and corresponding observables for the other qutrit SB

are ŜB1 and ŜB2 . Then, denote by P (Ai = Bj+k) the
probability that the outcome SAi for the measurement
of ŜA1 and SBj for the measurement of ŜBj , with i,
j either 1 or 2, differ by k modulo 3. One can then
construct the combination:

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2)

+ P (B2 = A1)� P (A1 = B1 � 1)� P (A1 = B2)

� P (A2 = B2 � 1)� P (B2 = A1 � 1) . (8)

For deterministic local models, this quantity satisfies
the generalized Bell inequality

I3  2 , (9)

which instead can be violated by computing the above
joint probabilities using the rules of quantum mechan-
ics. In quantum mechanics, I3 in Eq. (8) can be
expressed as an expectation value of a suitable Bell
operator B as

I3 = Tr
⇥
⇢B

⇤
. (10)

The explicit form of B depends on the choice of the
four measured operators Âi and B̂i. Hence, given the
two-qutrit state ⇢, it is possible to enhance the vi-
olation of the Bell inequality (9) through a specific
choice of these operators. The numerical value of the
observable I3 is bound to be less than or equal to
4. For the case of the maximally entangled state, the
problem of finding an optimal choice of measurements
has been solved [19]. By working in the single spin-1
basis formed by the eigenstates of the spin operator in
the direction ẑ with eigenvalues {+1, 0,�1}, the Bell
operator takes a particular simple form:

B =

0
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1
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,

(11)
after rotating it into the helicity basis from the so-
called computational basis employed in [21].

Within the choice of measurements leading to the
Bell operator, there is still the freedom of modify-
ing the measured observables through local unitary
transformations, which effectively corresponds to local
changes of basis in the measurement of the polariza-
tions. Correspondingly, the Bell operator undergoes
the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) , (12)

where U and V are independent 3⇥ 3 unitary matri-
ces. In the following we make use of this freedom to
maximize the value of I3.

R
esults.— Our results can now be given in a
very concise form. The polarization amplitudes

in Eq. (1) determine the polarization density matrix
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to an integrated luminosity of 1 fb�1. The branching
fraction for this decay is (1.27± 0.05)⇥ 10�3 [13].

The selection of B0
! J/ K

⇤(892)0 events, as ex-
plained in [5], is based upon the combined decays of
the J/ ! µ

+
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� and the K

⇤(892)0 ! K
+
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� fi-

nal states. The muons, as they leave two oppositely-
charged tracks originating from a common vertex, are
selected by taking their transverse momentum pT >

500 MeV/c. The invariant mass of this pair of muons
is required to be in the range between 3030 and 3150
MeV/c

2. The kaon and the pion leave two oppositely-
charged tracks that originate from the same vertex.
It is required that the K

⇤(892)0 has transverse mo-
mentum pT > 2 GeV/c and invariant mass in the
range 826-966 MeV/c2. The B

0 are reconstructed
from the J/ and K

⇤(892)0 candidates, with the in-
variant mass of the µ

+
µ
� pair constrained to the J/ 

mass. The resulting B
0 candidates are required to

have an invariant mass of the system J/ K
+
⇡
� in

the range 5150-5400 MeV/c2.
The polarizations of the spin-1 massive particles

J/ and K
⇤(892)0 can be reconstructed using the

momenta of the final charged mesons and leptons in
which they decay. The differential decay rate is de-
scribed in terms of three angles: two angles are defined
by the direction of the µ

+ momentum with respect to
the z and x axes in the J/ rest frame, one by the
direction of the momentum of the K

+ with respect to
the opposite direction of the momentum of the J/ in
the K

⇤(892)0 ! K
+
⇡
� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)

�k [rad] = �2.94± 0.02 (stat) ± 0.03 (sys)
�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
2+ |A?|

2+ |Ak|
2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with

|H|
2 = |h0|

2 + |h+|
2 + |h�|
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. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be
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written in terms of the helicity amplitudes as

⇢ =
1

|H|2
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on the basis given by the tensor product of the polar-
izations (+, 0, �) of the produced spin-1 particles.

The helicity amplitudes are mapped into the polar-
ization amplitudes used in Eq. (1) by the correspon-
dence
h0

|H|
= A0 ,

h+

|H|
=

Ak +A?
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,
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=
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(6)
Having written the density matrix, we can study

the entanglement among the polarizations of the two
massive vector particles by means of a simple observ-
able. For a bipartite pure state, like the one in Eq. (5),
the von Neumann entropy [4]

E = �Tr [⇢SA log ⇢SA ] = �Tr [⇢SB log ⇢SB ] , (7)

quantifies entanglement; in Eq. (7), ⇢SA and ⇢SB are
the reduced density matrices for the two sub-systems
SA and SB , which are the two spin-1 mesons in the de-
cay under consideration. The von Neumann entropy
of a two-qutrit system satisfies 0  E  ln 3. The first
equality is true if and only if the bipartite state is sep-
arable, the second if the bipartite state is maximally
entangled.

The optimal generalization of the Bell inequality in
the case of a bipartite system made of two qutrits
is the Collins, Gisin, Linden, Massar and Popescu
(CGLMP) inequality [19, 20]. In order to explicitly
write this condition, consider again the components
SA and SB of the bipartite qutrit system. For the
qutrit SA, select two spin measurement settings, ŜA1

and ŜA2 , which correspond to the projective measure-
ment of two spin-1 observables having each three pos-
sible outcomes {0, 1, 2}—that, in our case, take values
in {+1, 0, �1}. Similarly, the measurement settings
and corresponding observables for the other qutrit SB

are ŜB1 and ŜB2 . Then, denote by P (Ai = Bj+k) the
probability that the outcome SAi for the measurement
of ŜA1 and SBj for the measurement of ŜBj , with i,
j either 1 or 2, differ by k modulo 3. One can then
construct the combination:

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2)

+ P (B2 = A1)� P (A1 = B1 � 1)� P (A1 = B2)

� P (A2 = B2 � 1)� P (B2 = A1 � 1) . (8)

For deterministic local models, this quantity satisfies
the generalized Bell inequality

I3  2 , (9)

which instead can be violated by computing the above
joint probabilities using the rules of quantum mechan-
ics. In quantum mechanics, I3 in Eq. (8) can be
expressed as an expectation value of a suitable Bell
operator B as

I3 = Tr
⇥
⇢B

⇤
. (10)

The explicit form of B depends on the choice of the
four measured operators Âi and B̂i. Hence, given the
two-qutrit state ⇢, it is possible to enhance the vi-
olation of the Bell inequality (9) through a specific
choice of these operators. The numerical value of the
observable I3 is bound to be less than or equal to
4. For the case of the maximally entangled state, the
problem of finding an optimal choice of measurements
has been solved [19]. By working in the single spin-1
basis formed by the eigenstates of the spin operator in
the direction ẑ with eigenvalues {+1, 0,�1}, the Bell
operator takes a particular simple form:

B =

0
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(11)
after rotating it into the helicity basis from the so-
called computational basis employed in [21].

Within the choice of measurements leading to the
Bell operator, there is still the freedom of modify-
ing the measured observables through local unitary
transformations, which effectively corresponds to local
changes of basis in the measurement of the polariza-
tions. Correspondingly, the Bell operator undergoes
the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) , (12)

where U and V are independent 3⇥ 3 unitary matri-
ces. In the following we make use of this freedom to
maximize the value of I3.

R
esults.— Our results can now be given in a
very concise form. The polarization amplitudes

in Eq. (1) determine the polarization density matrix
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to an integrated luminosity of 1 fb�1. The branching
fraction for this decay is (1.27± 0.05)⇥ 10�3 [13].

The selection of B0
! J/ K

⇤(892)0 events, as ex-
plained in [5], is based upon the combined decays of
the J/ ! µ

+
µ
� and the K

⇤(892)0 ! K
+
⇡
� fi-

nal states. The muons, as they leave two oppositely-
charged tracks originating from a common vertex, are
selected by taking their transverse momentum pT >

500 MeV/c. The invariant mass of this pair of muons
is required to be in the range between 3030 and 3150
MeV/c

2. The kaon and the pion leave two oppositely-
charged tracks that originate from the same vertex.
It is required that the K

⇤(892)0 has transverse mo-
mentum pT > 2 GeV/c and invariant mass in the
range 826-966 MeV/c2. The B

0 are reconstructed
from the J/ and K

⇤(892)0 candidates, with the in-
variant mass of the µ

+
µ
� pair constrained to the J/ 

mass. The resulting B
0 candidates are required to

have an invariant mass of the system J/ K
+
⇡
� in

the range 5150-5400 MeV/c2.
The polarizations of the spin-1 massive particles

J/ and K
⇤(892)0 can be reconstructed using the

momenta of the final charged mesons and leptons in
which they decay. The differential decay rate is de-
scribed in terms of three angles: two angles are defined
by the direction of the µ

+ momentum with respect to
the z and x axes in the J/ rest frame, one by the
direction of the momentum of the K

+ with respect to
the opposite direction of the momentum of the J/ in
the K

⇤(892)0 ! K
+
⇡
� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)

�k [rad] = �2.94± 0.02 (stat) ± 0.03 (sys)
�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
2+ |A?|

2+ |Ak|
2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with

|H|
2 = |h0|

2 + |h+|
2 + |h�|

2
. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be
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to an integrated luminosity of 1 fb�1. The branching
fraction for this decay is (1.27± 0.05)⇥ 10�3 [13].

The selection of B0
! J/ K

⇤(892)0 events, as ex-
plained in [5], is based upon the combined decays of
the J/ ! µ

+
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� and the K

⇤(892)0 ! K
+
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� fi-

nal states. The muons, as they leave two oppositely-
charged tracks originating from a common vertex, are
selected by taking their transverse momentum pT >

500 MeV/c. The invariant mass of this pair of muons
is required to be in the range between 3030 and 3150
MeV/c

2. The kaon and the pion leave two oppositely-
charged tracks that originate from the same vertex.
It is required that the K

⇤(892)0 has transverse mo-
mentum pT > 2 GeV/c and invariant mass in the
range 826-966 MeV/c2. The B

0 are reconstructed
from the J/ and K

⇤(892)0 candidates, with the in-
variant mass of the µ

+
µ
� pair constrained to the J/ 

mass. The resulting B
0 candidates are required to

have an invariant mass of the system J/ K
+
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� in

the range 5150-5400 MeV/c2.
The polarizations of the spin-1 massive particles

J/ and K
⇤(892)0 can be reconstructed using the

momenta of the final charged mesons and leptons in
which they decay. The differential decay rate is de-
scribed in terms of three angles: two angles are defined
by the direction of the µ

+ momentum with respect to
the z and x axes in the J/ rest frame, one by the
direction of the momentum of the K

+ with respect to
the opposite direction of the momentum of the J/ in
the K

⇤(892)0 ! K
+
⇡
� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)

�k [rad] = �2.94± 0.02 (stat) ± 0.03 (sys)
�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
2+ |A?|

2+ |Ak|
2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with

|H|
2 = |h0|

2 + |h+|
2 + |h�|

2
. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be

3

written in terms of the helicity amplitudes as

⇢ =
1

|H|2
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on the basis given by the tensor product of the polar-
izations (+, 0, �) of the produced spin-1 particles.

The helicity amplitudes are mapped into the polar-
ization amplitudes used in Eq. (1) by the correspon-
dence
h0

|H|
= A0 ,

h+

|H|
=

Ak +A?
p
2

,
h�
|H|

=
Ak �A?

p
2

.

(6)
Having written the density matrix, we can study

the entanglement among the polarizations of the two
massive vector particles by means of a simple observ-
able. For a bipartite pure state, like the one in Eq. (5),
the von Neumann entropy [4]

E = �Tr [⇢SA log ⇢SA ] = �Tr [⇢SB log ⇢SB ] , (7)

quantifies entanglement; in Eq. (7), ⇢SA and ⇢SB are
the reduced density matrices for the two sub-systems
SA and SB , which are the two spin-1 mesons in the de-
cay under consideration. The von Neumann entropy
of a two-qutrit system satisfies 0  E  ln 3. The first
equality is true if and only if the bipartite state is sep-
arable, the second if the bipartite state is maximally
entangled.

The optimal generalization of the Bell inequality in
the case of a bipartite system made of two qutrits
is the Collins, Gisin, Linden, Massar and Popescu
(CGLMP) inequality [19, 20]. In order to explicitly
write this condition, consider again the components
SA and SB of the bipartite qutrit system. For the
qutrit SA, select two spin measurement settings, ŜA1

and ŜA2 , which correspond to the projective measure-
ment of two spin-1 observables having each three pos-
sible outcomes {0, 1, 2}—that, in our case, take values
in {+1, 0, �1}. Similarly, the measurement settings
and corresponding observables for the other qutrit SB

are ŜB1 and ŜB2 . Then, denote by P (Ai = Bj+k) the
probability that the outcome SAi for the measurement
of ŜA1 and SBj for the measurement of ŜBj , with i,
j either 1 or 2, differ by k modulo 3. One can then
construct the combination:

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2)

+ P (B2 = A1)� P (A1 = B1 � 1)� P (A1 = B2)

� P (A2 = B2 � 1)� P (B2 = A1 � 1) . (8)

For deterministic local models, this quantity satisfies
the generalized Bell inequality

I3  2 , (9)

which instead can be violated by computing the above
joint probabilities using the rules of quantum mechan-
ics. In quantum mechanics, I3 in Eq. (8) can be
expressed as an expectation value of a suitable Bell
operator B as

I3 = Tr
⇥
⇢B

⇤
. (10)

The explicit form of B depends on the choice of the
four measured operators Âi and B̂i. Hence, given the
two-qutrit state ⇢, it is possible to enhance the vi-
olation of the Bell inequality (9) through a specific
choice of these operators. The numerical value of the
observable I3 is bound to be less than or equal to
4. For the case of the maximally entangled state, the
problem of finding an optimal choice of measurements
has been solved [19]. By working in the single spin-1
basis formed by the eigenstates of the spin operator in
the direction ẑ with eigenvalues {+1, 0,�1}, the Bell
operator takes a particular simple form:

B =

0
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(11)
after rotating it into the helicity basis from the so-
called computational basis employed in [21].

Within the choice of measurements leading to the
Bell operator, there is still the freedom of modify-
ing the measured observables through local unitary
transformations, which effectively corresponds to local
changes of basis in the measurement of the polariza-
tions. Correspondingly, the Bell operator undergoes
the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) , (12)

where U and V are independent 3⇥ 3 unitary matri-
ces. In the following we make use of this freedom to
maximize the value of I3.

R
esults.— Our results can now be given in a
very concise form. The polarization amplitudes

in Eq. (1) determine the polarization density matrix
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to an integrated luminosity of 1 fb�1. The branching
fraction for this decay is (1.27± 0.05)⇥ 10�3 [13].

The selection of B0
! J/ K

⇤(892)0 events, as ex-
plained in [5], is based upon the combined decays of
the J/ ! µ

+
µ
� and the K

⇤(892)0 ! K
+
⇡
� fi-

nal states. The muons, as they leave two oppositely-
charged tracks originating from a common vertex, are
selected by taking their transverse momentum pT >

500 MeV/c. The invariant mass of this pair of muons
is required to be in the range between 3030 and 3150
MeV/c

2. The kaon and the pion leave two oppositely-
charged tracks that originate from the same vertex.
It is required that the K

⇤(892)0 has transverse mo-
mentum pT > 2 GeV/c and invariant mass in the
range 826-966 MeV/c2. The B

0 are reconstructed
from the J/ and K

⇤(892)0 candidates, with the in-
variant mass of the µ

+
µ
� pair constrained to the J/ 

mass. The resulting B
0 candidates are required to

have an invariant mass of the system J/ K
+
⇡
� in

the range 5150-5400 MeV/c2.
The polarizations of the spin-1 massive particles

J/ and K
⇤(892)0 can be reconstructed using the

momenta of the final charged mesons and leptons in
which they decay. The differential decay rate is de-
scribed in terms of three angles: two angles are defined
by the direction of the µ

+ momentum with respect to
the z and x axes in the J/ rest frame, one by the
direction of the momentum of the K

+ with respect to
the opposite direction of the momentum of the J/ in
the K

⇤(892)0 ! K
+
⇡
� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)

�k [rad] = �2.94± 0.02 (stat) ± 0.03 (sys)
�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
2+ |A?|

2+ |Ak|
2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with

|H|
2 = |h0|

2 + |h+|
2 + |h�|

2
. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be
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written
in terms of the helicity

amplitudes as
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on the basis given by the tensor product of the polar-

ization
s (+, 0, �

) of the produced spin-1 particle
s.

The helicity
amplitudes are mapped into the polar-

ization
amplitudes used in Eq. (1) by the corresp

on-

dence
h0

|H|
= A0 ,

h+

|H|
=
Ak +

A?
p

2
,
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=
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2
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Having written
the density matrix, we can study

the entanglement among the polariza
tions of the two

massive
vector

particle
s by means of a simple observ-

able. For a bipartite
pure state,

like the one in Eq. (5),

the von Neumann entropy [4]

E = �Tr [⇢SA
log ⇢SA

] = �Tr [⇢SB
log ⇢SB

] ,
(7)

quantifies entanglement; in Eq. (7), ⇢SA
and ⇢SB

are

the reduced density matrices
for the two sub-systems

SA and SB, which are the two spin-1 mesons in the de-

cay under consideration
. The von Neumann entropy

of a two-qutrit system satisfies 0  E  ln 3. The first

equality is true if and only if the bipartite
state is sep-

arable, the second if the bipartite
state is maximally

entangled.

The optimal generaliza
tion of the Bell inequality in

the case of a bipartite
system made of two qutrits

is the Collins, Gisin, Linden, Massar
and Popescu

(CGLMP) inequality [19, 20]. In order to explicitly

write this condition, consider again
the components

SA
and SB

of the bipartite
qutrit system. For the

qutrit SA, select
two spin measurement settings, ŜA1

and ŜA2
, which corresp

ond to the projective
measure-

ment of two spin-1 observab
les having each three pos-

sible outcomes {0, 1
, 2}—that, in our case, take values

in {+1, 0,
�1}. Similarly,

the measurement settings

and corresp
onding observab

les for the other qutrit SB

are ŜB1
and ŜB2

. Then, denote by P (Ai =
Bj+k) the

probability that the outcome SAi
for the measurement

of ŜA1
and SBj

for the measurement of ŜBj
, with i,

j either 1 or 2, differ by k modulo 3. One can then

construct the combination:

I3
= P (A1 =

B1) +
P (B1 =

A2 +
1) + P (A2 =

B2)

+ P (B2 =
A1)�

P (A1 =
B1 �

1)� P (A1 =
B2)

�
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1)� P (B2 =
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1) .

(8)

For deterministic local models, this quantity satisfies

the generalize
d Bell inequality

I3 
2 ,

(9)

which instead can be violated
by computing the above

joint probabilities using the rules of quantum mechan-

ics.
In quantum mechanics, I3

in Eq. (8) can be

expressed
as an expectatio

n value of a suitable Bell

operator
B as

I3 =
Tr
⇥
⇢B

⇤
.

(10)

The explicit form of B depends on the choice of the

four measured operators
Âi and B̂i. Hence, given the

two-qutrit state ⇢, it is possible to enhance the vi-

olation
of the Bell inequality (9) through a specific

choice of these operators
. The numerical

value of the

observab
le I3

is bound to be less than or equal to

4. For the case of the maximally entangled state,
the

problem of finding an optimal choice of measurements

has been solved
[19]. By working in the single spin-1

basis formed by the eigenstates
of the spin operator

in

the directio
n ẑ with eigenvalues {+1, 0,�

1}, the Bell

operator
takes a particular simple form:
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after rotatin
g it into the helicity

basis from the so-

called
computational basis employed in [21].

Within the choice of measurements leading to the

Bell operator,
there is still the freedom of modify-

ing the measured observab
les through local unitary

transformations, which effectivel
y corresp

onds to local

changes of basis in the measurement of the polariza
-

tions. Corresp
ondingly, the Bell operator

undergoes

the change:

B ! (U ⌦ V )† · B
· (U ⌦ V ) ,

(12)

where U and V are independent 3⇥ 3 unitary matri-

ces. In the following we make use of this freedom to

maximize the value of I3.

R
esults.— Our results can now be given

in a

very concise form. The polariza
tion amplitudes

in Eq. (1) determine the polariza
tion density matrix
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written in terms of the helicity amplitudes as
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, (5)on the basis given by the tensor product of the polar-

izations (+, 0, �) of the produced spin-1 particles.

The helicity amplitudes are mapped into the polar-

ization amplitudes used in Eq. (1) by the correspon-

dence
h0

|H|
= A0 , h+

|H|
= Ak +A?p

2 , h�
|H|

= Ak �A?p

2 .

(6)

Having written the density matrix, we can study

the entanglement among the polarizations of the two

massive vector particles by means of a simple observ-

able. For a bipartite pure state, like the one in Eq. (5),

the von Neumann entropy [4]
E = �Tr [⇢SA log ⇢SA ] = �Tr [⇢SB log ⇢SB ] , (7)

quantifies entanglement; in Eq. (7), ⇢SA and ⇢SB are

the reduced density matrices for the two sub-systems

SA and SB , which are the two spin-1 mesons in the de-

cay under consideration. The von Neumann entropy

of a two-qutrit system satisfies 0  E  ln 3. The first

equality is true if and only if the bipartite state is sep-

arable, the second if the bipartite state is maximally

entangled.The optimal generalization of the Bell inequality in

the case of a bipartite system made of two qutrits

is the Collins, Gisin, Linden, Massar and Popescu

(CGLMP) inequality [19, 20]. In order to explicitly

write this condition, consider again the components

SA and SB of the bipartite qutrit system. For the

qutrit SA , select two spin measurement settings, ŜA1

and ŜA2 , which correspond to the projective measure-

ment of two spin-1 observables having each three pos-

sible outcomes {0, 1, 2}—that, in our case, take values

in {+1, 0, �1}. Similarly, the measurement settings

and corresponding observables for the other qutrit SB

are ŜB1 and ŜB2 . Then, denote by P (Ai = Bj+k) the

probability that the outcome SAi for the measurement

of ŜA1 and SBj for the measurement of ŜBj , with i,

j either 1 or 2, differ by k modulo 3. One can then
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For deterministic local models, this quantity satisfies

the generalized Bell inequality
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which instead can be violated by computing the above

joint probabilities using the rules of quantum mechan-

ics. In quantum mechanics, I3 in Eq. (8) can be

expressed as an expectation value of a suitable Bell

operator B as

I3 = Tr
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.
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The explicit form of B depends on the choice of the

four measured operators Âi and B̂i . Hence, given the

two-qutrit state ⇢, it is possible to enhance the vi-

olation of the Bell inequality (9) through a specific

choice of these operators. The numerical value of the

observable I3 is bound to be less than or equal to

4. For the case of the maximally entangled state, the

problem of finding an optimal choice of measurements

has been solved [19]. By working in the single spin-1

basis formed by the eigenstates of the spin operator in

the direction ẑ with eigenvalues {+1, 0,�1}, the Bell
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after rotating it into the helicity basis from the so-

called computational basis employed in [21].

Within the choice of measurements leading to the

Bell operator, there is still the freedom of modify-

ing the measured observables through local unitary

transformations, which effectively corresponds to local

changes of basis in the measurement of the polariza-

tions. Correspondingly, the Bell operator undergoes

the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) ,
(12)

where U and V are independent 3⇥ 3 unitary matri-

ces. In the following we make use of this freedom to

maximize the value of I3 .
R esults.— Our results can now be given in a
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Having written the density matrix, we can study

the entanglement among the polarizat
ions of the two

massive vector particles
by means of a simple observ-

able. For a bipartite pure state, like the one in Eq. (5),

the von Neumann entropy [4]

E = �Tr [⇢SA
log ⇢SA

] = �Tr [⇢SB
log ⇢SB

] , (7)

quantifies entanglement; in Eq. (7), ⇢SA
and ⇢SB

are

the reduced density matrices
for the two sub-systems

SA and SB, which are the two spin-1 mesons in the de-

cay under consideration
. The von Neumann entropy

of a two-qutrit system satisfies 0  E  ln 3. The first

equality is true if and only if the bipartite state is sep-

arable, the second if the bipartite state is maximally

entangled.

The optimal generalizat
ion of the Bell inequality in

the case of a bipartite system made of two qutrits

is the Collins, Gisin, Linden, Massar and Popescu

(CGLMP) inequality [19, 20]. In order to explicitly

write this condition, consider again the components

SA
and SB

of the bipartite qutrit system. For the

qutrit SA, select two spin measurement settings, ŜA1

and ŜA2
, which corresp

ond to the projective
measure-

ment of two spin-1 observables having each three pos-

sible outcomes {0, 1
, 2}—that, in our case, take values

in {+1, 0, �
1}. Similarly, the measurement settings

and corresp
onding observables for the other qutrit SB

are ŜB1
and ŜB2

. Then, denote by P (Ai = Bj+k) the

probability that the outcome SAi
for the measurement

of ŜA1
and SBj

for the measurement of ŜBj
, with i,

j either 1 or 2, differ by k modulo 3. One can then

construct the combination:

I3
= P (A1 =

B1) +
P (B1 =

A2 + 1) + P (A2 =
B2)

+ P (B2 =
A1)�

P (A1 =
B1 �

1)� P (A1 =
B2)

� P (A2 =
B2 �

1)� P (B2 =
A1 �

1) .
(8)

For deterministic local models, this quantity satisfies

the generalized
Bell inequality

I3 
2 ,

(9)

which instead can be violated
by computing the above

joint probabilities using the rules of quantum mechan-

ics. In quantum mechanics, I3 in Eq. (8) can be

expressed
as an expectation

value of a suitable Bell

operator B
as

I3 =
Tr
⇥
⇢B

⇤
.

(10)

The explicit form of B depends on the choice of the

four measured operators
Âi and B̂i. Hence, given the

two-qutrit state ⇢, it is possible to enhance the vi-

olation
of the Bell inequality (9) through a specific

choice of these operators.
The numerical value of the

observable I3 is bound to be less than or equal to

4. For the case of the maximally entangled state, the

problem of finding an optimal choice of measurements

has been solved [19]. By working in the single spin-1

basis formed by the eigenstates of the spin operator in

the direction
ẑ with eigenvalues {+1, 0,�

1}, the Bell

operator takes a particular simple form:

B =

0
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(11)

after rotating it into the helicity
basis from the so-

called computational basis employed in [21].

Within the choice of measurements leading to the

Bell operator,
there is still the freedom of modify-

ing the measured observables through local unitary

transformations, which effectively
corresp

onds to local

changes of basis in the measurement of the polariza-

tions. Correspondingly, the Bell operator undergoes

the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) ,
(12)

where U and V are independent 3⇥ 3 unitary matri-

ces. In the following we make use of this freedom to

maximize the value of I3.

R
esults.— Our results can now be given in a

very concise form. The polarizat
ion amplitudes

in Eq. (1) determine the polarizat
ion density matrix

2

to an integrated luminosity of 1 fb �1. The branching

fraction for this decay is (1.27
± 0.05)⇥ 10 �3

[13].

The selection of B 0
!

J/ 
K ⇤

(892) 0 events, as ex-

plained in [5], is based upon the combined decays of

the
J/ 

!
µ +

µ �
and the

K ⇤
(892) 0

!
K +

⇡ �
fi-

nal states. The muons, as they leave two oppositely-

charged tracks originating from a common vertex, are

selected by taking their transverse momentum
pT

>

500 MeV/c. The invariant mass of this pair of muons

is required to be in the range between 3030 and 3150

MeV
/c 2. The kaon and the pion leave two oppositely-

charged tracks that originate from the same vertex.

It is required that the
K ⇤

(892) 0 has transverse mo-

mentum
pT

>
2 GeV/c and invariant mass in the

range 826-966 MeV/c 2. The
B 0

are reconstructed

from the
J/ and

K ⇤
(892) 0 candidates, with the in-

variant mass of the
µ +

µ �
pair constrained to the

J/ 

mass. The resulting
B 0

candidates are required to

have an invariant mass of the system
J/ K +

⇡ �
in

the range 5150-5400 MeV/c 2.

The polarizations of the spin-1 massive particles

J/ and
K ⇤

(892) 0 can be reconstructed using the

momenta of the final charged mesons and leptons in

which they decay. The differential decay rate is de-

scribed in terms of three angles: two angles are defined

by the direction of the
µ +

momentum with respect to

the
z and

x axes in the
J/ rest frame, one by the

direction of the momentum of the
K +

with respect to

the opposite direction of the momentum of the J/ in

the
K ⇤

(892) 0
!

K +
⇡ �

rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes

A
0 and the two transverse amplitudes A

? and
A
k are

found as coefficients of combinations of trigonometric

functions of these three angles [14].

The analysis in [5] gives the two complex polariza-

tion amplitudesA
k and

A
? as well as the non-resonant

amplitude
A
s . We need only the former two and take

the following values for the squared moduli and phases

of these polarization amplitudes:

|A
k | 2= 0.227

± 0.004 (stat)± 0.011 (sys)

|A
? | 2= 0.201

± 0.004 (stat)± 0.008 (sys)

�k [rad] =
�2.94

± 0.02 (stat)± 0.03 (sys)

�? [rad] = 2.94
± 0.02 (stat)± 0.02 (sys) ,

(1)

with
|A

0 | 2+
|A

? | 2+
|A

k | 2= 1, and we can take �0 = 0

because there are only two physical phases. The corre-

lations among the amplitude and phase uncertainties

are also provided in [5]. The polarization amplitudes

are complex mostly because of the final-state interac-

tions (see, for instance, [15]). The values in Eq. (1)

have errors that are 2 or 3 times smaller than those of

the previous analyses [6–10].

The decays of the
J/ and

K ⇤
take place well out-

side of the range of the strong interactions ongoing at

the time of their production (which is due to gluons

exchange and is about 3
⇥ 10 �5

fm [16]) as well as of

the final-state interactions. The distance between the

two mesons, at the time they both have decayed, can

be estimated to be
d
'

1.1
⇥ 10 3

fm. This distance

must be compared with the typical range of the vir-

tual meson exchange, that is at most equal to 1.5 fm.

We thus obtain that
d/�

⇡ '
750, indicating the im-

possibility of any strong interaction exchange between

the two decaying particles. About the same distance

is found for the decay into
J/ �, while values of

d

between 100 and 10 are found for the other decays in

Table I, namely
��, �K ⇤, and, with the least separa-

tion, ⇢K ⇤.

M ethods.— There are three helicity amplitudes

for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h
� =

hV
1 (�)V

2 (�
�)|H

|B
i

with
� = (+

, 0, �) ,
(2)

and
H is the interaction Hamiltonian giving rise to

the decay. For the spin quantization axis (ẑ) we use

the direction of the momenta of the decay products

in the
B 0

rest frame. Helicities are here defined with

respect to the
ẑ direction in the rest frame of one of

the two spin-1 particles and (+
, 0, �) is a shorthand

for (+1, 0, �1).
The polarizations in the decay are described by a

quantum state that is pure for any values of the he-

licity amplitudes [17, 18]. This state can be written

as

| 
i =

1p
|H

| 2

h
h
+ |V

1 (+)V
2 (�)i

+
h
0 |V

1 (0)V
2 (0)i+

h� |V
1 (�)V

2 (+)i
i
, (3)

with

|H
| 2=

|h
0 | 2+

|h
+ | 2+

|h� | 2
.

(4)

The relative weight of the transverse components

|V
1 (+)V

2 (�)i and
|V
1 (�)V

2 (+)i with respect to the

longitudinal one
|V
1 (0)V

2 (0)i is controlled by the con-

servation of angular momentum. In general, only the

helicity is conserved and the state in Eq. (3) belongs

to the
J
z = 0 component of the

S = 0, 1 or 2 states.

The polarization density matrix
⇢ =

| 
ih 

| can be

10
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to an integrated luminosity of 1 fb�1. The branching
fraction for this decay is (1.27± 0.05)⇥ 10�3 [13].

The selection of B0
! J/ K

⇤(892)0 events, as ex-
plained in [5], is based upon the combined decays of
the J/ ! µ

+
µ
� and the K

⇤(892)0 ! K
+
⇡
� fi-

nal states. The muons, as they leave two oppositely-
charged tracks originating from a common vertex, are
selected by taking their transverse momentum pT >

500 MeV/c. The invariant mass of this pair of muons
is required to be in the range between 3030 and 3150
MeV/c

2. The kaon and the pion leave two oppositely-
charged tracks that originate from the same vertex.
It is required that the K

⇤(892)0 has transverse mo-
mentum pT > 2 GeV/c and invariant mass in the
range 826-966 MeV/c2. The B

0 are reconstructed
from the J/ and K

⇤(892)0 candidates, with the in-
variant mass of the µ

+
µ
� pair constrained to the J/ 

mass. The resulting B
0 candidates are required to

have an invariant mass of the system J/ K
+
⇡
� in

the range 5150-5400 MeV/c2.
The polarizations of the spin-1 massive particles

J/ and K
⇤(892)0 can be reconstructed using the

momenta of the final charged mesons and leptons in
which they decay. The differential decay rate is de-
scribed in terms of three angles: two angles are defined
by the direction of the µ

+ momentum with respect to
the z and x axes in the J/ rest frame, one by the
direction of the momentum of the K

+ with respect to
the opposite direction of the momentum of the J/ in
the K

⇤(892)0 ! K
+
⇡
� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)

�k [rad] = �2.94± 0.02 (stat) ± 0.03 (sys)
�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
2+ |A?|

2+ |Ak|
2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with

|H|
2 = |h0|

2 + |h+|
2 + |h�|

2
. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be

3

written in terms of the helicity amplitudes as

⇢ =
1

|H|2

0

BBBBBBBBBBB@

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 h+h

⇤
+ 0 h+h

⇤
0 0 h+h

⇤
� 0 0

0 0 0 0 0 0 0 0 0
0 0 h0h

⇤
+ 0 h0h

⇤
0 0 h0h

⇤
� 0 0

0 0 0 0 0 0 0 0 0
0 0 h�h

⇤
+ 0 h�h

⇤
0 0 h�h

⇤
� 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCA

, (5)

on the basis given by the tensor product of the polar-
izations (+, 0, �) of the produced spin-1 particles.

The helicity amplitudes are mapped into the polar-
ization amplitudes used in Eq. (1) by the correspon-
dence
h0

|H|
= A0 ,

h+

|H|
=

Ak +A?
p
2

,
h�
|H|

=
Ak �A?

p
2

.

(6)
Having written the density matrix, we can study

the entanglement among the polarizations of the two
massive vector particles by means of a simple observ-
able. For a bipartite pure state, like the one in Eq. (5),
the von Neumann entropy [4]

E = �Tr [⇢SA log ⇢SA ] = �Tr [⇢SB log ⇢SB ] , (7)

quantifies entanglement; in Eq. (7), ⇢SA and ⇢SB are
the reduced density matrices for the two sub-systems
SA and SB , which are the two spin-1 mesons in the de-
cay under consideration. The von Neumann entropy
of a two-qutrit system satisfies 0  E  ln 3. The first
equality is true if and only if the bipartite state is sep-
arable, the second if the bipartite state is maximally
entangled.

The optimal generalization of the Bell inequality in
the case of a bipartite system made of two qutrits
is the Collins, Gisin, Linden, Massar and Popescu
(CGLMP) inequality [19, 20]. In order to explicitly
write this condition, consider again the components
SA and SB of the bipartite qutrit system. For the
qutrit SA, select two spin measurement settings, ŜA1

and ŜA2 , which correspond to the projective measure-
ment of two spin-1 observables having each three pos-
sible outcomes {0, 1, 2}—that, in our case, take values
in {+1, 0, �1}. Similarly, the measurement settings
and corresponding observables for the other qutrit SB

are ŜB1 and ŜB2 . Then, denote by P (Ai = Bj+k) the
probability that the outcome SAi for the measurement
of ŜA1 and SBj for the measurement of ŜBj , with i,
j either 1 or 2, differ by k modulo 3. One can then
construct the combination:

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2)

+ P (B2 = A1)� P (A1 = B1 � 1)� P (A1 = B2)

� P (A2 = B2 � 1)� P (B2 = A1 � 1) . (8)

For deterministic local models, this quantity satisfies
the generalized Bell inequality

I3  2 , (9)

which instead can be violated by computing the above
joint probabilities using the rules of quantum mechan-
ics. In quantum mechanics, I3 in Eq. (8) can be
expressed as an expectation value of a suitable Bell
operator B as

I3 = Tr
⇥
⇢B

⇤
. (10)

The explicit form of B depends on the choice of the
four measured operators Âi and B̂i. Hence, given the
two-qutrit state ⇢, it is possible to enhance the vi-
olation of the Bell inequality (9) through a specific
choice of these operators. The numerical value of the
observable I3 is bound to be less than or equal to
4. For the case of the maximally entangled state, the
problem of finding an optimal choice of measurements
has been solved [19]. By working in the single spin-1
basis formed by the eigenstates of the spin operator in
the direction ẑ with eigenvalues {+1, 0,�1}, the Bell
operator takes a particular simple form:

B =

0
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0 0 0
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,

(11)
after rotating it into the helicity basis from the so-
called computational basis employed in [21].

Within the choice of measurements leading to the
Bell operator, there is still the freedom of modify-
ing the measured observables through local unitary
transformations, which effectively corresponds to local
changes of basis in the measurement of the polariza-
tions. Correspondingly, the Bell operator undergoes
the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) , (12)

where U and V are independent 3⇥ 3 unitary matri-
ces. In the following we make use of this freedom to
maximize the value of I3.

R
esults.— Our results can now be given in a
very concise form. The polarization amplitudes

in Eq. (1) determine the polarization density matrix
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to an integrated luminosity of 1 fb�1. The branching
fraction for this decay is (1.27± 0.05)⇥ 10�3 [13].

The selection of B0
! J/ K

⇤(892)0 events, as ex-
plained in [5], is based upon the combined decays of
the J/ ! µ

+
µ
� and the K

⇤(892)0 ! K
+
⇡
� fi-

nal states. The muons, as they leave two oppositely-
charged tracks originating from a common vertex, are
selected by taking their transverse momentum pT >

500 MeV/c. The invariant mass of this pair of muons
is required to be in the range between 3030 and 3150
MeV/c

2. The kaon and the pion leave two oppositely-
charged tracks that originate from the same vertex.
It is required that the K

⇤(892)0 has transverse mo-
mentum pT > 2 GeV/c and invariant mass in the
range 826-966 MeV/c2. The B

0 are reconstructed
from the J/ and K

⇤(892)0 candidates, with the in-
variant mass of the µ

+
µ
� pair constrained to the J/ 

mass. The resulting B
0 candidates are required to

have an invariant mass of the system J/ K
+
⇡
� in

the range 5150-5400 MeV/c2.
The polarizations of the spin-1 massive particles

J/ and K
⇤(892)0 can be reconstructed using the

momenta of the final charged mesons and leptons in
which they decay. The differential decay rate is de-
scribed in terms of three angles: two angles are defined
by the direction of the µ

+ momentum with respect to
the z and x axes in the J/ rest frame, one by the
direction of the momentum of the K

+ with respect to
the opposite direction of the momentum of the J/ in
the K

⇤(892)0 ! K
+
⇡
� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)

�k [rad] = �2.94± 0.02 (stat) ± 0.03 (sys)
�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
2+ |A?|

2+ |Ak|
2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with

|H|
2 = |h0|

2 + |h+|
2 + |h�|

2
. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be
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written
in terms of the helicity

amplitudes as
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0
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0
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0
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0
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1
CCCCCCCCCCCA

, (5)

on the basis given by the tensor product of the polar-

ization
s (+, 0, �

) of the produced spin-1 particle
s.

The helicity
amplitudes are mapped into the polar-

ization
amplitudes used in Eq. (1) by the corresp

on-

dence
h0

|H|
= A0 ,

h+

|H|
=
Ak +

A?
p

2
,

h�

|H|
=
Ak �

A?
p

2
.

(6)

Having written
the density matrix, we can study

the entanglement among the polariza
tions of the two

massive
vector

particle
s by means of a simple observ-

able. For a bipartite
pure state,

like the one in Eq. (5),

the von Neumann entropy [4]

E = �Tr [⇢SA
log ⇢SA

] = �Tr [⇢SB
log ⇢SB

] ,
(7)

quantifies entanglement; in Eq. (7), ⇢SA
and ⇢SB

are

the reduced density matrices
for the two sub-systems

SA and SB, which are the two spin-1 mesons in the de-

cay under consideration
. The von Neumann entropy

of a two-qutrit system satisfies 0  E  ln 3. The first

equality is true if and only if the bipartite
state is sep-

arable, the second if the bipartite
state is maximally

entangled.

The optimal generaliza
tion of the Bell inequality in

the case of a bipartite
system made of two qutrits

is the Collins, Gisin, Linden, Massar
and Popescu

(CGLMP) inequality [19, 20]. In order to explicitly

write this condition, consider again
the components

SA
and SB

of the bipartite
qutrit system. For the

qutrit SA, select
two spin measurement settings, ŜA1

and ŜA2
, which corresp

ond to the projective
measure-

ment of two spin-1 observab
les having each three pos-

sible outcomes {0, 1
, 2}—that, in our case, take values

in {+1, 0,
�1}. Similarly,

the measurement settings

and corresp
onding observab

les for the other qutrit SB

are ŜB1
and ŜB2

. Then, denote by P (Ai =
Bj+k) the

probability that the outcome SAi
for the measurement

of ŜA1
and SBj

for the measurement of ŜBj
, with i,

j either 1 or 2, differ by k modulo 3. One can then

construct the combination:

I3
= P (A1 =

B1) +
P (B1 =

A2 +
1) + P (A2 =

B2)

+ P (B2 =
A1)�

P (A1 =
B1 �

1)� P (A1 =
B2)

�
P (A2 =

B2 �
1)� P (B2 =

A1 �
1) .

(8)

For deterministic local models, this quantity satisfies

the generalize
d Bell inequality

I3 
2 ,

(9)

which instead can be violated
by computing the above

joint probabilities using the rules of quantum mechan-

ics.
In quantum mechanics, I3

in Eq. (8) can be

expressed
as an expectatio

n value of a suitable Bell

operator
B as

I3 =
Tr
⇥
⇢B

⇤
.

(10)

The explicit form of B depends on the choice of the

four measured operators
Âi and B̂i. Hence, given the

two-qutrit state ⇢, it is possible to enhance the vi-

olation
of the Bell inequality (9) through a specific

choice of these operators
. The numerical

value of the

observab
le I3

is bound to be less than or equal to

4. For the case of the maximally entangled state,
the

problem of finding an optimal choice of measurements

has been solved
[19]. By working in the single spin-1

basis formed by the eigenstates
of the spin operator

in

the directio
n ẑ with eigenvalues {+1, 0,�

1}, the Bell

operator
takes a particular simple form:

B =

0
BBBBBBBBBBBBB@
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0 �

2p
3

0
0

0
0 0

0 0
0

0 �
2p
3

0
2

0 0

0 �
2p
3

0
0

0
0

0
0 0

0 0 �
2p
3

0
0

0 �
2p
3

0 0

0 0
0

0
0

0
0 �

2p
3

0

0 0
2

0 �
2p
3

0
0

0 0

0 0
0

0
0 �

2p
3

0
0 0

0 0
0

0
0

0
0

0 0

1
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,

(11)

after rotatin
g it into the helicity

basis from the so-

called
computational basis employed in [21].

Within the choice of measurements leading to the

Bell operator,
there is still the freedom of modify-

ing the measured observab
les through local unitary

transformations, which effectivel
y corresp

onds to local

changes of basis in the measurement of the polariza
-

tions. Corresp
ondingly, the Bell operator

undergoes

the change:

B ! (U ⌦ V )† · B
· (U ⌦ V ) ,

(12)

where U and V are independent 3⇥ 3 unitary matri-

ces. In the following we make use of this freedom to

maximize the value of I3.

R
esults.— Our results can now be given

in a

very concise form. The polariza
tion amplitudes

in Eq. (1) determine the polariza
tion density matrix

3

written in terms of the helicity amplitudes as
⇢ = 1

|H|2

0
BBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 h+h⇤
+ 0 h+h⇤

0 0 h+h⇤
� 0 0

0 0 0 0 0 0 0 0 0

0 0 h0h⇤
+ 0 h0h⇤

0 0 h0h⇤
� 0 0
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0 0 h�h⇤
+ 0 h�h⇤

0 0 h�h⇤
� 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCA

, (5)on the basis given by the tensor product of the polar-

izations (+, 0, �) of the produced spin-1 particles.

The helicity amplitudes are mapped into the polar-

ization amplitudes used in Eq. (1) by the correspon-

dence
h0

|H|
= A0 , h+

|H|
= Ak +A?p

2 , h�
|H|

= Ak �A?p

2 .

(6)

Having written the density matrix, we can study

the entanglement among the polarizations of the two

massive vector particles by means of a simple observ-

able. For a bipartite pure state, like the one in Eq. (5),

the von Neumann entropy [4]
E = �Tr [⇢SA log ⇢SA ] = �Tr [⇢SB log ⇢SB ] , (7)

quantifies entanglement; in Eq. (7), ⇢SA and ⇢SB are

the reduced density matrices for the two sub-systems

SA and SB , which are the two spin-1 mesons in the de-

cay under consideration. The von Neumann entropy

of a two-qutrit system satisfies 0  E  ln 3. The first

equality is true if and only if the bipartite state is sep-

arable, the second if the bipartite state is maximally

entangled.The optimal generalization of the Bell inequality in

the case of a bipartite system made of two qutrits

is the Collins, Gisin, Linden, Massar and Popescu

(CGLMP) inequality [19, 20]. In order to explicitly

write this condition, consider again the components

SA and SB of the bipartite qutrit system. For the

qutrit SA , select two spin measurement settings, ŜA1

and ŜA2 , which correspond to the projective measure-

ment of two spin-1 observables having each three pos-

sible outcomes {0, 1, 2}—that, in our case, take values

in {+1, 0, �1}. Similarly, the measurement settings

and corresponding observables for the other qutrit SB

are ŜB1 and ŜB2 . Then, denote by P (Ai = Bj+k) the

probability that the outcome SAi for the measurement

of ŜA1 and SBj for the measurement of ŜBj , with i,

j either 1 or 2, differ by k modulo 3. One can then

construct the combination:
I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2)

+ P (B2 = A1)� P (A1 = B1 � 1)� P (A1 = B2)

� P (A2 = B2 � 1)� P (B2 = A1 � 1) .
(8)

For deterministic local models, this quantity satisfies

the generalized Bell inequality
I3  2 ,

(9)

which instead can be violated by computing the above

joint probabilities using the rules of quantum mechan-

ics. In quantum mechanics, I3 in Eq. (8) can be

expressed as an expectation value of a suitable Bell

operator B as

I3 = Tr
⇥
⇢B

⇤
.

(10)

The explicit form of B depends on the choice of the

four measured operators Âi and B̂i . Hence, given the

two-qutrit state ⇢, it is possible to enhance the vi-

olation of the Bell inequality (9) through a specific

choice of these operators. The numerical value of the

observable I3 is bound to be less than or equal to

4. For the case of the maximally entangled state, the

problem of finding an optimal choice of measurements

has been solved [19]. By working in the single spin-1

basis formed by the eigenstates of the spin operator in

the direction ẑ with eigenvalues {+1, 0,�1}, the Bell

operator takes a particular simple form:

B =

0
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after rotating it into the helicity basis from the so-

called computational basis employed in [21].

Within the choice of measurements leading to the

Bell operator, there is still the freedom of modify-

ing the measured observables through local unitary

transformations, which effectively corresponds to local

changes of basis in the measurement of the polariza-

tions. Correspondingly, the Bell operator undergoes

the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) ,
(12)

where U and V are independent 3⇥ 3 unitary matri-

ces. In the following we make use of this freedom to

maximize the value of I3 .
R esults.— Our results can now be given in a

very concise form. The polarization amplitudes

in Eq. (1) determine the polarization density matrix

3

written in terms of the helicity amplitudes as

⇢ =
1

|H|2

0
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1

CCCCCCCCCCCA

, (5)

on the basis given by the tensor product of the polar-

izations (+, 0, �
) of the produced spin-1 particles

.

The helicity amplitudes are mapped into the polar-

ization
amplitudes used in Eq. (1) by the corresp

on-

dence
h0

|H|
= A0 ,

h+

|H|
=
Ak +

A?
p
2

,

h�

|H|
=
Ak �

A?
p
2

.

(6)

Having written the density matrix, we can study

the entanglement among the polarizat
ions of the two

massive vector particles
by means of a simple observ-

able. For a bipartite pure state, like the one in Eq. (5),

the von Neumann entropy [4]

E = �Tr [⇢SA
log ⇢SA

] = �Tr [⇢SB
log ⇢SB

] , (7)

quantifies entanglement; in Eq. (7), ⇢SA
and ⇢SB

are

the reduced density matrices
for the two sub-systems

SA and SB, which are the two spin-1 mesons in the de-

cay under consideration
. The von Neumann entropy

of a two-qutrit system satisfies 0  E  ln 3. The first

equality is true if and only if the bipartite state is sep-

arable, the second if the bipartite state is maximally

entangled.

The optimal generalizat
ion of the Bell inequality in

the case of a bipartite system made of two qutrits

is the Collins, Gisin, Linden, Massar and Popescu

(CGLMP) inequality [19, 20]. In order to explicitly

write this condition, consider again the components

SA
and SB

of the bipartite qutrit system. For the

qutrit SA, select two spin measurement settings, ŜA1

and ŜA2
, which corresp

ond to the projective
measure-

ment of two spin-1 observables having each three pos-

sible outcomes {0, 1
, 2}—that, in our case, take values

in {+1, 0, �
1}. Similarly, the measurement settings

and corresp
onding observables for the other qutrit SB

are ŜB1
and ŜB2

. Then, denote by P (Ai = Bj+k) the

probability that the outcome SAi
for the measurement

of ŜA1
and SBj

for the measurement of ŜBj
, with i,

j either 1 or 2, differ by k modulo 3. One can then

construct the combination:

I3
= P (A1 =

B1) +
P (B1 =

A2 + 1) + P (A2 =
B2)

+ P (B2 =
A1)�

P (A1 =
B1 �

1)� P (A1 =
B2)

� P (A2 =
B2 �

1)� P (B2 =
A1 �

1) .
(8)

For deterministic local models, this quantity satisfies

the generalized
Bell inequality

I3 
2 ,

(9)

which instead can be violated
by computing the above

joint probabilities using the rules of quantum mechan-

ics. In quantum mechanics, I3 in Eq. (8) can be

expressed
as an expectation

value of a suitable Bell

operator B
as

I3 =
Tr
⇥
⇢B

⇤
.

(10)

The explicit form of B depends on the choice of the

four measured operators
Âi and B̂i. Hence, given the

two-qutrit state ⇢, it is possible to enhance the vi-

olation
of the Bell inequality (9) through a specific

choice of these operators.
The numerical value of the

observable I3 is bound to be less than or equal to

4. For the case of the maximally entangled state, the

problem of finding an optimal choice of measurements

has been solved [19]. By working in the single spin-1

basis formed by the eigenstates of the spin operator in

the direction
ẑ with eigenvalues {+1, 0,�

1}, the Bell

operator takes a particular simple form:

B =

0
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(11)

after rotating it into the helicity
basis from the so-

called computational basis employed in [21].

Within the choice of measurements leading to the

Bell operator,
there is still the freedom of modify-

ing the measured observables through local unitary

transformations, which effectively
corresp

onds to local

changes of basis in the measurement of the polariza-

tions. Correspondingly, the Bell operator undergoes

the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) ,
(12)

where U and V are independent 3⇥ 3 unitary matri-

ces. In the following we make use of this freedom to

maximize the value of I3.

R
esults.— Our results can now be given in a

very concise form. The polarizat
ion amplitudes

in Eq. (1) determine the polarizat
ion density matrix

2

to an integrated luminosity of 1 fb �1. The branching

fraction for this decay is (1.27
± 0.05)⇥ 10 �3

[13].

The selection of B 0
!

J/ 
K ⇤

(892) 0 events, as ex-

plained in [5], is based upon the combined decays of

the
J/ 

!
µ +

µ �
and the

K ⇤
(892) 0

!
K +

⇡ �
fi-

nal states. The muons, as they leave two oppositely-

charged tracks originating from a common vertex, are

selected by taking their transverse momentum
pT

>

500 MeV/c. The invariant mass of this pair of muons

is required to be in the range between 3030 and 3150

MeV
/c 2. The kaon and the pion leave two oppositely-

charged tracks that originate from the same vertex.

It is required that the
K ⇤

(892) 0 has transverse mo-

mentum
pT

>
2 GeV/c and invariant mass in the

range 826-966 MeV/c 2. The
B 0

are reconstructed

from the
J/ and

K ⇤
(892) 0 candidates, with the in-

variant mass of the
µ +

µ �
pair constrained to the

J/ 

mass. The resulting
B 0

candidates are required to

have an invariant mass of the system
J/ K +

⇡ �
in

the range 5150-5400 MeV/c 2.

The polarizations of the spin-1 massive particles

J/ and
K ⇤

(892) 0 can be reconstructed using the

momenta of the final charged mesons and leptons in

which they decay. The differential decay rate is de-

scribed in terms of three angles: two angles are defined

by the direction of the
µ +

momentum with respect to

the
z and

x axes in the
J/ rest frame, one by the

direction of the momentum of the
K +

with respect to

the opposite direction of the momentum of the J/ in

the
K ⇤

(892) 0
!

K +
⇡ �

rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes

A
0 and the two transverse amplitudes A

? and
A
k are

found as coefficients of combinations of trigonometric

functions of these three angles [14].

The analysis in [5] gives the two complex polariza-

tion amplitudesA
k and

A
? as well as the non-resonant

amplitude
A
s . We need only the former two and take

the following values for the squared moduli and phases

of these polarization amplitudes:

|A
k | 2= 0.227

± 0.004 (stat)± 0.011 (sys)

|A
? | 2= 0.201

± 0.004 (stat)± 0.008 (sys)

�k [rad] =
�2.94

± 0.02 (stat)± 0.03 (sys)

�? [rad] = 2.94
± 0.02 (stat)± 0.02 (sys) ,

(1)

with
|A

0 | 2+
|A

? | 2+
|A

k | 2= 1, and we can take �0 = 0

because there are only two physical phases. The corre-

lations among the amplitude and phase uncertainties

are also provided in [5]. The polarization amplitudes

are complex mostly because of the final-state interac-

tions (see, for instance, [15]). The values in Eq. (1)

have errors that are 2 or 3 times smaller than those of

the previous analyses [6–10].

The decays of the
J/ and

K ⇤
take place well out-

side of the range of the strong interactions ongoing at

the time of their production (which is due to gluons

exchange and is about 3
⇥ 10 �5

fm [16]) as well as of

the final-state interactions. The distance between the

two mesons, at the time they both have decayed, can

be estimated to be
d
'

1.1
⇥ 10 3

fm. This distance

must be compared with the typical range of the vir-

tual meson exchange, that is at most equal to 1.5 fm.

We thus obtain that
d/�

⇡ '
750, indicating the im-

possibility of any strong interaction exchange between

the two decaying particles. About the same distance

is found for the decay into
J/ �, while values of

d

between 100 and 10 are found for the other decays in

Table I, namely
��, �K ⇤, and, with the least separa-

tion, ⇢K ⇤.

M ethods.— There are three helicity amplitudes

for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h
� =

hV
1 (�)V

2 (�
�)|H

|B
i

with
� = (+

, 0, �) ,
(2)

and
H is the interaction Hamiltonian giving rise to

the decay. For the spin quantization axis (ẑ) we use

the direction of the momenta of the decay products

in the
B 0

rest frame. Helicities are here defined with

respect to the
ẑ direction in the rest frame of one of

the two spin-1 particles and (+
, 0, �) is a shorthand

for (+1, 0, �1).
The polarizations in the decay are described by a

quantum state that is pure for any values of the he-

licity amplitudes [17, 18]. This state can be written

as

| 
i =

1p
|H

| 2

h
h
+ |V

1 (+)V
2 (�)i

+
h
0 |V

1 (0)V
2 (0)i+

h� |V
1 (�)V

2 (+)i
i
, (3)

with

|H
| 2=

|h
0 | 2+

|h
+ | 2+

|h� | 2
.

(4)

The relative weight of the transverse components

|V
1 (+)V

2 (�)i and
|V
1 (�)V

2 (+)i with respect to the

longitudinal one
|V
1 (0)V

2 (0)i is controlled by the con-

servation of angular momentum. In general, only the

helicity is conserved and the state in Eq. (3) belongs

to the
J
z = 0 component of the

S = 0, 1 or 2 states.

The polarization density matrix
⇢ =

| 
ih 

| can be

Once ρ is reconstructed we can probe entanglement. Choose your 
favorite monotone/measure.
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2

to an integrated luminosity of 1 fb�1. The branching
fraction for this decay is (1.27± 0.05)⇥ 10�3 [13].

The selection of B0
! J/ K

⇤(892)0 events, as ex-
plained in [5], is based upon the combined decays of
the J/ ! µ

+
µ
� and the K

⇤(892)0 ! K
+
⇡
� fi-

nal states. The muons, as they leave two oppositely-
charged tracks originating from a common vertex, are
selected by taking their transverse momentum pT >

500 MeV/c. The invariant mass of this pair of muons
is required to be in the range between 3030 and 3150
MeV/c

2. The kaon and the pion leave two oppositely-
charged tracks that originate from the same vertex.
It is required that the K

⇤(892)0 has transverse mo-
mentum pT > 2 GeV/c and invariant mass in the
range 826-966 MeV/c2. The B

0 are reconstructed
from the J/ and K

⇤(892)0 candidates, with the in-
variant mass of the µ

+
µ
� pair constrained to the J/ 

mass. The resulting B
0 candidates are required to

have an invariant mass of the system J/ K
+
⇡
� in

the range 5150-5400 MeV/c2.
The polarizations of the spin-1 massive particles

J/ and K
⇤(892)0 can be reconstructed using the

momenta of the final charged mesons and leptons in
which they decay. The differential decay rate is de-
scribed in terms of three angles: two angles are defined
by the direction of the µ

+ momentum with respect to
the z and x axes in the J/ rest frame, one by the
direction of the momentum of the K

+ with respect to
the opposite direction of the momentum of the J/ in
the K

⇤(892)0 ! K
+
⇡
� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)

�k [rad] = �2.94± 0.02 (stat) ± 0.03 (sys)
�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
2+ |A?|

2+ |Ak|
2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with

|H|
2 = |h0|

2 + |h+|
2 + |h�|

2
. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be

3

written in terms of the helicity amplitudes as

⇢ =
1

|H|2
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, (5)

on the basis given by the tensor product of the polar-
izations (+, 0, �) of the produced spin-1 particles.

The helicity amplitudes are mapped into the polar-
ization amplitudes used in Eq. (1) by the correspon-
dence
h0

|H|
= A0 ,

h+

|H|
=

Ak +A?
p
2

,
h�
|H|

=
Ak �A?

p
2

.

(6)
Having written the density matrix, we can study

the entanglement among the polarizations of the two
massive vector particles by means of a simple observ-
able. For a bipartite pure state, like the one in Eq. (5),
the von Neumann entropy [4]

E = �Tr [⇢SA log ⇢SA ] = �Tr [⇢SB log ⇢SB ] , (7)

quantifies entanglement; in Eq. (7), ⇢SA and ⇢SB are
the reduced density matrices for the two sub-systems
SA and SB , which are the two spin-1 mesons in the de-
cay under consideration. The von Neumann entropy
of a two-qutrit system satisfies 0  E  ln 3. The first
equality is true if and only if the bipartite state is sep-
arable, the second if the bipartite state is maximally
entangled.

The optimal generalization of the Bell inequality in
the case of a bipartite system made of two qutrits
is the Collins, Gisin, Linden, Massar and Popescu
(CGLMP) inequality [19, 20]. In order to explicitly
write this condition, consider again the components
SA and SB of the bipartite qutrit system. For the
qutrit SA, select two spin measurement settings, ŜA1

and ŜA2 , which correspond to the projective measure-
ment of two spin-1 observables having each three pos-
sible outcomes {0, 1, 2}—that, in our case, take values
in {+1, 0, �1}. Similarly, the measurement settings
and corresponding observables for the other qutrit SB

are ŜB1 and ŜB2 . Then, denote by P (Ai = Bj+k) the
probability that the outcome SAi for the measurement
of ŜA1 and SBj for the measurement of ŜBj , with i,
j either 1 or 2, differ by k modulo 3. One can then
construct the combination:

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2)

+ P (B2 = A1)� P (A1 = B1 � 1)� P (A1 = B2)

� P (A2 = B2 � 1)� P (B2 = A1 � 1) . (8)

For deterministic local models, this quantity satisfies
the generalized Bell inequality

I3  2 , (9)

which instead can be violated by computing the above
joint probabilities using the rules of quantum mechan-
ics. In quantum mechanics, I3 in Eq. (8) can be
expressed as an expectation value of a suitable Bell
operator B as

I3 = Tr
⇥
⇢B

⇤
. (10)

The explicit form of B depends on the choice of the
four measured operators Âi and B̂i. Hence, given the
two-qutrit state ⇢, it is possible to enhance the vi-
olation of the Bell inequality (9) through a specific
choice of these operators. The numerical value of the
observable I3 is bound to be less than or equal to
4. For the case of the maximally entangled state, the
problem of finding an optimal choice of measurements
has been solved [19]. By working in the single spin-1
basis formed by the eigenstates of the spin operator in
the direction ẑ with eigenvalues {+1, 0,�1}, the Bell
operator takes a particular simple form:

B =

0
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,

(11)
after rotating it into the helicity basis from the so-
called computational basis employed in [21].

Within the choice of measurements leading to the
Bell operator, there is still the freedom of modify-
ing the measured observables through local unitary
transformations, which effectively corresponds to local
changes of basis in the measurement of the polariza-
tions. Correspondingly, the Bell operator undergoes
the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) , (12)

where U and V are independent 3⇥ 3 unitary matri-
ces. In the following we make use of this freedom to
maximize the value of I3.

R
esults.— Our results can now be given in a
very concise form. The polarization amplitudes

in Eq. (1) determine the polarization density matrix
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to an integrated luminosity of 1 fb�1. The branching
fraction for this decay is (1.27± 0.05)⇥ 10�3 [13].

The selection of B0
! J/ K

⇤(892)0 events, as ex-
plained in [5], is based upon the combined decays of
the J/ ! µ

+
µ
� and the K

⇤(892)0 ! K
+
⇡
� fi-

nal states. The muons, as they leave two oppositely-
charged tracks originating from a common vertex, are
selected by taking their transverse momentum pT >

500 MeV/c. The invariant mass of this pair of muons
is required to be in the range between 3030 and 3150
MeV/c

2. The kaon and the pion leave two oppositely-
charged tracks that originate from the same vertex.
It is required that the K

⇤(892)0 has transverse mo-
mentum pT > 2 GeV/c and invariant mass in the
range 826-966 MeV/c2. The B

0 are reconstructed
from the J/ and K

⇤(892)0 candidates, with the in-
variant mass of the µ

+
µ
� pair constrained to the J/ 

mass. The resulting B
0 candidates are required to

have an invariant mass of the system J/ K
+
⇡
� in

the range 5150-5400 MeV/c2.
The polarizations of the spin-1 massive particles

J/ and K
⇤(892)0 can be reconstructed using the

momenta of the final charged mesons and leptons in
which they decay. The differential decay rate is de-
scribed in terms of three angles: two angles are defined
by the direction of the µ

+ momentum with respect to
the z and x axes in the J/ rest frame, one by the
direction of the momentum of the K

+ with respect to
the opposite direction of the momentum of the J/ in
the K

⇤(892)0 ! K
+
⇡
� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)

�k [rad] = �2.94± 0.02 (stat) ± 0.03 (sys)
�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
2+ |A?|

2+ |Ak|
2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with

|H|
2 = |h0|

2 + |h+|
2 + |h�|

2
. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be
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written
in terms of the helicity

amplitudes as
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1
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on the basis given by the tensor product of the polar-

ization
s (+, 0, �

) of the produced spin-1 particle
s.

The helicity
amplitudes are mapped into the polar-

ization
amplitudes used in Eq. (1) by the corresp

on-

dence
h0

|H|
= A0 ,

h+

|H|
=
Ak +

A?
p

2
,

h�

|H|
=
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p

2
.
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Having written
the density matrix, we can study

the entanglement among the polariza
tions of the two

massive
vector

particle
s by means of a simple observ-

able. For a bipartite
pure state,

like the one in Eq. (5),

the von Neumann entropy [4]

E = �Tr [⇢SA
log ⇢SA

] = �Tr [⇢SB
log ⇢SB

] ,
(7)

quantifies entanglement; in Eq. (7), ⇢SA
and ⇢SB

are

the reduced density matrices
for the two sub-systems

SA and SB, which are the two spin-1 mesons in the de-

cay under consideration
. The von Neumann entropy

of a two-qutrit system satisfies 0  E  ln 3. The first

equality is true if and only if the bipartite
state is sep-

arable, the second if the bipartite
state is maximally

entangled.

The optimal generaliza
tion of the Bell inequality in

the case of a bipartite
system made of two qutrits

is the Collins, Gisin, Linden, Massar
and Popescu

(CGLMP) inequality [19, 20]. In order to explicitly

write this condition, consider again
the components

SA
and SB

of the bipartite
qutrit system. For the

qutrit SA, select
two spin measurement settings, ŜA1

and ŜA2
, which corresp

ond to the projective
measure-

ment of two spin-1 observab
les having each three pos-

sible outcomes {0, 1
, 2}—that, in our case, take values

in {+1, 0,
�1}. Similarly,

the measurement settings

and corresp
onding observab

les for the other qutrit SB

are ŜB1
and ŜB2

. Then, denote by P (Ai =
Bj+k) the

probability that the outcome SAi
for the measurement

of ŜA1
and SBj

for the measurement of ŜBj
, with i,

j either 1 or 2, differ by k modulo 3. One can then

construct the combination:

I3
= P (A1 =

B1) +
P (B1 =

A2 +
1) + P (A2 =

B2)

+ P (B2 =
A1)�

P (A1 =
B1 �

1)� P (A1 =
B2)

�
P (A2 =
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1)� P (B2 =
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1) .

(8)

For deterministic local models, this quantity satisfies

the generalize
d Bell inequality

I3 
2 ,

(9)

which instead can be violated
by computing the above

joint probabilities using the rules of quantum mechan-

ics.
In quantum mechanics, I3

in Eq. (8) can be

expressed
as an expectatio

n value of a suitable Bell

operator
B as

I3 =
Tr
⇥
⇢B

⇤
.

(10)

The explicit form of B depends on the choice of the

four measured operators
Âi and B̂i. Hence, given the

two-qutrit state ⇢, it is possible to enhance the vi-

olation
of the Bell inequality (9) through a specific

choice of these operators
. The numerical

value of the

observab
le I3

is bound to be less than or equal to

4. For the case of the maximally entangled state,
the

problem of finding an optimal choice of measurements

has been solved
[19]. By working in the single spin-1

basis formed by the eigenstates
of the spin operator

in

the directio
n ẑ with eigenvalues {+1, 0,�

1}, the Bell

operator
takes a particular simple form:

B =
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after rotatin
g it into the helicity

basis from the so-

called
computational basis employed in [21].

Within the choice of measurements leading to the

Bell operator,
there is still the freedom of modify-

ing the measured observab
les through local unitary

transformations, which effectivel
y corresp

onds to local

changes of basis in the measurement of the polariza
-

tions. Corresp
ondingly, the Bell operator

undergoes

the change:

B ! (U ⌦ V )† · B
· (U ⌦ V ) ,

(12)

where U and V are independent 3⇥ 3 unitary matri-

ces. In the following we make use of this freedom to

maximize the value of I3.

R
esults.— Our results can now be given

in a

very concise form. The polariza
tion amplitudes

in Eq. (1) determine the polariza
tion density matrix

3

written in terms of the helicity amplitudes as
⇢ = 1
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, (5)on the basis given by the tensor product of the polar-

izations (+, 0, �) of the produced spin-1 particles.

The helicity amplitudes are mapped into the polar-

ization amplitudes used in Eq. (1) by the correspon-
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Having written the density matrix, we can study

the entanglement among the polarizations of the two

massive vector particles by means of a simple observ-

able. For a bipartite pure state, like the one in Eq. (5),

the von Neumann entropy [4]
E = �Tr [⇢SA log ⇢SA ] = �Tr [⇢SB log ⇢SB ] , (7)

quantifies entanglement; in Eq. (7), ⇢SA and ⇢SB are

the reduced density matrices for the two sub-systems

SA and SB , which are the two spin-1 mesons in the de-

cay under consideration. The von Neumann entropy

of a two-qutrit system satisfies 0  E  ln 3. The first

equality is true if and only if the bipartite state is sep-

arable, the second if the bipartite state is maximally

entangled.The optimal generalization of the Bell inequality in

the case of a bipartite system made of two qutrits

is the Collins, Gisin, Linden, Massar and Popescu

(CGLMP) inequality [19, 20]. In order to explicitly

write this condition, consider again the components

SA and SB of the bipartite qutrit system. For the

qutrit SA , select two spin measurement settings, ŜA1

and ŜA2 , which correspond to the projective measure-

ment of two spin-1 observables having each three pos-

sible outcomes {0, 1, 2}—that, in our case, take values

in {+1, 0, �1}. Similarly, the measurement settings

and corresponding observables for the other qutrit SB

are ŜB1 and ŜB2 . Then, denote by P (Ai = Bj+k) the

probability that the outcome SAi for the measurement

of ŜA1 and SBj for the measurement of ŜBj , with i,

j either 1 or 2, differ by k modulo 3. One can then

construct the combination:
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For deterministic local models, this quantity satisfies

the generalized Bell inequality
I3  2 ,

(9)

which instead can be violated by computing the above

joint probabilities using the rules of quantum mechan-

ics. In quantum mechanics, I3 in Eq. (8) can be

expressed as an expectation value of a suitable Bell

operator B as

I3 = Tr
⇥
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.

(10)

The explicit form of B depends on the choice of the

four measured operators Âi and B̂i . Hence, given the

two-qutrit state ⇢, it is possible to enhance the vi-

olation of the Bell inequality (9) through a specific

choice of these operators. The numerical value of the

observable I3 is bound to be less than or equal to

4. For the case of the maximally entangled state, the

problem of finding an optimal choice of measurements

has been solved [19]. By working in the single spin-1

basis formed by the eigenstates of the spin operator in

the direction ẑ with eigenvalues {+1, 0,�1}, the Bell

operator takes a particular simple form:
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after rotating it into the helicity basis from the so-

called computational basis employed in [21].

Within the choice of measurements leading to the

Bell operator, there is still the freedom of modify-

ing the measured observables through local unitary

transformations, which effectively corresponds to local

changes of basis in the measurement of the polariza-

tions. Correspondingly, the Bell operator undergoes

the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) ,
(12)

where U and V are independent 3⇥ 3 unitary matri-

ces. In the following we make use of this freedom to

maximize the value of I3 .
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on the basis given by the tensor product of the polar-
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) of the produced spin-1 particles
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Having written the density matrix, we can study

the entanglement among the polarizat
ions of the two

massive vector particles
by means of a simple observ-

able. For a bipartite pure state, like the one in Eq. (5),

the von Neumann entropy [4]

E = �Tr [⇢SA
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] , (7)

quantifies entanglement; in Eq. (7), ⇢SA
and ⇢SB

are

the reduced density matrices
for the two sub-systems

SA and SB, which are the two spin-1 mesons in the de-

cay under consideration
. The von Neumann entropy

of a two-qutrit system satisfies 0  E  ln 3. The first

equality is true if and only if the bipartite state is sep-

arable, the second if the bipartite state is maximally

entangled.

The optimal generalizat
ion of the Bell inequality in

the case of a bipartite system made of two qutrits

is the Collins, Gisin, Linden, Massar and Popescu

(CGLMP) inequality [19, 20]. In order to explicitly

write this condition, consider again the components

SA
and SB

of the bipartite qutrit system. For the

qutrit SA, select two spin measurement settings, ŜA1

and ŜA2
, which corresp

ond to the projective
measure-

ment of two spin-1 observables having each three pos-

sible outcomes {0, 1
, 2}—that, in our case, take values

in {+1, 0, �
1}. Similarly, the measurement settings

and corresp
onding observables for the other qutrit SB

are ŜB1
and ŜB2

. Then, denote by P (Ai = Bj+k) the

probability that the outcome SAi
for the measurement

of ŜA1
and SBj

for the measurement of ŜBj
, with i,

j either 1 or 2, differ by k modulo 3. One can then

construct the combination:

I3
= P (A1 =

B1) +
P (B1 =

A2 + 1) + P (A2 =
B2)

+ P (B2 =
A1)�

P (A1 =
B1 �

1)� P (A1 =
B2)

� P (A2 =
B2 �

1)� P (B2 =
A1 �

1) .
(8)

For deterministic local models, this quantity satisfies

the generalized
Bell inequality

I3 
2 ,

(9)

which instead can be violated
by computing the above

joint probabilities using the rules of quantum mechan-

ics. In quantum mechanics, I3 in Eq. (8) can be

expressed
as an expectation

value of a suitable Bell

operator B
as

I3 =
Tr
⇥
⇢B

⇤
.

(10)

The explicit form of B depends on the choice of the

four measured operators
Âi and B̂i. Hence, given the

two-qutrit state ⇢, it is possible to enhance the vi-

olation
of the Bell inequality (9) through a specific

choice of these operators.
The numerical value of the

observable I3 is bound to be less than or equal to

4. For the case of the maximally entangled state, the

problem of finding an optimal choice of measurements

has been solved [19]. By working in the single spin-1

basis formed by the eigenstates of the spin operator in

the direction
ẑ with eigenvalues {+1, 0,�

1}, the Bell

operator takes a particular simple form:

B =

0
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0
0
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0 � 2p
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0
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0 0
0
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0
2

0 0

0 � 2p
3

0
0

0
0

0
0 0

0 0 � 2p
3

0
0

0 � 2p
3

0 0

0 0
0

0
0

0
0 � 2p

3
0

0 0
2

0 � 2p
3

0
0

0 0

0 0
0

0
0 � 2p

3
0

0 0

0 0
0

0
0

0
0

0 0

1

CCCCCCCCCCCCCA

,

(11)

after rotating it into the helicity
basis from the so-

called computational basis employed in [21].

Within the choice of measurements leading to the

Bell operator,
there is still the freedom of modify-

ing the measured observables through local unitary

transformations, which effectively
corresp

onds to local

changes of basis in the measurement of the polariza-

tions. Correspondingly, the Bell operator undergoes

the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) ,
(12)

where U and V are independent 3⇥ 3 unitary matri-

ces. In the following we make use of this freedom to

maximize the value of I3.

R
esults.— Our results can now be given in a

very concise form. The polarizat
ion amplitudes

in Eq. (1) determine the polarizat
ion density matrix

2

to an integrated luminosity of 1 fb �1. The branching

fraction for this decay is (1.27
± 0.05)⇥ 10 �3

[13].

The selection of B 0
!

J/ 
K ⇤

(892) 0 events, as ex-

plained in [5], is based upon the combined decays of

the
J/ 

!
µ +

µ �
and the

K ⇤
(892) 0

!
K +

⇡ �
fi-

nal states. The muons, as they leave two oppositely-

charged tracks originating from a common vertex, are

selected by taking their transverse momentum
pT

>

500 MeV/c. The invariant mass of this pair of muons

is required to be in the range between 3030 and 3150

MeV
/c 2. The kaon and the pion leave two oppositely-

charged tracks that originate from the same vertex.

It is required that the
K ⇤

(892) 0 has transverse mo-

mentum
pT

>
2 GeV/c and invariant mass in the

range 826-966 MeV/c 2. The
B 0

are reconstructed

from the
J/ and

K ⇤
(892) 0 candidates, with the in-

variant mass of the
µ +

µ �
pair constrained to the

J/ 

mass. The resulting
B 0

candidates are required to

have an invariant mass of the system
J/ K +

⇡ �
in

the range 5150-5400 MeV/c 2.

The polarizations of the spin-1 massive particles

J/ and
K ⇤

(892) 0 can be reconstructed using the

momenta of the final charged mesons and leptons in

which they decay. The differential decay rate is de-

scribed in terms of three angles: two angles are defined

by the direction of the
µ +

momentum with respect to

the
z and

x axes in the
J/ rest frame, one by the

direction of the momentum of the
K +

with respect to

the opposite direction of the momentum of the J/ in

the
K ⇤

(892) 0
!

K +
⇡ �

rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes

A
0 and the two transverse amplitudes A

? and
A
k are

found as coefficients of combinations of trigonometric

functions of these three angles [14].

The analysis in [5] gives the two complex polariza-

tion amplitudesA
k and

A
? as well as the non-resonant

amplitude
A
s . We need only the former two and take

the following values for the squared moduli and phases

of these polarization amplitudes:

|A
k | 2= 0.227

± 0.004 (stat)± 0.011 (sys)

|A
? | 2= 0.201

± 0.004 (stat)± 0.008 (sys)

�k [rad] =
�2.94

± 0.02 (stat)± 0.03 (sys)

�? [rad] = 2.94
± 0.02 (stat)± 0.02 (sys) ,

(1)

with
|A

0 | 2+
|A

? | 2+
|A

k | 2= 1, and we can take �0 = 0

because there are only two physical phases. The corre-

lations among the amplitude and phase uncertainties

are also provided in [5]. The polarization amplitudes

are complex mostly because of the final-state interac-

tions (see, for instance, [15]). The values in Eq. (1)

have errors that are 2 or 3 times smaller than those of

the previous analyses [6–10].

The decays of the
J/ and

K ⇤
take place well out-

side of the range of the strong interactions ongoing at

the time of their production (which is due to gluons

exchange and is about 3
⇥ 10 �5

fm [16]) as well as of

the final-state interactions. The distance between the

two mesons, at the time they both have decayed, can

be estimated to be
d
'

1.1
⇥ 10 3

fm. This distance

must be compared with the typical range of the vir-

tual meson exchange, that is at most equal to 1.5 fm.

We thus obtain that
d/�

⇡ '
750, indicating the im-

possibility of any strong interaction exchange between

the two decaying particles. About the same distance

is found for the decay into
J/ �, while values of

d

between 100 and 10 are found for the other decays in

Table I, namely
��, �K ⇤, and, with the least separa-

tion, ⇢K ⇤.

M ethods.— There are three helicity amplitudes

for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h
� =

hV
1 (�)V

2 (�
�)|H

|B
i

with
� = (+

, 0, �) ,
(2)

and
H is the interaction Hamiltonian giving rise to

the decay. For the spin quantization axis (ẑ) we use

the direction of the momenta of the decay products

in the
B 0

rest frame. Helicities are here defined with

respect to the
ẑ direction in the rest frame of one of

the two spin-1 particles and (+
, 0, �) is a shorthand

for (+1, 0, �1).
The polarizations in the decay are described by a

quantum state that is pure for any values of the he-

licity amplitudes [17, 18]. This state can be written

as

| 
i =

1p
|H

| 2

h
h
+ |V

1 (+)V
2 (�)i

+
h
0 |V

1 (0)V
2 (0)i+

h� |V
1 (�)V

2 (+)i
i
, (3)

with

|H
| 2=

|h
0 | 2+

|h
+ | 2+

|h� | 2
.

(4)

The relative weight of the transverse components

|V
1 (+)V

2 (�)i and
|V
1 (�)V

2 (+)i with respect to the

longitudinal one
|V
1 (0)V

2 (0)i is controlled by the con-

servation of angular momentum. In general, only the

helicity is conserved and the state in Eq. (3) belongs

to the
J
z = 0 component of the

S = 0, 1 or 2 states.

The polarization density matrix
⇢ =

| 
ih 

| can be

Once ρ is reconstructed we can probe entanglement. Choose your 
favorite monotone/measure.
For pure states we can use the entropy of entanglement, given by the 
von Neumann entropy of either of the composing subsystems A and B:
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to an integrated luminosity of 1 fb�1. The branching
fraction for this decay is (1.27± 0.05)⇥ 10�3 [13].

The selection of B0
! J/ K

⇤(892)0 events, as ex-
plained in [5], is based upon the combined decays of
the J/ ! µ

+
µ
� and the K

⇤(892)0 ! K
+
⇡
� fi-

nal states. The muons, as they leave two oppositely-
charged tracks originating from a common vertex, are
selected by taking their transverse momentum pT >

500 MeV/c. The invariant mass of this pair of muons
is required to be in the range between 3030 and 3150
MeV/c

2. The kaon and the pion leave two oppositely-
charged tracks that originate from the same vertex.
It is required that the K

⇤(892)0 has transverse mo-
mentum pT > 2 GeV/c and invariant mass in the
range 826-966 MeV/c2. The B

0 are reconstructed
from the J/ and K

⇤(892)0 candidates, with the in-
variant mass of the µ

+
µ
� pair constrained to the J/ 

mass. The resulting B
0 candidates are required to

have an invariant mass of the system J/ K
+
⇡
� in

the range 5150-5400 MeV/c2.
The polarizations of the spin-1 massive particles

J/ and K
⇤(892)0 can be reconstructed using the

momenta of the final charged mesons and leptons in
which they decay. The differential decay rate is de-
scribed in terms of three angles: two angles are defined
by the direction of the µ

+ momentum with respect to
the z and x axes in the J/ rest frame, one by the
direction of the momentum of the K

+ with respect to
the opposite direction of the momentum of the J/ in
the K

⇤(892)0 ! K
+
⇡
� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)

�k [rad] = �2.94± 0.02 (stat) ± 0.03 (sys)
�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
2+ |A?|

2+ |Ak|
2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with

|H|
2 = |h0|

2 + |h+|
2 + |h�|

2
. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be

3

written in terms of the helicity amplitudes as

⇢ =
1

|H|2

0

BBBBBBBBBBB@

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 h+h

⇤
+ 0 h+h

⇤
0 0 h+h

⇤
� 0 0

0 0 0 0 0 0 0 0 0
0 0 h0h

⇤
+ 0 h0h

⇤
0 0 h0h

⇤
� 0 0

0 0 0 0 0 0 0 0 0
0 0 h�h

⇤
+ 0 h�h

⇤
0 0 h�h

⇤
� 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCA

, (5)

on the basis given by the tensor product of the polar-
izations (+, 0, �) of the produced spin-1 particles.

The helicity amplitudes are mapped into the polar-
ization amplitudes used in Eq. (1) by the correspon-
dence
h0

|H|
= A0 ,

h+

|H|
=

Ak +A?
p
2

,
h�
|H|

=
Ak �A?

p
2

.

(6)
Having written the density matrix, we can study

the entanglement among the polarizations of the two
massive vector particles by means of a simple observ-
able. For a bipartite pure state, like the one in Eq. (5),
the von Neumann entropy [4]

E = �Tr [⇢SA log ⇢SA ] = �Tr [⇢SB log ⇢SB ] , (7)

quantifies entanglement; in Eq. (7), ⇢SA and ⇢SB are
the reduced density matrices for the two sub-systems
SA and SB , which are the two spin-1 mesons in the de-
cay under consideration. The von Neumann entropy
of a two-qutrit system satisfies 0  E  ln 3. The first
equality is true if and only if the bipartite state is sep-
arable, the second if the bipartite state is maximally
entangled.

The optimal generalization of the Bell inequality in
the case of a bipartite system made of two qutrits
is the Collins, Gisin, Linden, Massar and Popescu
(CGLMP) inequality [19, 20]. In order to explicitly
write this condition, consider again the components
SA and SB of the bipartite qutrit system. For the
qutrit SA, select two spin measurement settings, ŜA1

and ŜA2 , which correspond to the projective measure-
ment of two spin-1 observables having each three pos-
sible outcomes {0, 1, 2}—that, in our case, take values
in {+1, 0, �1}. Similarly, the measurement settings
and corresponding observables for the other qutrit SB

are ŜB1 and ŜB2 . Then, denote by P (Ai = Bj+k) the
probability that the outcome SAi for the measurement
of ŜA1 and SBj for the measurement of ŜBj , with i,
j either 1 or 2, differ by k modulo 3. One can then
construct the combination:

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2)

+ P (B2 = A1)� P (A1 = B1 � 1)� P (A1 = B2)

� P (A2 = B2 � 1)� P (B2 = A1 � 1) . (8)

For deterministic local models, this quantity satisfies
the generalized Bell inequality

I3  2 , (9)

which instead can be violated by computing the above
joint probabilities using the rules of quantum mechan-
ics. In quantum mechanics, I3 in Eq. (8) can be
expressed as an expectation value of a suitable Bell
operator B as

I3 = Tr
⇥
⇢B

⇤
. (10)

The explicit form of B depends on the choice of the
four measured operators Âi and B̂i. Hence, given the
two-qutrit state ⇢, it is possible to enhance the vi-
olation of the Bell inequality (9) through a specific
choice of these operators. The numerical value of the
observable I3 is bound to be less than or equal to
4. For the case of the maximally entangled state, the
problem of finding an optimal choice of measurements
has been solved [19]. By working in the single spin-1
basis formed by the eigenstates of the spin operator in
the direction ẑ with eigenvalues {+1, 0,�1}, the Bell
operator takes a particular simple form:

B =

0

BBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0
0 0 0 � 2p

3
0 0 0 0 0

0 0 0 0 � 2p
3

0 2 0 0

0 � 2p
3

0 0 0 0 0 0 0

0 0 � 2p
3

0 0 0 � 2p
3

0 0

0 0 0 0 0 0 0 � 2p
3

0

0 0 2 0 � 2p
3

0 0 0 0

0 0 0 0 0 � 2p
3

0 0 0

0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCA

,

(11)
after rotating it into the helicity basis from the so-
called computational basis employed in [21].

Within the choice of measurements leading to the
Bell operator, there is still the freedom of modify-
ing the measured observables through local unitary
transformations, which effectively corresponds to local
changes of basis in the measurement of the polariza-
tions. Correspondingly, the Bell operator undergoes
the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) , (12)

where U and V are independent 3⇥ 3 unitary matri-
ces. In the following we make use of this freedom to
maximize the value of I3.

R
esults.— Our results can now be given in a
very concise form. The polarization amplitudes

in Eq. (1) determine the polarization density matrix
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to an integrated luminosity of 1 fb�1. The branching
fraction for this decay is (1.27± 0.05)⇥ 10�3 [13].

The selection of B0
! J/ K

⇤(892)0 events, as ex-
plained in [5], is based upon the combined decays of
the J/ ! µ

+
µ
� and the K

⇤(892)0 ! K
+
⇡
� fi-

nal states. The muons, as they leave two oppositely-
charged tracks originating from a common vertex, are
selected by taking their transverse momentum pT >

500 MeV/c. The invariant mass of this pair of muons
is required to be in the range between 3030 and 3150
MeV/c

2. The kaon and the pion leave two oppositely-
charged tracks that originate from the same vertex.
It is required that the K

⇤(892)0 has transverse mo-
mentum pT > 2 GeV/c and invariant mass in the
range 826-966 MeV/c2. The B

0 are reconstructed
from the J/ and K

⇤(892)0 candidates, with the in-
variant mass of the µ

+
µ
� pair constrained to the J/ 

mass. The resulting B
0 candidates are required to

have an invariant mass of the system J/ K
+
⇡
� in

the range 5150-5400 MeV/c2.
The polarizations of the spin-1 massive particles

J/ and K
⇤(892)0 can be reconstructed using the

momenta of the final charged mesons and leptons in
which they decay. The differential decay rate is de-
scribed in terms of three angles: two angles are defined
by the direction of the µ

+ momentum with respect to
the z and x axes in the J/ rest frame, one by the
direction of the momentum of the K

+ with respect to
the opposite direction of the momentum of the J/ in
the K

⇤(892)0 ! K
+
⇡
� rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes
A0 and the two transverse amplitudes A? and Ak are
found as coefficients of combinations of trigonometric
functions of these three angles [14].

The analysis in [5] gives the two complex polariza-
tion amplitudes Ak and A? as well as the non-resonant
amplitude As. We need only the former two and take
the following values for the squared moduli and phases
of these polarization amplitudes:

|Ak|
2 = 0.227± 0.004 (stat) ± 0.011 (sys)

|A?|
2 = 0.201± 0.004 (stat) ± 0.008 (sys)

�k [rad] = �2.94± 0.02 (stat) ± 0.03 (sys)
�? [rad] = 2.94± 0.02 (stat) ± 0.02 (sys) , (1)

with |A0|
2+ |A?|

2+ |Ak|
2 = 1, and we can take �0 = 0

because there are only two physical phases. The corre-
lations among the amplitude and phase uncertainties
are also provided in [5]. The polarization amplitudes
are complex mostly because of the final-state interac-
tions (see, for instance, [15]). The values in Eq. (1)
have errors that are 2 or 3 times smaller than those of
the previous analyses [6–10].

The decays of the J/ and K
⇤ take place well out-

side of the range of the strong interactions ongoing at
the time of their production (which is due to gluons
exchange and is about 3⇥ 10�5 fm [16]) as well as of
the final-state interactions. The distance between the
two mesons, at the time they both have decayed, can
be estimated to be d ' 1.1 ⇥ 103 fm. This distance
must be compared with the typical range of the vir-
tual meson exchange, that is at most equal to 1.5 fm.
We thus obtain that d/�⇡ ' 750, indicating the im-
possibility of any strong interaction exchange between
the two decaying particles. About the same distance
is found for the decay into J/ �, while values of d

between 100 and 10 are found for the other decays in
Table I, namely ��, �K⇤, and, with the least separa-
tion, ⇢K⇤.

M
ethods.— There are three helicity amplitudes
for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h� = hV1(�)V2(��)|H|Bi with � = (+, 0, �) ,
(2)

and H is the interaction Hamiltonian giving rise to
the decay. For the spin quantization axis (ẑ) we use
the direction of the momenta of the decay products
in the B

0 rest frame. Helicities are here defined with
respect to the ẑ direction in the rest frame of one of
the two spin-1 particles and (+, 0, �) is a shorthand
for (+1, 0, �1).

The polarizations in the decay are described by a
quantum state that is pure for any values of the he-
licity amplitudes [17, 18]. This state can be written
as

| i =
1p
|H|2

h
h+ |V1(+)V2(�)i

+ h0 |V1(0)V2(0)i+ h� |V1(�)V2(+)i
i
, (3)

with

|H|
2 = |h0|

2 + |h+|
2 + |h�|

2
. (4)

The relative weight of the transverse components
|V1(+)V2(�)i and |V1(�)V2(+)i with respect to the
longitudinal one |V1(0)V2(0)i is controlled by the con-
servation of angular momentum. In general, only the
helicity is conserved and the state in Eq. (3) belongs
to the Jz = 0 component of the S = 0, 1 or 2 states.

The polarization density matrix ⇢ = | ih | can be

R. Aaij et al. [LHCb], Phys. Rev. D 88, 052002 (2013)
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LHCb

3

written
in terms of the helicity

amplitudes as

⇢ =
1

|H|2

0
BBBBBBBBBBB@

0 0
0

0 0 0
0

0 0

0 0
0

0 0 0
0

0 0

0 0 h+h
⇤
+

0 h+h
⇤
0

0 h+h
⇤
�

0 0

0 0
0

0 0 0
0

0 0

0 0 h0h
⇤
+

0 h0h
⇤
0

0 h0h
⇤
�

0 0

0 0
0

0 0 0
0

0 0

0 0 h�h
⇤
+

0 h�h
⇤
0

0 h�h
⇤
�

0 0

0 0
0

0 0 0
0

0 0

0 0
0

0 0 0
0

0 0

1
CCCCCCCCCCCA

, (5)

on the basis given by the tensor product of the polar-

ization
s (+, 0, �

) of the produced spin-1 particle
s.

The helicity
amplitudes are mapped into the polar-

ization
amplitudes used in Eq. (1) by the corresp

on-

dence
h0

|H|
= A0 ,

h+

|H|
=
Ak +

A?
p

2
,

h�

|H|
=
Ak �

A?
p

2
.

(6)

Having written
the density matrix, we can study

the entanglement among the polariza
tions of the two

massive
vector

particle
s by means of a simple observ-

able. For a bipartite
pure state,

like the one in Eq. (5),

the von Neumann entropy [4]

E = �Tr [⇢SA
log ⇢SA

] = �Tr [⇢SB
log ⇢SB

] ,
(7)

quantifies entanglement; in Eq. (7), ⇢SA
and ⇢SB

are

the reduced density matrices
for the two sub-systems

SA and SB, which are the two spin-1 mesons in the de-

cay under consideration
. The von Neumann entropy

of a two-qutrit system satisfies 0  E  ln 3. The first

equality is true if and only if the bipartite
state is sep-

arable, the second if the bipartite
state is maximally

entangled.

The optimal generaliza
tion of the Bell inequality in

the case of a bipartite
system made of two qutrits

is the Collins, Gisin, Linden, Massar
and Popescu

(CGLMP) inequality [19, 20]. In order to explicitly

write this condition, consider again
the components

SA
and SB

of the bipartite
qutrit system. For the

qutrit SA, select
two spin measurement settings, ŜA1

and ŜA2
, which corresp

ond to the projective
measure-

ment of two spin-1 observab
les having each three pos-

sible outcomes {0, 1
, 2}—that, in our case, take values

in {+1, 0,
�1}. Similarly,

the measurement settings

and corresp
onding observab

les for the other qutrit SB

are ŜB1
and ŜB2

. Then, denote by P (Ai =
Bj+k) the

probability that the outcome SAi
for the measurement

of ŜA1
and SBj

for the measurement of ŜBj
, with i,

j either 1 or 2, differ by k modulo 3. One can then

construct the combination:

I3
= P (A1 =

B1) +
P (B1 =

A2 +
1) + P (A2 =

B2)

+ P (B2 =
A1)�

P (A1 =
B1 �

1)� P (A1 =
B2)

�
P (A2 =

B2 �
1)� P (B2 =

A1 �
1) .

(8)

For deterministic local models, this quantity satisfies

the generalize
d Bell inequality

I3 
2 ,

(9)

which instead can be violated
by computing the above

joint probabilities using the rules of quantum mechan-

ics.
In quantum mechanics, I3

in Eq. (8) can be

expressed
as an expectatio

n value of a suitable Bell

operator
B as

I3 =
Tr
⇥
⇢B

⇤
.

(10)

The explicit form of B depends on the choice of the

four measured operators
Âi and B̂i. Hence, given the

two-qutrit state ⇢, it is possible to enhance the vi-

olation
of the Bell inequality (9) through a specific

choice of these operators
. The numerical

value of the

observab
le I3

is bound to be less than or equal to

4. For the case of the maximally entangled state,
the

problem of finding an optimal choice of measurements

has been solved
[19]. By working in the single spin-1

basis formed by the eigenstates
of the spin operator

in

the directio
n ẑ with eigenvalues {+1, 0,�

1}, the Bell

operator
takes a particular simple form:

B =

0
BBBBBBBBBBBBB@
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0 �
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0
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0
0
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2p
3
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2p
3
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0
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0

0
0 �

2p
3

0
0 0

0 0
0

0
0

0
0

0 0

1
CCCCCCCCCCCCCA

,

(11)

after rotatin
g it into the helicity

basis from the so-

called
computational basis employed in [21].

Within the choice of measurements leading to the

Bell operator,
there is still the freedom of modify-

ing the measured observab
les through local unitary

transformations, which effectivel
y corresp

onds to local

changes of basis in the measurement of the polariza
-

tions. Corresp
ondingly, the Bell operator

undergoes

the change:

B ! (U ⌦ V )† · B
· (U ⌦ V ) ,

(12)

where U and V are independent 3⇥ 3 unitary matri-

ces. In the following we make use of this freedom to

maximize the value of I3.

R
esults.— Our results can now be given

in a

very concise form. The polariza
tion amplitudes

in Eq. (1) determine the polariza
tion density matrix

3

written in terms of the helicity amplitudes as
⇢ = 1

|H|2

0
BBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 h+h⇤
+ 0 h+h⇤

0 0 h+h⇤
� 0 0
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0 0 h0h⇤
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0 0 h0h⇤
� 0 0
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+ 0 h�h⇤

0 0 h�h⇤
� 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1
CCCCCCCCCCCA

, (5)on the basis given by the tensor product of the polar-

izations (+, 0, �) of the produced spin-1 particles.

The helicity amplitudes are mapped into the polar-

ization amplitudes used in Eq. (1) by the correspon-

dence
h0

|H|
= A0 , h+

|H|
= Ak +A?p

2 , h�
|H|

= Ak �A?p

2 .

(6)

Having written the density matrix, we can study

the entanglement among the polarizations of the two

massive vector particles by means of a simple observ-

able. For a bipartite pure state, like the one in Eq. (5),

the von Neumann entropy [4]
E = �Tr [⇢SA log ⇢SA ] = �Tr [⇢SB log ⇢SB ] , (7)

quantifies entanglement; in Eq. (7), ⇢SA and ⇢SB are

the reduced density matrices for the two sub-systems

SA and SB , which are the two spin-1 mesons in the de-

cay under consideration. The von Neumann entropy

of a two-qutrit system satisfies 0  E  ln 3. The first

equality is true if and only if the bipartite state is sep-

arable, the second if the bipartite state is maximally

entangled.The optimal generalization of the Bell inequality in

the case of a bipartite system made of two qutrits

is the Collins, Gisin, Linden, Massar and Popescu

(CGLMP) inequality [19, 20]. In order to explicitly

write this condition, consider again the components

SA and SB of the bipartite qutrit system. For the

qutrit SA , select two spin measurement settings, ŜA1

and ŜA2 , which correspond to the projective measure-

ment of two spin-1 observables having each three pos-

sible outcomes {0, 1, 2}—that, in our case, take values

in {+1, 0, �1}. Similarly, the measurement settings

and corresponding observables for the other qutrit SB

are ŜB1 and ŜB2 . Then, denote by P (Ai = Bj+k) the

probability that the outcome SAi for the measurement

of ŜA1 and SBj for the measurement of ŜBj , with i,

j either 1 or 2, differ by k modulo 3. One can then

construct the combination:
I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2)

+ P (B2 = A1)� P (A1 = B1 � 1)� P (A1 = B2)

� P (A2 = B2 � 1)� P (B2 = A1 � 1) .
(8)

For deterministic local models, this quantity satisfies

the generalized Bell inequality
I3  2 ,

(9)

which instead can be violated by computing the above

joint probabilities using the rules of quantum mechan-

ics. In quantum mechanics, I3 in Eq. (8) can be

expressed as an expectation value of a suitable Bell

operator B as

I3 = Tr
⇥
⇢B

⇤
.

(10)

The explicit form of B depends on the choice of the

four measured operators Âi and B̂i . Hence, given the

two-qutrit state ⇢, it is possible to enhance the vi-

olation of the Bell inequality (9) through a specific

choice of these operators. The numerical value of the

observable I3 is bound to be less than or equal to

4. For the case of the maximally entangled state, the

problem of finding an optimal choice of measurements

has been solved [19]. By working in the single spin-1

basis formed by the eigenstates of the spin operator in

the direction ẑ with eigenvalues {+1, 0,�1}, the Bell

operator takes a particular simple form:

B =

0
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after rotating it into the helicity basis from the so-

called computational basis employed in [21].

Within the choice of measurements leading to the

Bell operator, there is still the freedom of modify-

ing the measured observables through local unitary

transformations, which effectively corresponds to local

changes of basis in the measurement of the polariza-

tions. Correspondingly, the Bell operator undergoes

the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) ,
(12)

where U and V are independent 3⇥ 3 unitary matri-

ces. In the following we make use of this freedom to

maximize the value of I3 .
R esults.— Our results can now be given in a

very concise form. The polarization amplitudes

in Eq. (1) determine the polarization density matrix

3

written in terms of the helicity amplitudes as

⇢ =
1

|H|2
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1

CCCCCCCCCCCA

, (5)

on the basis given by the tensor product of the polar-

izations (+, 0, �
) of the produced spin-1 particles

.

The helicity amplitudes are mapped into the polar-

ization
amplitudes used in Eq. (1) by the corresp

on-

dence
h0

|H|
= A0 ,

h+

|H|
=
Ak +

A?
p
2

,

h�

|H|
=
Ak �

A?
p
2

.

(6)

Having written the density matrix, we can study

the entanglement among the polarizat
ions of the two

massive vector particles
by means of a simple observ-

able. For a bipartite pure state, like the one in Eq. (5),

the von Neumann entropy [4]

E = �Tr [⇢SA
log ⇢SA

] = �Tr [⇢SB
log ⇢SB

] , (7)

quantifies entanglement; in Eq. (7), ⇢SA
and ⇢SB

are

the reduced density matrices
for the two sub-systems

SA and SB, which are the two spin-1 mesons in the de-

cay under consideration
. The von Neumann entropy

of a two-qutrit system satisfies 0  E  ln 3. The first

equality is true if and only if the bipartite state is sep-

arable, the second if the bipartite state is maximally

entangled.

The optimal generalizat
ion of the Bell inequality in

the case of a bipartite system made of two qutrits

is the Collins, Gisin, Linden, Massar and Popescu

(CGLMP) inequality [19, 20]. In order to explicitly

write this condition, consider again the components

SA
and SB

of the bipartite qutrit system. For the

qutrit SA, select two spin measurement settings, ŜA1

and ŜA2
, which corresp

ond to the projective
measure-

ment of two spin-1 observables having each three pos-

sible outcomes {0, 1
, 2}—that, in our case, take values

in {+1, 0, �
1}. Similarly, the measurement settings

and corresp
onding observables for the other qutrit SB

are ŜB1
and ŜB2

. Then, denote by P (Ai = Bj+k) the

probability that the outcome SAi
for the measurement

of ŜA1
and SBj

for the measurement of ŜBj
, with i,

j either 1 or 2, differ by k modulo 3. One can then

construct the combination:

I3
= P (A1 =

B1) +
P (B1 =

A2 + 1) + P (A2 =
B2)

+ P (B2 =
A1)�

P (A1 =
B1 �

1)� P (A1 =
B2)

� P (A2 =
B2 �

1)� P (B2 =
A1 �

1) .
(8)

For deterministic local models, this quantity satisfies

the generalized
Bell inequality

I3 
2 ,

(9)

which instead can be violated
by computing the above

joint probabilities using the rules of quantum mechan-

ics. In quantum mechanics, I3 in Eq. (8) can be

expressed
as an expectation

value of a suitable Bell

operator B
as

I3 =
Tr
⇥
⇢B

⇤
.

(10)

The explicit form of B depends on the choice of the

four measured operators
Âi and B̂i. Hence, given the

two-qutrit state ⇢, it is possible to enhance the vi-

olation
of the Bell inequality (9) through a specific

choice of these operators.
The numerical value of the

observable I3 is bound to be less than or equal to

4. For the case of the maximally entangled state, the

problem of finding an optimal choice of measurements

has been solved [19]. By working in the single spin-1

basis formed by the eigenstates of the spin operator in

the direction
ẑ with eigenvalues {+1, 0,�

1}, the Bell

operator takes a particular simple form:

B =

0
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(11)

after rotating it into the helicity
basis from the so-

called computational basis employed in [21].

Within the choice of measurements leading to the

Bell operator,
there is still the freedom of modify-

ing the measured observables through local unitary

transformations, which effectively
corresp

onds to local

changes of basis in the measurement of the polariza-

tions. Correspondingly, the Bell operator undergoes

the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) ,
(12)

where U and V are independent 3⇥ 3 unitary matri-

ces. In the following we make use of this freedom to

maximize the value of I3.

R
esults.— Our results can now be given in a

very concise form. The polarizat
ion amplitudes

in Eq. (1) determine the polarizat
ion density matrix

2

to an integrated luminosity of 1 fb �1. The branching

fraction for this decay is (1.27
± 0.05)⇥ 10 �3

[13].

The selection of B 0
!

J/ 
K ⇤

(892) 0 events, as ex-

plained in [5], is based upon the combined decays of

the
J/ 

!
µ +

µ �
and the

K ⇤
(892) 0

!
K +

⇡ �
fi-

nal states. The muons, as they leave two oppositely-

charged tracks originating from a common vertex, are

selected by taking their transverse momentum
pT

>

500 MeV/c. The invariant mass of this pair of muons

is required to be in the range between 3030 and 3150

MeV
/c 2. The kaon and the pion leave two oppositely-

charged tracks that originate from the same vertex.

It is required that the
K ⇤

(892) 0 has transverse mo-

mentum
pT

>
2 GeV/c and invariant mass in the

range 826-966 MeV/c 2. The
B 0

are reconstructed

from the
J/ and

K ⇤
(892) 0 candidates, with the in-

variant mass of the
µ +

µ �
pair constrained to the

J/ 

mass. The resulting
B 0

candidates are required to

have an invariant mass of the system
J/ K +

⇡ �
in

the range 5150-5400 MeV/c 2.

The polarizations of the spin-1 massive particles

J/ and
K ⇤

(892) 0 can be reconstructed using the

momenta of the final charged mesons and leptons in

which they decay. The differential decay rate is de-

scribed in terms of three angles: two angles are defined

by the direction of the
µ +

momentum with respect to

the
z and

x axes in the
J/ rest frame, one by the

direction of the momentum of the
K +

with respect to

the opposite direction of the momentum of the J/ in

the
K ⇤

(892) 0
!

K +
⇡ �

rest frame, as shown in Fig.

(2) of [5]. The longitudinal polarization amplitudes

A
0 and the two transverse amplitudes A

? and
A
k are

found as coefficients of combinations of trigonometric

functions of these three angles [14].

The analysis in [5] gives the two complex polariza-

tion amplitudesA
k and

A
? as well as the non-resonant

amplitude
A
s . We need only the former two and take

the following values for the squared moduli and phases

of these polarization amplitudes:

|A
k | 2= 0.227

± 0.004 (stat)± 0.011 (sys)

|A
? | 2= 0.201

± 0.004 (stat)± 0.008 (sys)

�k [rad] =
�2.94

± 0.02 (stat)± 0.03 (sys)

�? [rad] = 2.94
± 0.02 (stat)± 0.02 (sys) ,

(1)

with
|A

0 | 2+
|A

? | 2+
|A

k | 2= 1, and we can take �0 = 0

because there are only two physical phases. The corre-

lations among the amplitude and phase uncertainties

are also provided in [5]. The polarization amplitudes

are complex mostly because of the final-state interac-

tions (see, for instance, [15]). The values in Eq. (1)

have errors that are 2 or 3 times smaller than those of

the previous analyses [6–10].

The decays of the
J/ and

K ⇤
take place well out-

side of the range of the strong interactions ongoing at

the time of their production (which is due to gluons

exchange and is about 3
⇥ 10 �5

fm [16]) as well as of

the final-state interactions. The distance between the

two mesons, at the time they both have decayed, can

be estimated to be
d
'

1.1
⇥ 10 3

fm. This distance

must be compared with the typical range of the vir-

tual meson exchange, that is at most equal to 1.5 fm.

We thus obtain that
d/�

⇡ '
750, indicating the im-

possibility of any strong interaction exchange between

the two decaying particles. About the same distance

is found for the decay into
J/ �, while values of

d

between 100 and 10 are found for the other decays in

Table I, namely
��, �K ⇤, and, with the least separa-

tion, ⇢K ⇤.

M ethods.— There are three helicity amplitudes

for the decay of a scalar, or pseudo-scalar, into

two massive spin-1 particles:

h
� =

hV
1 (�)V

2 (�
�)|H

|B
i

with
� = (+

, 0, �) ,
(2)

and
H is the interaction Hamiltonian giving rise to

the decay. For the spin quantization axis (ẑ) we use

the direction of the momenta of the decay products

in the
B 0

rest frame. Helicities are here defined with

respect to the
ẑ direction in the rest frame of one of

the two spin-1 particles and (+
, 0, �) is a shorthand

for (+1, 0, �1).
The polarizations in the decay are described by a

quantum state that is pure for any values of the he-

licity amplitudes [17, 18]. This state can be written

as

| 
i =

1p
|H

| 2

h
h
+ |V

1 (+)V
2 (�)i

+
h
0 |V

1 (0)V
2 (0)i+

h� |V
1 (�)V

2 (+)i
i
, (3)

with

|H
| 2=

|h
0 | 2+

|h
+ | 2+

|h� | 2
.

(4)

The relative weight of the transverse components

|V
1 (+)V

2 (�)i and
|V
1 (�)V

2 (+)i with respect to the

longitudinal one
|V
1 (0)V

2 (0)i is controlled by the con-

servation of angular momentum. In general, only the

helicity is conserved and the state in Eq. (3) belongs

to the
J
z = 0 component of the

S = 0, 1 or 2 states.

The polarization density matrix
⇢ =

| 
ih 

| can be

Once ρ is reconstructed we can probe entanglement. Choose your 
favorite monotone/measure.
For pure states we can use the entropy of entanglement, given by the 
von Neumann entropy of either of the composing subsystems A and B:

<latexit sha1_base64="U/JhBPG3Lxn7T2GXmkI8/5swNUg="></latexit>

E = �Tr[⇢V1 log ⇢V1 ] = �Tr[⇢V2 log ⇢V2 ]
<latexit sha1_base64="Ib4g9gtUUatAIgx4654q05qxv3c="></latexit>

⇢V1(2)
= TrV2(1)

⇢1⌦1

The entropy of entanglement is a measure satisfying                       and  
<latexit sha1_base64="lFFtsxquFm60vjPmYY6LeOtP7eg=">AAACTXicbVHLSsNAFJ3UR2t9tbqzm8EiuCqJ72VRBJcV7AOaUCbTSTs4ycSZiRBCwa9xq3/i2g9xJ+IkzcK0Xhg495xz4d4zbsioVKb5aZRWVtfWy5WN6ubW9s5urb7XkzwSmHQxZ1wMXCQJowHpKqoYGYSCIN9lpO8+3qR6/5kISXnwoOKQOD6aBNSjGClNjWoHps3Ik+0jNZVYJLezrGV8Ak9HtabZMrOCy8DKQRPk1RnVjYY95jjySaAwQ1IOLTNUToKEopiRWdWOJAkRfkQTMtQwQD6RTpIdMYNHmhlDjwv9AgUz9u9EgnwpY9/VzmzbRS0l/9XCaSwpllrLUUFN/UJ6Wi7QrsvZuMgNI+VdOQkNwkiRAM839iIGFYdptHBMBcGKxRogLKg+GuIpEggr/QFVHae1GN4y6J20rIvW+f1Zs32dB1sBDXAIjoEFLkEb3IEO6AIMXsAreAPvxofxZXwbP3Nrychn9kGhSuVfaaezug==</latexit>

0  E  log 3

⟺ entangled state<latexit sha1_base64="z5tfXRKOdMmaqIPzVxopoRN3FaE="></latexit>

E > 0
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3 Quantum observables

Before proceeding with the analysis, we detail the observables suitable to explore the entangle-
ment content of a system and to assess the possible violation of Bell inequalities.

3.1 Entanglement

The problem of quantifying the entanglement content of a quantum state is highly non-trivial 7.
In the simple case provided by bipartite pure states, the entropy of entanglement

E [⇢] = �Tr[⇢A log ⇢A] = �Tr[⇢B log ⇢B] (10)

provides a genuine entanglement measure. The reduced density matrices ⇢A = TrB(⇢) and
⇢B = TrA(⇢) are obtained through the partial trace of the bipartite system density matrix ⇢

over the degrees of freedom of the component subsystem B and A, respectively. The entropy
of entanglement then amounts to the von Neumann entropy of either subsystem and satisfies
0  E [⇢]  ln 3 for a two-qutrit state. Vanishing values signal a separable state: a state with
no quantum correlations entwining its subsystems and, therefore, not entangled. The maximum
entropy value is achieved instead by states that are maximally entangled.

For bipartite systems which are not pure, or for mixed states, we can only rely on entangle-
ment witnesses meant to provide conditions su�cient to establish the presence of entanglement.
To see an example, consider a bipartite pure state | i with components A and B. Its concurrence
is defined as 8
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and vanishes if and only if the state is separable. For a mixed state described on a basis of pure
states {| ii} by a density matrix ⇢ =

P
i
pi | iih i|, with pi > 0 and

P
i
pi = 1, the definition

is generalized in its convex roof extension

C[⇢] = inf
{| i}

X

i

pi C[| i], (12)

where the infimum is obtained by considering all the possible decompositions of ⇢ into di↵erent
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quantity can serve as an entanglement detector. Unfortunately, the optimization problem posed
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Alice and Bob know the density matrix formalism, so they computein terms of the probabilities P (Ai � Bj + k) that the outcomes (0, 1 or 2) of the operators
Â1,2 and B̂1,2, acting on the homonymous qutrits, di↵er by k modulo 3. For classical local
and deterministic theories it holds I3  2. The bound can be instead violated if the above
probabilities are obtained through the rules of quantum mechanics

I3 = Tr[⇢B], (15)

where the Bell operator B depends on the choice of operators used in the test. To maximize the
e↵ect we use 13
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and further optimize the observable by performing local unitary transformations B ! (U ⌦V )† ·
B · (U ⌦ V ) independently for each of the considered kinematic configurations.

4 Qutrits at colliders

We begin by investigating entanglement and the prospects for detecting Bell inequalities violation
at colliders in the simple case given by di-boson production in Higgs boson decays.

4.1 A first example: H ! ZZ
⇤

Consider a pair of Z bosons emitted in the resonant scattering pp ! H ! ZZ
⇤, where a star

denotes an o↵-shell particle. We treat the latter as an on-shell state with a mass reduced by
a factor f < 1: M

⇤
Z

= fMZ . The polarization density matrix obtained for this process with
Eq. (9) is that of a pure state: a coherent superposition of the m = 0 components belonging to
the J = 0, 1 and 2 multiplets formed by the polarizations of the two Z bosons. We can then
write

⇢ZZ⇤ = | ZZ⇤ih ZZ⇤ | , | ZZ⇤i = 1p
2 + 2

[|+1i ⌦ |�1i �  |0i ⌦ |0i+ |�1i ⌦ |+1i] (17)

where  = 1 + [m2
H
� (1 + f)2M2

Z
]/(2fM2

Z
) and mH is the Higgs boson mass. Fig. (1) shows

Figure 1 – Entanglement content of the | ZZ⇤i state produced in H ! ZZ
⇤
decays (left panel) and expectation

value of the Bell operator (15) (right panel) as functions of the virtual Z boson mass.
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, (5)

on the basis given by the tensor product of the polar-
izations (+, 0, �) of the produced spin-1 particles.

The helicity amplitudes are mapped into the polar-
ization amplitudes used in Eq. (1) by the correspon-
dence
h0

|H|
= A0 ,

h+

|H|
=

Ak +A?
p
2

,
h�
|H|

=
Ak �A?

p
2

.

(6)
Having written the density matrix, we can study

the entanglement among the polarizations of the two
massive vector particles by means of a simple observ-
able. For a bipartite pure state, like the one in Eq. (5),
the von Neumann entropy [4]

E = �Tr [⇢SA log ⇢SA ] = �Tr [⇢SB log ⇢SB ] , (7)

quantifies entanglement; in Eq. (7), ⇢SA and ⇢SB are
the reduced density matrices for the two sub-systems
SA and SB , which are the two spin-1 mesons in the de-
cay under consideration. The von Neumann entropy
of a two-qutrit system satisfies 0  E  ln 3. The first
equality is true if and only if the bipartite state is sep-
arable, the second if the bipartite state is maximally
entangled.

The optimal generalization of the Bell inequality in
the case of a bipartite system made of two qutrits
is the Collins, Gisin, Linden, Massar and Popescu
(CGLMP) inequality [19, 20]. In order to explicitly
write this condition, consider again the components
SA and SB of the bipartite qutrit system. For the
qutrit SA, select two spin measurement settings, ŜA1

and ŜA2 , which correspond to the projective measure-
ment of two spin-1 observables having each three pos-
sible outcomes {0, 1, 2}—that, in our case, take values
in {+1, 0, �1}. Similarly, the measurement settings
and corresponding observables for the other qutrit SB

are ŜB1 and ŜB2 . Then, denote by P (Ai = Bj+k) the
probability that the outcome SAi for the measurement
of ŜA1 and SBj for the measurement of ŜBj , with i,
j either 1 or 2, differ by k modulo 3. One can then
construct the combination:

I3 = P (A1 = B1) + P (B1 = A2 + 1) + P (A2 = B2)

+ P (B2 = A1)� P (A1 = B1 � 1)� P (A1 = B2)

� P (A2 = B2 � 1)� P (B2 = A1 � 1) . (8)

For deterministic local models, this quantity satisfies
the generalized Bell inequality

I3  2 , (9)

which instead can be violated by computing the above
joint probabilities using the rules of quantum mechan-
ics. In quantum mechanics, I3 in Eq. (8) can be
expressed as an expectation value of a suitable Bell
operator B as

I3 = Tr
⇥
⇢B

⇤
. (10)

The explicit form of B depends on the choice of the
four measured operators Âi and B̂i. Hence, given the
two-qutrit state ⇢, it is possible to enhance the vi-
olation of the Bell inequality (9) through a specific
choice of these operators. The numerical value of the
observable I3 is bound to be less than or equal to
4. For the case of the maximally entangled state, the
problem of finding an optimal choice of measurements
has been solved [19]. By working in the single spin-1
basis formed by the eigenstates of the spin operator in
the direction ẑ with eigenvalues {+1, 0,�1}, the Bell
operator takes a particular simple form:

B =
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,

(11)
after rotating it into the helicity basis from the so-
called computational basis employed in [21].

Within the choice of measurements leading to the
Bell operator, there is still the freedom of modify-
ing the measured observables through local unitary
transformations, which effectively corresponds to local
changes of basis in the measurement of the polariza-
tions. Correspondingly, the Bell operator undergoes
the change:

B ! (U ⌦ V )† · B · (U ⌦ V ) , (12)

where U and V are independent 3⇥ 3 unitary matri-
ces. In the following we make use of this freedom to
maximize the value of I3.

R
esults.— Our results can now be given in a
very concise form. The polarization amplitudes

in Eq. (1) determine the polarization density matrix

in the computation of I3:

After reconstructing ρ from the data, we then numerically maximize the 
observable by using
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B0 ! J/ K⇤(892)0

B0 ! �K⇤(892)0

B0 ! ⇢K⇤(892)0

Bs ! ��

Bs ! J/ �

Process

4

E I3

• B0 ! J/ K⇤(892)0 [5] 0.756± 0.009 2.548± 0.015

• B0 ! �K⇤(892)0 [22] 0.707± 0.133⇤ 2.417± 0.368⇤

• B0 ! ⇢K⇤(892)0 [23] 0.450± 0.077⇤ 2.208± 0.151⇤

• Bs ! �� [24] 0.734± 0.050⇤ 2.525± 0.084⇤

• Bs ! J/ � [25] 0.731± 0.032 2.462± 0.080

TABLE I. Entanglement and Bell operator I3 for some B-meson decays. An asterisk indicates that the correlations in the
uncertainties of the helicity amplitudes are not given in the corresponding reference and therefore only an upper bound on the
propagated uncertainty can be computed.

in Eq. (5) for the decay B
0
! J/ K

⇤(892)0. The
density matrix makes it possible to estimate the ob-
servables in which we are interested.

We determine the rotation matrices U and V in the
optimization procedure of Eq. (12) by means of the
central values in Eq. (1).

We propagate the uncertainties in the polarization
amplitudes in Eq. (1), taking into account also their
correlations. We find that the entropy of entangle-
ment among the polarizations of the final mesons for
the decay B

0
! J/ K

⇤(892)0 is given by

E = 0.756± 0.009 . (13)

Propagating the uncertainties through the expecta-

tion value of the Bell operator, while keeping the two
matrices U and V fixed, we determine that I3 for the
decay B

0
! J/ K

⇤(892)0 has expectation value

I3 = 2.548± 0.015 , (14)

and therefore the CGLMP inequality I3 < 2 is vio-
lated with a significance of 36�.

Other decays of B mesons provide polarization am-
plitudes that can be used in similar fashion to test the
Bell inequality. We list in Table I the values for the
entanglement E and the Bell operator I3 for some of
the decays we have considered. Specifically, I3 < 2
is violated with a significance of more than 5� in the
decays Bs ! �� and Bs ! J/ �.

O
utlook.— We have shown that the Bell in-
equality is violated by the data on the polariza-

tion amplitudes in the decay B
0
! J/ K

⇤(892)0, and
other similar decays. The violation has a very large
significance and establishes this property of quantum
mechanics at high energies in a collider setting and in
a system in which all Standard Model interactions are
involved. It is the first time that the violation of the
inequality is shown to take place in a system of two
qutrits and between two different particles.

We are aware that potential loopholes are present in
any test of the Bell inequality. These loopholes have
been closed in low-energy tests with photons [26, 27]
and in atomic physics [28].

To close the locality loophole—which exploits events
not separated by a space-like interval, as it is the case
of the J/ K

⇤ decays—one must consider decays in
which the produced particles are identical, as in the
Bs ! �� decay, and therefore their life-times are also

the same. The actual decays take place with an expo-
nential spread, with, in the �� case, more than 90%
of the events being separated by a space-like interval.
Moreover, the two bases used in measuring the po-
larizations of the two decaying mesons are arbitrarily
chosen, as shown by the optimization routine we use
in computing the operator I3, thus providing a set-up
in which the orientations of the polarimeters can be
freely and arbitrarily changed.

Due to the the high efficiency of the LHCb and Belle
detectors, also the detection loophole—which exploits
the fact that detectors cannot be 100% efficient—is
closed. Already for qubits the loophole is closed if the
efficiency is more than about 80% [29] and this re-
quirement is even lower for states belonging to larger
Hilbert spaces [30]. The efficiency of the LHCb de-
tector is more than 90% [31] for kaon, pion and muon
identification.
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correlations. We find that the entropy of entangle-
ment among the polarizations of the final mesons for
the decay B

0
! J/ K

⇤(892)0 is given by

E = 0.756± 0.009 . (13)

Propagating the uncertainties through the expecta-

tion value of the Bell operator, while keeping the two
matrices U and V fixed, we determine that I3 for the
decay B

0
! J/ K

⇤(892)0 has expectation value

I3 = 2.548± 0.015 , (14)

and therefore the CGLMP inequality I3 < 2 is vio-
lated with a significance of 36�.

Other decays of B mesons provide polarization am-
plitudes that can be used in similar fashion to test the
Bell inequality. We list in Table I the values for the
entanglement E and the Bell operator I3 for some of
the decays we have considered. Specifically, I3 < 2
is violated with a significance of more than 5� in the
decays Bs ! �� and Bs ! J/ �.

O
utlook.— We have shown that the Bell in-
equality is violated by the data on the polariza-

tion amplitudes in the decay B
0
! J/ K

⇤(892)0, and
other similar decays. The violation has a very large
significance and establishes this property of quantum
mechanics at high energies in a collider setting and in
a system in which all Standard Model interactions are
involved. It is the first time that the violation of the
inequality is shown to take place in a system of two
qutrits and between two different particles.

We are aware that potential loopholes are present in
any test of the Bell inequality. These loopholes have
been closed in low-energy tests with photons [26, 27]
and in atomic physics [28].

To close the locality loophole—which exploits events
not separated by a space-like interval, as it is the case
of the J/ K

⇤ decays—one must consider decays in
which the produced particles are identical, as in the
Bs ! �� decay, and therefore their life-times are also

the same. The actual decays take place with an expo-
nential spread, with, in the �� case, more than 90%
of the events being separated by a space-like interval.
Moreover, the two bases used in measuring the po-
larizations of the two decaying mesons are arbitrarily
chosen, as shown by the optimization routine we use
in computing the operator I3, thus providing a set-up
in which the orientations of the polarimeters can be
freely and arbitrarily changed.

Due to the the high efficiency of the LHCb and Belle
detectors, also the detection loophole—which exploits
the fact that detectors cannot be 100% efficient—is
closed. Already for qubits the loophole is closed if the
efficiency is more than about 80% [29] and this re-
quirement is even lower for states belonging to larger
Hilbert spaces [30]. The efficiency of the LHCb de-
tector is more than 90% [31] for kaon, pion and muon
identification.
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B0 ! �K⇤(892)0

B0 ! ⇢K⇤(892)0

Bs ! ��

Bs ! J/ �

Process

4

E I3

• B0 ! J/ K⇤(892)0 [5] 0.756± 0.009 2.548± 0.015

• B0 ! �K⇤(892)0 [22] 0.707± 0.133⇤ 2.417± 0.368⇤

• B0 ! ⇢K⇤(892)0 [23] 0.450± 0.077⇤ 2.208± 0.151⇤

• Bs ! �� [24] 0.734± 0.050⇤ 2.525± 0.084⇤

• Bs ! J/ � [25] 0.731± 0.032 2.462± 0.080

TABLE I. Entanglement and Bell operator I3 for some B-meson decays. An asterisk indicates that the correlations in the
uncertainties of the helicity amplitudes are not given in the corresponding reference and therefore only an upper bound on the
propagated uncertainty can be computed.

in Eq. (5) for the decay B
0
! J/ K

⇤(892)0. The
density matrix makes it possible to estimate the ob-
servables in which we are interested.

We determine the rotation matrices U and V in the
optimization procedure of Eq. (12) by means of the
central values in Eq. (1).

We propagate the uncertainties in the polarization
amplitudes in Eq. (1), taking into account also their
correlations. We find that the entropy of entangle-
ment among the polarizations of the final mesons for
the decay B

0
! J/ K

⇤(892)0 is given by

E = 0.756± 0.009 . (13)

Propagating the uncertainties through the expecta-

tion value of the Bell operator, while keeping the two
matrices U and V fixed, we determine that I3 for the
decay B

0
! J/ K

⇤(892)0 has expectation value

I3 = 2.548± 0.015 , (14)

and therefore the CGLMP inequality I3 < 2 is vio-
lated with a significance of 36�.

Other decays of B mesons provide polarization am-
plitudes that can be used in similar fashion to test the
Bell inequality. We list in Table I the values for the
entanglement E and the Bell operator I3 for some of
the decays we have considered. Specifically, I3 < 2
is violated with a significance of more than 5� in the
decays Bs ! �� and Bs ! J/ �.

O
utlook.— We have shown that the Bell in-
equality is violated by the data on the polariza-

tion amplitudes in the decay B
0
! J/ K

⇤(892)0, and
other similar decays. The violation has a very large
significance and establishes this property of quantum
mechanics at high energies in a collider setting and in
a system in which all Standard Model interactions are
involved. It is the first time that the violation of the
inequality is shown to take place in a system of two
qutrits and between two different particles.

We are aware that potential loopholes are present in
any test of the Bell inequality. These loopholes have
been closed in low-energy tests with photons [26, 27]
and in atomic physics [28].

To close the locality loophole—which exploits events
not separated by a space-like interval, as it is the case
of the J/ K

⇤ decays—one must consider decays in
which the produced particles are identical, as in the
Bs ! �� decay, and therefore their life-times are also

the same. The actual decays take place with an expo-
nential spread, with, in the �� case, more than 90%
of the events being separated by a space-like interval.
Moreover, the two bases used in measuring the po-
larizations of the two decaying mesons are arbitrarily
chosen, as shown by the optimization routine we use
in computing the operator I3, thus providing a set-up
in which the orientations of the polarimeters can be
freely and arbitrarily changed.

Due to the the high efficiency of the LHCb and Belle
detectors, also the detection loophole—which exploits
the fact that detectors cannot be 100% efficient—is
closed. Already for qubits the loophole is closed if the
efficiency is more than about 80% [29] and this re-
quirement is even lower for states belonging to larger
Hilbert spaces [30]. The efficiency of the LHCb de-
tector is more than 90% [31] for kaon, pion and muon
identification.
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TABLE I. Entanglement and Bell operator I3 for some B-meson decays. An asterisk indicates that the correlations in the
uncertainties of the helicity amplitudes are not given in the corresponding reference and therefore only an upper bound on the
propagated uncertainty can be computed.

in Eq. (5) for the decay B
0
! J/ K

⇤(892)0. The
density matrix makes it possible to estimate the ob-
servables in which we are interested.

We determine the rotation matrices U and V in the
optimization procedure of Eq. (12) by means of the
central values in Eq. (1).

We propagate the uncertainties in the polarization
amplitudes in Eq. (1), taking into account also their
correlations. We find that the entropy of entangle-
ment among the polarizations of the final mesons for
the decay B

0
! J/ K

⇤(892)0 is given by

E = 0.756± 0.009 . (13)

Propagating the uncertainties through the expecta-

tion value of the Bell operator, while keeping the two
matrices U and V fixed, we determine that I3 for the
decay B

0
! J/ K

⇤(892)0 has expectation value

I3 = 2.548± 0.015 , (14)

and therefore the CGLMP inequality I3 < 2 is vio-
lated with a significance of 36�.

Other decays of B mesons provide polarization am-
plitudes that can be used in similar fashion to test the
Bell inequality. We list in Table I the values for the
entanglement E and the Bell operator I3 for some of
the decays we have considered. Specifically, I3 < 2
is violated with a significance of more than 5� in the
decays Bs ! �� and Bs ! J/ �.

O
utlook.— We have shown that the Bell in-
equality is violated by the data on the polariza-

tion amplitudes in the decay B
0
! J/ K

⇤(892)0, and
other similar decays. The violation has a very large
significance and establishes this property of quantum
mechanics at high energies in a collider setting and in
a system in which all Standard Model interactions are
involved. It is the first time that the violation of the
inequality is shown to take place in a system of two
qutrits and between two different particles.

We are aware that potential loopholes are present in
any test of the Bell inequality. These loopholes have
been closed in low-energy tests with photons [26, 27]
and in atomic physics [28].

To close the locality loophole—which exploits events
not separated by a space-like interval, as it is the case
of the J/ K

⇤ decays—one must consider decays in
which the produced particles are identical, as in the
Bs ! �� decay, and therefore their life-times are also

the same. The actual decays take place with an expo-
nential spread, with, in the �� case, more than 90%
of the events being separated by a space-like interval.
Moreover, the two bases used in measuring the po-
larizations of the two decaying mesons are arbitrarily
chosen, as shown by the optimization routine we use
in computing the operator I3, thus providing a set-up
in which the orientations of the polarimeters can be
freely and arbitrarily changed.

Due to the the high efficiency of the LHCb and Belle
detectors, also the detection loophole—which exploits
the fact that detectors cannot be 100% efficient—is
closed. Already for qubits the loophole is closed if the
efficiency is more than about 80% [29] and this re-
quirement is even lower for states belonging to larger
Hilbert spaces [30]. The efficiency of the LHCb de-
tector is more than 90% [31] for kaon, pion and muon
identification.
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B0 ! J/ K⇤(892)0

B0 ! �K⇤(892)0

B0 ! ⇢K⇤(892)0

Bs ! ��

Bs ! J/ �

Process

4

E I3

• B0 ! J/ K⇤(892)0 [5] 0.756± 0.009 2.548± 0.015

• B0 ! �K⇤(892)0 [22] 0.707± 0.133⇤ 2.417± 0.368⇤

• B0 ! ⇢K⇤(892)0 [23] 0.450± 0.077⇤ 2.208± 0.151⇤

• Bs ! �� [24] 0.734± 0.050⇤ 2.525± 0.084⇤

• Bs ! J/ � [25] 0.731± 0.032 2.462± 0.080

TABLE I. Entanglement and Bell operator I3 for some B-meson decays. An asterisk indicates that the correlations in the
uncertainties of the helicity amplitudes are not given in the corresponding reference and therefore only an upper bound on the
propagated uncertainty can be computed.

in Eq. (5) for the decay B
0
! J/ K

⇤(892)0. The
density matrix makes it possible to estimate the ob-
servables in which we are interested.

We determine the rotation matrices U and V in the
optimization procedure of Eq. (12) by means of the
central values in Eq. (1).

We propagate the uncertainties in the polarization
amplitudes in Eq. (1), taking into account also their
correlations. We find that the entropy of entangle-
ment among the polarizations of the final mesons for
the decay B

0
! J/ K

⇤(892)0 is given by

E = 0.756± 0.009 . (13)

Propagating the uncertainties through the expecta-

tion value of the Bell operator, while keeping the two
matrices U and V fixed, we determine that I3 for the
decay B

0
! J/ K

⇤(892)0 has expectation value

I3 = 2.548± 0.015 , (14)

and therefore the CGLMP inequality I3 < 2 is vio-
lated with a significance of 36�.

Other decays of B mesons provide polarization am-
plitudes that can be used in similar fashion to test the
Bell inequality. We list in Table I the values for the
entanglement E and the Bell operator I3 for some of
the decays we have considered. Specifically, I3 < 2
is violated with a significance of more than 5� in the
decays Bs ! �� and Bs ! J/ �.

O
utlook.— We have shown that the Bell in-
equality is violated by the data on the polariza-

tion amplitudes in the decay B
0
! J/ K

⇤(892)0, and
other similar decays. The violation has a very large
significance and establishes this property of quantum
mechanics at high energies in a collider setting and in
a system in which all Standard Model interactions are
involved. It is the first time that the violation of the
inequality is shown to take place in a system of two
qutrits and between two different particles.

We are aware that potential loopholes are present in
any test of the Bell inequality. These loopholes have
been closed in low-energy tests with photons [26, 27]
and in atomic physics [28].

To close the locality loophole—which exploits events
not separated by a space-like interval, as it is the case
of the J/ K

⇤ decays—one must consider decays in
which the produced particles are identical, as in the
Bs ! �� decay, and therefore their life-times are also

the same. The actual decays take place with an expo-
nential spread, with, in the �� case, more than 90%
of the events being separated by a space-like interval.
Moreover, the two bases used in measuring the po-
larizations of the two decaying mesons are arbitrarily
chosen, as shown by the optimization routine we use
in computing the operator I3, thus providing a set-up
in which the orientations of the polarimeters can be
freely and arbitrarily changed.

Due to the the high efficiency of the LHCb and Belle
detectors, also the detection loophole—which exploits
the fact that detectors cannot be 100% efficient—is
closed. Already for qubits the loophole is closed if the
efficiency is more than about 80% [29] and this re-
quirement is even lower for states belonging to larger
Hilbert spaces [30]. The efficiency of the LHCb de-
tector is more than 90% [31] for kaon, pion and muon
identification.
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propagated uncertainty can be computed.
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⇤(892)0. The
density matrix makes it possible to estimate the ob-
servables in which we are interested.

We determine the rotation matrices U and V in the
optimization procedure of Eq. (12) by means of the
central values in Eq. (1).

We propagate the uncertainties in the polarization
amplitudes in Eq. (1), taking into account also their
correlations. We find that the entropy of entangle-
ment among the polarizations of the final mesons for
the decay B

0
! J/ K

⇤(892)0 is given by

E = 0.756± 0.009 . (13)

Propagating the uncertainties through the expecta-

tion value of the Bell operator, while keeping the two
matrices U and V fixed, we determine that I3 for the
decay B

0
! J/ K

⇤(892)0 has expectation value

I3 = 2.548± 0.015 , (14)

and therefore the CGLMP inequality I3 < 2 is vio-
lated with a significance of 36�.

Other decays of B mesons provide polarization am-
plitudes that can be used in similar fashion to test the
Bell inequality. We list in Table I the values for the
entanglement E and the Bell operator I3 for some of
the decays we have considered. Specifically, I3 < 2
is violated with a significance of more than 5� in the
decays Bs ! �� and Bs ! J/ �.

O
utlook.— We have shown that the Bell in-
equality is violated by the data on the polariza-

tion amplitudes in the decay B
0
! J/ K

⇤(892)0, and
other similar decays. The violation has a very large
significance and establishes this property of quantum
mechanics at high energies in a collider setting and in
a system in which all Standard Model interactions are
involved. It is the first time that the violation of the
inequality is shown to take place in a system of two
qutrits and between two different particles.

We are aware that potential loopholes are present in
any test of the Bell inequality. These loopholes have
been closed in low-energy tests with photons [26, 27]
and in atomic physics [28].

To close the locality loophole—which exploits events
not separated by a space-like interval, as it is the case
of the J/ K

⇤ decays—one must consider decays in
which the produced particles are identical, as in the
Bs ! �� decay, and therefore their life-times are also

the same. The actual decays take place with an expo-
nential spread, with, in the �� case, more than 90%
of the events being separated by a space-like interval.
Moreover, the two bases used in measuring the po-
larizations of the two decaying mesons are arbitrarily
chosen, as shown by the optimization routine we use
in computing the operator I3, thus providing a set-up
in which the orientations of the polarimeters can be
freely and arbitrarily changed.

Due to the the high efficiency of the LHCb and Belle
detectors, also the detection loophole—which exploits
the fact that detectors cannot be 100% efficient—is
closed. Already for qubits the loophole is closed if the
efficiency is more than about 80% [29] and this re-
quirement is even lower for states belonging to larger
Hilbert spaces [30]. The efficiency of the LHCb de-
tector is more than 90% [31] for kaon, pion and muon
identification.
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optimization procedure of Eq. (12) by means of the
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We propagate the uncertainties in the polarization
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correlations. We find that the entropy of entangle-
ment among the polarizations of the final mesons for
the decay B
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E = 0.756± 0.009 . (13)

Propagating the uncertainties through the expecta-
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matrices U and V fixed, we determine that I3 for the
decay B
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⇤(892)0 has expectation value
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and therefore the CGLMP inequality I3 < 2 is vio-
lated with a significance of 36�.

Other decays of B mesons provide polarization am-
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Bell inequality. We list in Table I the values for the
entanglement E and the Bell operator I3 for some of
the decays we have considered. Specifically, I3 < 2
is violated with a significance of more than 5� in the
decays Bs ! �� and Bs ! J/ �.

O
utlook.— We have shown that the Bell in-
equality is violated by the data on the polariza-

tion amplitudes in the decay B
0
! J/ K

⇤(892)0, and
other similar decays. The violation has a very large
significance and establishes this property of quantum
mechanics at high energies in a collider setting and in
a system in which all Standard Model interactions are
involved. It is the first time that the violation of the
inequality is shown to take place in a system of two
qutrits and between two different particles.

We are aware that potential loopholes are present in
any test of the Bell inequality. These loopholes have
been closed in low-energy tests with photons [26, 27]
and in atomic physics [28].

To close the locality loophole—which exploits events
not separated by a space-like interval, as it is the case
of the J/ K

⇤ decays—one must consider decays in
which the produced particles are identical, as in the
Bs ! �� decay, and therefore their life-times are also

the same. The actual decays take place with an expo-
nential spread, with, in the �� case, more than 90%
of the events being separated by a space-like interval.
Moreover, the two bases used in measuring the po-
larizations of the two decaying mesons are arbitrarily
chosen, as shown by the optimization routine we use
in computing the operator I3, thus providing a set-up
in which the orientations of the polarimeters can be
freely and arbitrarily changed.

Due to the the high efficiency of the LHCb and Belle
detectors, also the detection loophole—which exploits
the fact that detectors cannot be 100% efficient—is
closed. Already for qubits the loophole is closed if the
efficiency is more than about 80% [29] and this re-
quirement is even lower for states belonging to larger
Hilbert spaces [30]. The efficiency of the LHCb de-
tector is more than 90% [31] for kaon, pion and muon
identification.
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~1.1

~1.6
>5
>5

A * indicates that a conservative computation of the error has been employed (the error 
correlation matrix was not provided)

Remarks: 
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Ak =
��Ak

��ei�k
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A? = |A?|ei�?
<latexit sha1_base64="fbPvL7Z7ZvnnDol2VfKi/NprU5Y="></latexit>

A0 = |A0|ei�0
i) the polarization amplitudes are generically complex (final state interactions)

We took the longitudinal phase as the overall phase and killed it. 

ii) First proof that Bell inequalities are violated in strong and weak interactions
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Φ is the angle between the emitted lepton 
as computed in the t and tbar rest frames 

D < -1/3 witnesses the presence of 
entanglement 
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1. Introduction

Two hadronic form factors, commonly called G M (s) and G E (s), 
are needed for the description of the annihilation process e−e+ →
!!̄, Fig. 1a, and by varying the c.m. energy 

√
s, their numerical 

values can in principle be determined for all s values above !!̄
threshold. For the general case of annihilation via an intermediate 
photon, the joint !(→ pπ−)!̄(→ p̄π+) decay distributions were 
calculated and analyzed in Ref. [1], using methods developed in 
[2,3]. Recently, a first attempt to calculate the hyperon form factors 
G M(s) and G E (s) in the time-like region was reported in Ref. [4].

Previously, the interesting special case of annihilation through 
an intermediate J/ψ or ψ(2S), Fig. 1b, has been investigated in 
several theoretical [5,6] and experimental papers [7–9]. This pro-
cess has also been used for determination of the anti-Lambda 
decay-asymmetry parameter and for CP symmetry tests in the 
hyperon system. A precise knowledge of the Lambda decay-
asymmetry parameter is needed for studies of spin polarization 
in $− , %− , and !+

c decays.
Presently, a collected data sample of 1.31 × 109 J/ψ events 

[10] by the BESIII detector [11] permits high-precision studies of 
spin correlations.

In the experimental work referred to above, the joint-hyperon-
decay distributions considered are not the most general ones pos-
sible, but seem to be curtailed. Incomplete distribution functions 
do not permit a reliable determination of the form factors and we 

* Corresponding author.
E-mail addresses: goran.faldt@physics.uu.se (G. Fäldt), 

andrzej.kupsc@physics.uu.se (A. Kupsc).

Fig. 1. Graph describing the reaction e+e− → !̄!; a) general case, and b) mediated 
by the J/ψ resonance.

therefore suggest to fit the experimental data to the general distri-
bution described in [1], and further elaborated below.

Since the photon and the J/ψ are both vector particles, their 
corresponding annihilation processes will be similar. In fact, by a 
simple substitution, the cross-section distributions in Ref. [1], valid 
in the photon case, are transformed into distributions valid in the 
J/ψ case, but expressed in the corresponding psionic form factors 
Gψ

M and Gψ
E .

http://dx.doi.org/10.1016/j.physletb.2017.06.011
0370-2693/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
SCOAP3.
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where D(J)
i,j is the Wigner D-matrix for the spin J of the decaying state and k runs over all the possible

helicity of the same state. The overall factor in Eq. (2.1) is set by the normalization requirement that
Tr ⇢ = 1. The density matrix in Eq. (2.1) is written in the center of mass reference frame where the
momenta of final state particles are equal and opposite in direction and, therefore, the total helicity
of the two-particle system is �1��2. The dependence on the angle � drops out in the products of the
Wigner matrices because

D(J)⇤
k,�1��2

(0,⇥, 0)D(J)
k,�0

1��0
2
(0,⇥, 0) = D(J)⇤

k,�1��2
(�,⇥, 0)D(J)

k,�0
1��0

2
(�,⇥, 0) . (2.2)

Depending on the symmetries of the decay process, the number of independent helicity amplitudes
can be reduced: it is zero for decays of scalar states into fermions, 2 for the same decays into spin 1
states and for the decay of a vector state into two fermions, four for the case of the decay into two
spin 3/2 fermions.

In general, the number of independent amplitudes is reduced by imposing helicity conservation,
that is

|�1 � �2|  J (2.3)

for the decay A ! 1 + 2, with J the spin of the particle A.
A further reduction in the number of independent helicity amplitudes comes from parity conser-

vation, which implies
wJ
�1,�2

= ⌘A ⌘1 ⌘2(�1)J�s1�s2 wJ
��1,��2

, (2.4)

in which ⌘i are the intrinsic parities.
For final states including identical particles, helicity amplitudes transform as

wJ
�1,�2

= (�1)J�2swJ
�2,�1

, (2.5)

with s = s1 = s2 under the interchange of the particles. If instead the final state is made of a pair of
particle and anti-particle:

wJ
�1,�2

= ⌘C (�1)J wJ
�2,�1

, (2.6)

in which ⌘C is the C parity of the decaying particle A.

2.1 Tools to study entanglement and test the violation of Bell inequality

The determination of the density matrix is the final aim of quantum tomography. In the present case
we find the polarization density matrix from the analysis of the experimental data as presented by the
experimental collaborations.

The density matrix makes it possible to compute the entanglement and test Bell inequalities for
the final state of the decays. The choice of the most appropriate tools depends on whether the final
state is described by qubits (two-level systems) or qutrits (three-level systems) or more general qudits
(d-level systems).

2.1.1 Qubits

Consider a bipartite system composed by a spin-1/2 pair, one controlled by an observer, Alice, and
the other by a second observer, Bob. The corresponding quantum state can be described by a 4 ⇥ 4
density matrix of the form:

⇢ =
1

4

h
12 ⌦ 12 +

3X

i=1

B+
i (�i ⌦ 12) +

3X

i=1

B�
j (12 ⌦ �j) +

3X

i,j=1

Cij(�i ⌦ �j)
i
, (2.7)
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where �i are the Pauli matrices, 12 is the unit 2⇥ 2 matrix and the indices i and j running over 1, 2,
3, represent any three orthogonal spatial directions.

The real coe�cients B+
i and B�

j represent the polarization of the two spin-1/2 fermions, while the
real matrix Cij gives their spin correlations. The density matrix in (2.7) is normalized, Tr[⇢] = 1, while
extra constraints on B+

i , B
�
i and Cij need to be enforced to guarantee its positivity, as all eigenvalues

of a density matrix are necessarily non-negative.
The entanglement content of any bipartite system described with the density matrix ⇢, that is,

a measure of the amount of quantum correlations among the two composing sub-systems, can be
quantified with the concurrence C [⇢], taking values between zero (for separable, unentangled states)
and 1 (maximally entangled states). In the case of two spin-1/2 system, a two qubit system, the
concurrence can be analytically computed through the auxiliary matrix

R = ⇢ (�y ⌦ �y) ⇢
⇤ (�y ⌦ �y) , (2.8)

where ⇢⇤ denotes a matrix with complex conjugated entries. Although non-Hermitian, the matrix R
possesses non-negative eigenvalues ri, i = 1, 2, 3, 4, their square roots and denoting r1 the largest, the
concurrence of the state ⇢ can be expressed as [32]

C [⇢] = max
�
0, r1 � r2 � r3 � r4

�
. (2.9)

In quantum mechanics a statistical language is adopted for the description of the the behavior
of physical phenomena. Interestingly, this compelling tool is amenable to experimental verification
against alternative, fully deterministic, local description of natural phenomena through Bell locality
tests.

In the case of a two spin-1/2 system, Alice and Bob are assumed to measure two spin-observable
each, (Â1, Â2), and (B̂1, B̂2), typically spin projections along four di↵erent unit vectors, ~n1, ~n3 for
Alice, and ~n2, ~n4 for Bob, so that Â1 = ~n1 · ~� and similarly for the remaining three observables. The
Bell test consists in determining the following combination of joint expectation values

I2 = hÂ1B̂1i+ hÂ1B̂2i+ hÂ2B̂1i � hÂ2B̂2i , (2.10)

that in any, local, deterministic model cannot exceed a value of 2. In quantum mechanics, I2 can be
conveniently expressed as an expectation of a Bell operator B2, I2 = Tr[⇢B2], where

B2 = ~n1 · ~� ⌦ (~n2 � ~n4) · ~� + ~n3 · ~� ⌦ (~n2 + ~n4) · ~� . (2.11)

If in an actual experiment one finds I2 > 2, one has to deduce that some sort of nonlocal resource had
been shared between the two parties, and this is precisely what is predicted by quantum mechanics.

In practice, given an experimentally collected correlation data, one thus needs to maximize I2
in (2.10) by choosing suitable four independent spatial directions. Fortunately, this optimization
process can be performed in full generality for a generic spin correlation matrix [33]. Indeed, consider
the matrix C and its transpose CT and form the symmetric, positive, 3⇥3 matrix M = CCT ; its three
eigenvalues m1, m2, m3 can be ordered in increasing order: m1 � m2 � m3. Then the two-spin state
⇢ in (2.7) violates the Bell inequality I2  2 if and only if the sum of the two greatest eigenvalues of
M is strictly larger than 1, that is (Horodecki condition)

m12 ⌘ m1 +m2 > 1 . (2.12)
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of a density matrix are necessarily non-negative.
The entanglement content of any bipartite system described with the density matrix ⇢, that is,

a measure of the amount of quantum correlations among the two composing sub-systems, can be
quantified with the concurrence C [⇢], taking values between zero (for separable, unentangled states)
and 1 (maximally entangled states). In the case of two spin-1/2 system, a two qubit system, the
concurrence can be analytically computed through the auxiliary matrix
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where ⇢⇤ denotes a matrix with complex conjugated entries. Although non-Hermitian, the matrix R
possesses non-negative eigenvalues ri, i = 1, 2, 3, 4, their square roots and denoting r1 the largest, the
concurrence of the state ⇢ can be expressed as [32]

C [⇢] = max
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0, r1 � r2 � r3 � r4

�
. (2.9)

In quantum mechanics a statistical language is adopted for the description of the the behavior
of physical phenomena. Interestingly, this compelling tool is amenable to experimental verification
against alternative, fully deterministic, local description of natural phenomena through Bell locality
tests.

In the case of a two spin-1/2 system, Alice and Bob are assumed to measure two spin-observable
each, (Â1, Â2), and (B̂1, B̂2), typically spin projections along four di↵erent unit vectors, ~n1, ~n3 for
Alice, and ~n2, ~n4 for Bob, so that Â1 = ~n1 · ~� and similarly for the remaining three observables. The
Bell test consists in determining the following combination of joint expectation values

I2 = hÂ1B̂1i+ hÂ1B̂2i+ hÂ2B̂1i � hÂ2B̂2i , (2.10)

that in any, local, deterministic model cannot exceed a value of 2. In quantum mechanics, I2 can be
conveniently expressed as an expectation of a Bell operator B2, I2 = Tr[⇢B2], where

B2 = ~n1 · ~� ⌦ (~n2 � ~n4) · ~� + ~n3 · ~� ⌦ (~n2 + ~n4) · ~� . (2.11)

If in an actual experiment one finds I2 > 2, one has to deduce that some sort of nonlocal resource had
been shared between the two parties, and this is precisely what is predicted by quantum mechanics.

In practice, given an experimentally collected correlation data, one thus needs to maximize I2
in (2.10) by choosing suitable four independent spatial directions. Fortunately, this optimization
process can be performed in full generality for a generic spin correlation matrix [33]. Indeed, consider
the matrix C and its transpose CT and form the symmetric, positive, 3⇥3 matrix M = CCT ; its three
eigenvalues m1, m2, m3 can be ordered in increasing order: m1 � m2 � m3. Then the two-spin state
⇢ in (2.7) violates the Bell inequality I2  2 if and only if the sum of the two greatest eigenvalues of
M is strictly larger than 1, that is (Horodecki condition)

m12 ⌘ m1 +m2 > 1 . (2.12)
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number of structure functions that are bilinear in the, possibly complex, psionic form factors Gψ
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Gψ

E of the Lambda hyperon. The relative size and relative phase of these form factors can be uniquely 
determined from the unpolarized joint-decay distributions of the Lambda and anti-Lambda hyperons. 
Also the decay-asymmetry parameters of Lambda and anti-Lambda hyperons can be determined.
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1. Introduction

Two hadronic form factors, commonly called G M (s) and G E (s), 
are needed for the description of the annihilation process e−e+ →
!!̄, Fig. 1a, and by varying the c.m. energy 

√
s, their numerical 

values can in principle be determined for all s values above !!̄
threshold. For the general case of annihilation via an intermediate 
photon, the joint !(→ pπ−)!̄(→ p̄π+) decay distributions were 
calculated and analyzed in Ref. [1], using methods developed in 
[2,3]. Recently, a first attempt to calculate the hyperon form factors 
G M(s) and G E (s) in the time-like region was reported in Ref. [4].

Previously, the interesting special case of annihilation through 
an intermediate J/ψ or ψ(2S), Fig. 1b, has been investigated in 
several theoretical [5,6] and experimental papers [7–9]. This pro-
cess has also been used for determination of the anti-Lambda 
decay-asymmetry parameter and for CP symmetry tests in the 
hyperon system. A precise knowledge of the Lambda decay-
asymmetry parameter is needed for studies of spin polarization 
in $− , %− , and !+

c decays.
Presently, a collected data sample of 1.31 × 109 J/ψ events 

[10] by the BESIII detector [11] permits high-precision studies of 
spin correlations.

In the experimental work referred to above, the joint-hyperon-
decay distributions considered are not the most general ones pos-
sible, but seem to be curtailed. Incomplete distribution functions 
do not permit a reliable determination of the form factors and we 
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Fig. 1. Graph describing the reaction e+e− → !̄!; a) general case, and b) mediated 
by the J/ψ resonance.

therefore suggest to fit the experimental data to the general distri-
bution described in [1], and further elaborated below.

Since the photon and the J/ψ are both vector particles, their 
corresponding annihilation processes will be similar. In fact, by a 
simple substitution, the cross-section distributions in Ref. [1], valid 
in the photon case, are transformed into distributions valid in the 
J/ψ case, but expressed in the corresponding psionic form factors 
Gψ

M and Gψ
E .
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0370-2693/© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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where D(J)
i,j is the Wigner D-matrix for the spin J of the decaying state and k runs over all the possible

helicity of the same state. The overall factor in Eq. (2.1) is set by the normalization requirement that
Tr ⇢ = 1. The density matrix in Eq. (2.1) is written in the center of mass reference frame where the
momenta of final state particles are equal and opposite in direction and, therefore, the total helicity
of the two-particle system is �1��2. The dependence on the angle � drops out in the products of the
Wigner matrices because

D(J)⇤
k,�1��2

(0,⇥, 0)D(J)
k,�0

1��0
2
(0,⇥, 0) = D(J)⇤

k,�1��2
(�,⇥, 0)D(J)

k,�0
1��0

2
(�,⇥, 0) . (2.2)

Depending on the symmetries of the decay process, the number of independent helicity amplitudes
can be reduced: it is zero for decays of scalar states into fermions, 2 for the same decays into spin 1
states and for the decay of a vector state into two fermions, four for the case of the decay into two
spin 3/2 fermions.

In general, the number of independent amplitudes is reduced by imposing helicity conservation,
that is

|�1 � �2|  J (2.3)

for the decay A ! 1 + 2, with J the spin of the particle A.
A further reduction in the number of independent helicity amplitudes comes from parity conser-

vation, which implies
wJ
�1,�2

= ⌘A ⌘1 ⌘2(�1)J�s1�s2 wJ
��1,��2

, (2.4)

in which ⌘i are the intrinsic parities.
For final states including identical particles, helicity amplitudes transform as

wJ
�1,�2

= (�1)J�2swJ
�2,�1

, (2.5)

with s = s1 = s2 under the interchange of the particles. If instead the final state is made of a pair of
particle and anti-particle:

wJ
�1,�2

= ⌘C (�1)J wJ
�2,�1

, (2.6)

in which ⌘C is the C parity of the decaying particle A.

2.1 Tools to study entanglement and test the violation of Bell inequality

The determination of the density matrix is the final aim of quantum tomography. In the present case
we find the polarization density matrix from the analysis of the experimental data as presented by the
experimental collaborations.

The density matrix makes it possible to compute the entanglement and test Bell inequalities for
the final state of the decays. The choice of the most appropriate tools depends on whether the final
state is described by qubits (two-level systems) or qutrits (three-level systems) or more general qudits
(d-level systems).

2.1.1 Qubits

Consider a bipartite system composed by a spin-1/2 pair, one controlled by an observer, Alice, and
the other by a second observer, Bob. The corresponding quantum state can be described by a 4 ⇥ 4
density matrix of the form:

⇢ =
1

4

h
12 ⌦ 12 +

3X

i=1

B+
i (�i ⌦ 12) +

3X

i=1

B�
j (12 ⌦ �j) +

3X

i,j=1

Cij(�i ⌦ �j)
i
, (2.7)
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where �i are the Pauli matrices, 12 is the unit 2⇥ 2 matrix and the indices i and j running over 1, 2,
3, represent any three orthogonal spatial directions.

The real coe�cients B+
i and B�

j represent the polarization of the two spin-1/2 fermions, while the
real matrix Cij gives their spin correlations. The density matrix in (2.7) is normalized, Tr[⇢] = 1, while
extra constraints on B+

i , B
�
i and Cij need to be enforced to guarantee its positivity, as all eigenvalues

of a density matrix are necessarily non-negative.
The entanglement content of any bipartite system described with the density matrix ⇢, that is,

a measure of the amount of quantum correlations among the two composing sub-systems, can be
quantified with the concurrence C [⇢], taking values between zero (for separable, unentangled states)
and 1 (maximally entangled states). In the case of two spin-1/2 system, a two qubit system, the
concurrence can be analytically computed through the auxiliary matrix

R = ⇢ (�y ⌦ �y) ⇢
⇤ (�y ⌦ �y) , (2.8)

where ⇢⇤ denotes a matrix with complex conjugated entries. Although non-Hermitian, the matrix R
possesses non-negative eigenvalues ri, i = 1, 2, 3, 4, their square roots and denoting r1 the largest, the
concurrence of the state ⇢ can be expressed as [32]

C [⇢] = max
�
0, r1 � r2 � r3 � r4

�
. (2.9)

In quantum mechanics a statistical language is adopted for the description of the the behavior
of physical phenomena. Interestingly, this compelling tool is amenable to experimental verification
against alternative, fully deterministic, local description of natural phenomena through Bell locality
tests.

In the case of a two spin-1/2 system, Alice and Bob are assumed to measure two spin-observable
each, (Â1, Â2), and (B̂1, B̂2), typically spin projections along four di↵erent unit vectors, ~n1, ~n3 for
Alice, and ~n2, ~n4 for Bob, so that Â1 = ~n1 · ~� and similarly for the remaining three observables. The
Bell test consists in determining the following combination of joint expectation values

I2 = hÂ1B̂1i+ hÂ1B̂2i+ hÂ2B̂1i � hÂ2B̂2i , (2.10)

that in any, local, deterministic model cannot exceed a value of 2. In quantum mechanics, I2 can be
conveniently expressed as an expectation of a Bell operator B2, I2 = Tr[⇢B2], where

B2 = ~n1 · ~� ⌦ (~n2 � ~n4) · ~� + ~n3 · ~� ⌦ (~n2 + ~n4) · ~� . (2.11)

If in an actual experiment one finds I2 > 2, one has to deduce that some sort of nonlocal resource had
been shared between the two parties, and this is precisely what is predicted by quantum mechanics.

In practice, given an experimentally collected correlation data, one thus needs to maximize I2
in (2.10) by choosing suitable four independent spatial directions. Fortunately, this optimization
process can be performed in full generality for a generic spin correlation matrix [33]. Indeed, consider
the matrix C and its transpose CT and form the symmetric, positive, 3⇥3 matrix M = CCT ; its three
eigenvalues m1, m2, m3 can be ordered in increasing order: m1 � m2 � m3. Then the two-spin state
⇢ in (2.7) violates the Bell inequality I2  2 if and only if the sum of the two greatest eigenvalues of
M is strictly larger than 1, that is (Horodecki condition)

m12 ⌘ m1 +m2 > 1 . (2.12)
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m12 ⌘ m1 +m2 > 1
Horodecki 
condition

Concurrence

Qubit final states
2.1.2 Qutrits

The density operator representing the state of a bipartite system made of two qutrits is a 9⇥9 matrix
that can be written as

⇢ =
1

9
[13 ⌦ 13] +

8X

a=1

fa [T
a ⌦ 13] +

8X

a=1

ga [13 ⌦ T a] +
8X

a,b=1

hab
h
T a ⌦ T b

i
, (2.13)

where T a are the standard Gell-Mann matrices, while 13 is the unit 3⇥ 3 matrix.
Although an analytic expression for the concurrence of a generic two-qutrit state is lacking, a lower

bound on its value can be given in terms of the single spin polarizations coe�cients, fa and ga, and
the correlation matrix hab appearing in the decomposition (2.13):

C2 = 2max
h
� 2

9
� 12

X

a

f2
a + 6

X

a

g2a + 4
X

ab

h2ab ;

� 2

9
� 12

X

a

g2a + 6
X

a

f2
a + 4

X

ab

h2ab, 0
i
. (2.14)

As in the case of qubits, a Bell test for a system of two qutrits results in the determination of a
combination I3 of joint expectations values involving four spin observables, (Â1, Â2) for Alice, and
(B̂1, B̂2) for Bob. In quantum mechanics, it can be again expressed as an expectation value on the
state (2.14) of a suitable Bell operator B3:

I3 = Tr
⇥
⇢B3

⇤
. (2.15)

The explicit form of B3 depends on the choice of the four measured operators Â1, Â2, B̂1, B̂2. For the
case of the maximally correlated qutrit state, the problem of finding an optimal choice of measurements
has been solved [34], and the Bell operator takes a particular simple form [35]:

B3 =

0

BBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0

0 0 0 � 2p
3

0 0 0 0 0

0 0 0 0 � 2p
3

0 2 0 0

0 � 2p
3

0 0 0 0 0 0 0

0 0 � 2p
3

0 0 0 � 2p
3

0 0

0 0 0 0 0 0 0 � 2p
3

0

0 0 2 0 � 2p
3

0 0 0 0

0 0 0 0 0 � 2p
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Within the choice of measurements leading to the Bell operator (2.16), there is still the freedom
of modifying the measured observables through local unitary transformations, which e↵ectively cor-
responds to local changes of basis, separately at Alice’s and Bob’s sites. Correspondingly, the Bell
operator undergoes the change:

B3 ! (U ⌦ V )† · B3 · (U ⌦ V ) , (2.17)

where U and V are independent 3⇥ 3 unitary matrices. One can use this additional freedom in order
to maximize the value of I3 for any given qutrit state ⇢.
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where T a are the standard Gell-Mann matrices, while 13 is the unit 3⇥ 3 matrix.
Although an analytic expression for the concurrence of a generic two-qutrit state is lacking, a lower

bound on its value can be given in terms of the single spin polarizations coe�cients, fa and ga, and
the correlation matrix hab appearing in the decomposition (2.13):
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combination I3 of joint expectations values involving four spin observables, (Â1, Â2) for Alice, and
(B̂1, B̂2) for Bob. In quantum mechanics, it can be again expressed as an expectation value on the
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The explicit form of B3 depends on the choice of the four measured operators Â1, Â2, B̂1, B̂2. For the
case of the maximally correlated qutrit state, the problem of finding an optimal choice of measurements
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the ⌘c falls into the singlet representation of the product 1
2 ⌦ 1

2 = 0 � 1 while the �0
c into the m = 0

component of the triplet. Charge parity conservation implies the same condition as parity and does
not add new relations among the helicity amplitudes.

The states in Eq. (3.2) enter into the helicity density matrix

⇢⇤⇤ = | 0ih 0| =
1

2

0

BB@

0 0 0 0
0 1 ±1 0
0 ±1 1 0
0 0 0 0

1

CCA , (3.3)

in which the only, still undefined, overall size of the amplitudes has canceled out in the normalization,
which is Tr ⇢ = 1.

The system is completely constrained, thus becoming identified with the idealized two-qubit system
in textbooks. This property was already observed for the decay of the Higgs boson H ! ⌧�⌧+ in [39].
Neither the ⇤ baryon nor the anti-baryon are polarized.

The concurrence can be computed and it is maximal:

C = 1 . (3.4)

From the density matrix in Eq. (3.3), using the Pauli matrices, we can write the correlation matrix

Cij = Tr ⇢⇤⇤ �i ⌦ �j =

0

@
1 0 0
0 1 0
0 0 �1

1

A , (3.5)

which is the same for both decay processes. Accordingly, the Horodecki condition is found to be

m12 = 2 , (3.6)

namely, maximal violation of the Bell inequality.
For these decays, we do not even need the experimental values of the helicity amplitudes to claim

maximum entanglement and Bell inequality violation. Uncertainties from the data analysis are however
necessary to assess the significance of the result. We understand that they are forthcoming.

This process provides a direct test for the conservation of quantum correlations. If the experiments
find a di↵erence between the helicity amplitudes w 1

2 � 1
2
and w� 1

2
1
2
, or that they vanish, it will mean

that some of the original coherence has been lost during the flight of the ⇤ baryons—some of which
travel inside the beam pipe wall and the first layers of the detector before decaying. This is an
important test, as explained in the Introduction.

3.2 �0
c ! �+ �

The scalar state of the charmonium can decay into a pair of � mesons

�0
c ! �+ � , (3.7)

with branching fraction of (8.48± 0.26± 0.27)⇥ 10�4 [23].
The �0 are produced in

e+e� !  (3686) ! ��0 . (3.8)
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The final state of the two � mesons can be written as

| i = w�1�1 |� 1, �1i+ w0 0 |0 0i+ w1 1 |1, 1i , (3.9)

with
|w�1�1 |2 + |w0 0 |2 + |w1 1 |2 = 1 , (3.10)

and w1 1 = �w�1�1 because of the conservation of parity. The same condition is found by the identity
of the final particles. There is therefore only one independent amplitude and the density matrix
depends on one complex number.

The final states are spin 1 and their polarizations are described by quatrits. The resulting 9 ⇥ 9
helicity density matrix ⇢�� = | ih | is written as

⇢�� /

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
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⇤
1 1
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0 0 w1 1w
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0 w1 1w
⇤
0 0

0 |w1 1 |2 0 0
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1
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, (3.11)

The analysis of the data in [23] only gives the absolute value of the ratio of the moduli of the helicity
amplitudes: ����

w1,1

w0 0

���� = 0.299± 0.003 , (3.12)

and no value for the phase. Accordingly, we can only carry out the analysis in the case of zero phase.
This phase comes from the final state strong interactions if we assume that the form factors have no
significant absorptive part. The helicity amplitudes are determined from the value in Eq. (3.12) to be

|w0 0 | = 0.9210± 0.0014 and |w1,1 | = |w�1�1 | = 0.2754± 0.0023 , (3.13)

and these values can be inserted in the density matrix in Eq. (3.11).
The entanglement can be found from the entropy of entanglement because the final state in Eq. (3.9)

is pure. We find
E [⇢] = 0.531± 0.0021 (3.14)

This number is di↵erent from zero with a significance of 255�.
We find that, after optimization, the expectation value of the Bell operator is

Tr ⇢�� B = 2.2961± 0.0165 (3.15)

This decay provides a clean test of the violation of Bell inequality in a system of two qutrits. Its
significance is 17.9�.

4 Charmonium spin 1 states

T he decay of spin 1 particles brings in a dependence of the helicity density matrix on the
scattering angle. The amount of entanglement and possible violations of the Bell inequality

therefore depend on the value of this angle.
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[35] A. Aćın, T. Durt, N. Gisin, and J. I. Latorre,
Quantum nonlocality in two three-level systems,
Phys. Rev. A 65 (May, 2002) 052325.

25
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The analysis of the data in [23] selects 2701 ± 84 out of the �K+K�K+K� final states events. The
maximum likelihood fit yields the absolute value of the ratio of the moduli of the helicity amplitudes:

����
w1,1

w0 0

���� = 0.299± 0.003|stat ± 0.019|syst . (3.14)

No value for the relative phase is provided. Accordingly, we can only carry out the analysis in the
case of zero phase. As pointed out in the Introduction, this phase comes from the final state strong
interactions if we assume that the form factors have no significant absorptive part.

The entanglement can be determined from the entropy of entanglement given in Eq. (2.18) because
the final state in Eq. (3.11) is pure. We find, after propagating the errors,

E [⇢] = 0.531± 0.040 . (3.15)

This number di↵ers from zero with a significance of 13.3�.
After optimization, the expectation value of the Bell operator is

Tr ⇢�� B = 2.296± 0.034 . (3.16)

This decay provides a clean test of the violation of Bell inequality in a system of two qutrits. Its
significance is 8.8�.

4 Charmonium spin 1 states

T he decay of spin 1 particles brings in a dependence of the polarization density matrix on
the scattering angle. The amount of entanglement and possible violations of the Bell inequality

therefore depend on the value of this angle.
Data on many di↵erent processes are available and we review all of them. Such a comprehensive

presentation is necessarily repetitive. We apologize. The final results are summarized in Table 4.1.

4.1 J/ ! ⇤+ ⇤̄ and  (3686) ! ⇤+ ⇤̄

The helicity states of the final system in

J/ ! ⇤+ ⇤̄ (4.1)
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the ⌘c falls into the singlet representation of the product 1
2 ⌦ 1

2 = 0 � 1 while the �0
c into the m = 0

component of the triplet. Charge parity conservation implies the same condition as parity and does
not add new relations among the helicity amplitudes.

The states in Eq. (3.2) enter into the helicity density matrix

⇢⇤⇤ = | 0ih 0| =
1

2

0

BB@

0 0 0 0
0 1 ±1 0
0 ±1 1 0
0 0 0 0

1

CCA , (3.3)

in which the only, still undefined, overall size of the amplitudes has canceled out in the normalization,
which is Tr ⇢ = 1.

The system is completely constrained, thus becoming identified with the idealized two-qubit system
in textbooks. This property was already observed for the decay of the Higgs boson H ! ⌧�⌧+ in [39].
Neither the ⇤ baryon nor the anti-baryon are polarized.

The concurrence can be computed and it is maximal:

C = 1 . (3.4)

From the density matrix in Eq. (3.3), using the Pauli matrices, we can write the correlation matrix

Cij = Tr ⇢⇤⇤ �i ⌦ �j =

0

@
1 0 0
0 1 0
0 0 �1

1

A , (3.5)

which is the same for both decay processes. Accordingly, the Horodecki condition is found to be

m12 = 2 , (3.6)

namely, maximal violation of the Bell inequality.
For these decays, we do not even need the experimental values of the helicity amplitudes to claim

maximum entanglement and Bell inequality violation. Uncertainties from the data analysis are however
necessary to assess the significance of the result. We understand that they are forthcoming.

This process provides a direct test for the conservation of quantum correlations. If the experiments
find a di↵erence between the helicity amplitudes w 1

2 � 1
2
and w� 1

2
1
2
, or that they vanish, it will mean

that some of the original coherence has been lost during the flight of the ⇤ baryons—some of which
travel inside the beam pipe wall and the first layers of the detector before decaying. This is an
important test, as explained in the Introduction.

3.2 �0
c ! �+ �

The scalar state of the charmonium can decay into a pair of � mesons

�0
c ! �+ � , (3.7)

with branching fraction of (8.48± 0.26± 0.27)⇥ 10�4 [23].
The �0 are produced in

e+e� !  (3686) ! ��0 . (3.8)
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The final state of the two � mesons can be written as

| i = w�1�1 |� 1, �1i+ w0 0 |0 0i+ w1 1 |1, 1i , (3.9)

with
|w�1�1 |2 + |w0 0 |2 + |w1 1 |2 = 1 , (3.10)

and w1 1 = �w�1�1 because of the conservation of parity. The same condition is found by the identity
of the final particles. There is therefore only one independent amplitude and the density matrix
depends on one complex number.

The final states are spin 1 and their polarizations are described by quatrits. The resulting 9 ⇥ 9
helicity density matrix ⇢�� = | ih | is written as

⇢�� /

0

BBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 |w�1�1 |2 0 w�1�1w

⇤
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0 w�1�1w
⇤
1 1
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0 0 0 0 0 0 0 0 0
0 0 w0 0w

⇤
�1,�1

0 |w0 0 |2 0 w0 0w
⇤
1 1

0 0
0 0 0 0 0 0 0 0 0
0 0 w1 1w

⇤
�1�1

0 w1 1w
⇤
0 0

0 |w1 1 |2 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCA

, (3.11)

The analysis of the data in [23] only gives the absolute value of the ratio of the moduli of the helicity
amplitudes: ����

w1,1

w0 0

���� = 0.299± 0.003 , (3.12)

and no value for the phase. Accordingly, we can only carry out the analysis in the case of zero phase.
This phase comes from the final state strong interactions if we assume that the form factors have no
significant absorptive part. The helicity amplitudes are determined from the value in Eq. (3.12) to be

|w0 0 | = 0.9210± 0.0014 and |w1,1 | = |w�1�1 | = 0.2754± 0.0023 , (3.13)

and these values can be inserted in the density matrix in Eq. (3.11).
The entanglement can be found from the entropy of entanglement because the final state in Eq. (3.9)

is pure. We find
E [⇢] = 0.531± 0.0021 (3.14)

This number is di↵erent from zero with a significance of 255�.
We find that, after optimization, the expectation value of the Bell operator is

Tr ⇢�� B = 2.2961± 0.0165 (3.15)

This decay provides a clean test of the violation of Bell inequality in a system of two qutrits. Its
significance is 17.9�.

4 Charmonium spin 1 states

T he decay of spin 1 particles brings in a dependence of the helicity density matrix on the
scattering angle. The amount of entanglement and possible violations of the Bell inequality

therefore depend on the value of this angle.
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The analysis of the data in [23] only gives the absolute value of the ratio of the moduli of the helicity
amplitudes: ����

w1,1

w0 0

���� = 0.299± 0.003 , (3.12)

and no value for the phase. Accordingly, we can only carry out the analysis in the case of zero phase.
This phase comes from the final state strong interactions if we assume that the form factors have no
significant absorptive part. The helicity amplitudes are determined from the value in Eq. (3.12) to be

|w0 0 | = 0.9210± 0.0014 and |w1,1 | = |w�1�1 | = 0.2754± 0.0023 , (3.13)

and these values can be inserted in the density matrix in Eq. (3.11).
The entanglement can be found from the entropy of entanglement because the final state in Eq. (3.9)

is pure. We find
E [⇢] = 0.531± 0.0021 (3.14)

This number is di↵erent from zero with a significance of 255�.
We find that, after optimization, the expectation value of the Bell operator is

Tr ⇢�� B = 2.2961± 0.0165 (3.15)

This decay provides a clean test of the violation of Bell inequality in a system of two qutrits. Its
significance is 17.9�.

4 Charmonium spin 1 states

T he decay of spin 1 particles brings in a dependence of the helicity density matrix on the
scattering angle. The amount of entanglement and possible violations of the Bell inequality

therefore depend on the value of this angle.
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The analysis of the data in [23] only gives the absolute value of the ratio of the moduli of the helicity
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and no value for the phase. Accordingly, we can only carry out the analysis in the case of zero phase.
This phase comes from the final state strong interactions if we assume that the form factors have no
significant absorptive part. The helicity amplitudes are determined from the value in Eq. (3.12) to be

|w0 0 | = 0.9210± 0.0014 and |w1,1 | = |w�1�1 | = 0.2754± 0.0023 , (3.13)

and these values can be inserted in the density matrix in Eq. (3.11).
The entanglement can be found from the entropy of entanglement because the final state in Eq. (3.9)

is pure. We find
E [⇢] = 0.531± 0.0021 (3.14)

This number is di↵erent from zero with a significance of 255�.
We find that, after optimization, the expectation value of the Bell operator is

Tr ⇢�� B = 2.2961± 0.0165 (3.15)

This decay provides a clean test of the violation of Bell inequality in a system of two qutrits. Its
significance is 17.9�.

4 Charmonium spin 1 states
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scattering angle. The amount of entanglement and possible violations of the Bell inequality

therefore depend on the value of this angle.
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The final states are spin 1 and their polarizations are described by qutrits. The resulting 9 ⇥ 9
density matrix ⇢�� = | ih | is written as
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The analysis of the data in [23] selects 2701 ± 84 out of the �K+K�K+K� final states events. The
maximum likelihood fit yields the absolute value of the ratio of the moduli of the helicity amplitudes:

����
w1,1

w0 0

���� = 0.299± 0.003|stat ± 0.019|syst . (3.14)

No value for the relative phase is provided. Accordingly, we can only carry out the analysis in the
case of zero phase. As pointed out in the Introduction, this phase comes from the final state strong
interactions if we assume that the form factors have no significant absorptive part.

The entanglement can be determined from the entropy of entanglement given in Eq. (2.18) because
the final state in Eq. (3.11) is pure. We find, after propagating the errors,

E [⇢] = 0.531± 0.040 . (3.15)

This number di↵ers from zero with a significance of 13.3�.
After optimization, the expectation value of the Bell operator is

Tr ⇢�� B = 2.296± 0.034 . (3.16)

This decay provides a clean test of the violation of Bell inequality in a system of two qutrits. Its
significance is 8.8�.

4 Charmonium spin 1 states

T he decay of spin 1 particles brings in a dependence of the polarization density matrix on
the scattering angle. The amount of entanglement and possible violations of the Bell inequality

therefore depend on the value of this angle.
Data on many di↵erent processes are available and we review all of them. Such a comprehensive

presentation is necessarily repetitive. We apologize. The final results are summarized in Table 4.1.
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J/ ! ⇤+ ⇤̄ (4.1)

11

16
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component of the triplet. Charge parity conservation implies the same condition as parity and does
not add new relations among the helicity amplitudes.
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in which the only, still undefined, overall size of the amplitudes has canceled out in the normalization,
which is Tr ⇢ = 1.

The system is completely constrained, thus becoming identified with the idealized two-qubit system
in textbooks. This property was already observed for the decay of the Higgs boson H ! ⌧�⌧+ in [39].
Neither the ⇤ baryon nor the anti-baryon are polarized.

The concurrence can be computed and it is maximal:

C = 1 . (3.4)

From the density matrix in Eq. (3.3), using the Pauli matrices, we can write the correlation matrix
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0

@
1 0 0
0 1 0
0 0 �1

1

A , (3.5)

which is the same for both decay processes. Accordingly, the Horodecki condition is found to be

m12 = 2 , (3.6)

namely, maximal violation of the Bell inequality.
For these decays, we do not even need the experimental values of the helicity amplitudes to claim

maximum entanglement and Bell inequality violation. Uncertainties from the data analysis are however
necessary to assess the significance of the result. We understand that they are forthcoming.

This process provides a direct test for the conservation of quantum correlations. If the experiments
find a di↵erence between the helicity amplitudes w 1

2 � 1
2
and w� 1

2
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2
, or that they vanish, it will mean

that some of the original coherence has been lost during the flight of the ⇤ baryons—some of which
travel inside the beam pipe wall and the first layers of the detector before decaying. This is an
important test, as explained in the Introduction.

3.2 �0
c ! �+ �

The scalar state of the charmonium can decay into a pair of � mesons

�0
c ! �+ � , (3.7)

with branching fraction of (8.48± 0.26± 0.27)⇥ 10�4 [23].
The �0 are produced in

e+e� !  (3686) ! ��0 . (3.8)
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and w1 1 = �w�1�1 because of the conservation of parity. The same condition is found by the identity
of the final particles. There is therefore only one independent amplitude and the density matrix
depends on one complex number.
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The analysis of the data in [23] only gives the absolute value of the ratio of the moduli of the helicity
amplitudes: ����
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and no value for the phase. Accordingly, we can only carry out the analysis in the case of zero phase.
This phase comes from the final state strong interactions if we assume that the form factors have no
significant absorptive part. The helicity amplitudes are determined from the value in Eq. (3.12) to be

|w0 0 | = 0.9210± 0.0014 and |w1,1 | = |w�1�1 | = 0.2754± 0.0023 , (3.13)

and these values can be inserted in the density matrix in Eq. (3.11).
The entanglement can be found from the entropy of entanglement because the final state in Eq. (3.9)

is pure. We find
E [⇢] = 0.531± 0.0021 (3.14)

This number is di↵erent from zero with a significance of 255�.
We find that, after optimization, the expectation value of the Bell operator is

Tr ⇢�� B = 2.2961± 0.0165 (3.15)

This decay provides a clean test of the violation of Bell inequality in a system of two qutrits. Its
significance is 17.9�.

4 Charmonium spin 1 states
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The final states are spin 1 and their polarizations are described by qutrits. The resulting 9 ⇥ 9
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The analysis of the data in [23] selects 2701 ± 84 out of the �K+K�K+K� final states events. The
maximum likelihood fit yields the absolute value of the ratio of the moduli of the helicity amplitudes:

����
w1,1

w0 0

���� = 0.299± 0.003|stat ± 0.019|syst . (3.14)

No value for the relative phase is provided. Accordingly, we can only carry out the analysis in the
case of zero phase. As pointed out in the Introduction, this phase comes from the final state strong
interactions if we assume that the form factors have no significant absorptive part.

The entanglement can be determined from the entropy of entanglement given in Eq. (2.18) because
the final state in Eq. (3.11) is pure. We find, after propagating the errors,

E [⇢] = 0.531± 0.040 . (3.15)

This number di↵ers from zero with a significance of 13.3�.
After optimization, the expectation value of the Bell operator is

Tr ⇢�� B = 2.296± 0.034 . (3.16)

This decay provides a clean test of the violation of Bell inequality in a system of two qutrits. Its
significance is 8.8�.

4 Charmonium spin 1 states

T he decay of spin 1 particles brings in a dependence of the polarization density matrix on
the scattering angle. The amount of entanglement and possible violations of the Bell inequality

therefore depend on the value of this angle.
Data on many di↵erent processes are available and we review all of them. Such a comprehensive

presentation is necessarily repetitive. We apologize. The final results are summarized in Table 4.1.

4.1 J/ ! ⇤+ ⇤̄ and  (3686) ! ⇤+ ⇤̄

The helicity states of the final system in

J/ ! ⇤+ ⇤̄ (4.1)
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(Bell inequality violation)

The decay J/ ! ⇤⇤̄ has branching fraction 1.8⇥ 10�3 [27]. From [15] we can obtain the values
of the two parameters

↵ = 0.4748± 0.0022|stat ± 0.0031|syst and �� = 0.7521± 0.0042|stat ± 0.0066|syst . (4.10)

No correlation in the uncertainties are given.
The correlation matrix can be computed from the density matrix and it is given by

C =
1

C0

0

@
2 sin2⇥ 0

p
1� ↵2 sin 2⇥ cos��

0 2↵ sin2⇥ 0
�
p
1� ↵2 sin 2⇥ cos�� 0 �(1 + 2↵+ cos 2⇥)

1

A . (4.11)

Again, it agrees with [40].

Figure 4.1: Concurrence (left) and Horodecki condition m12 (right) for J/ ! ⇤⇤. Both quantities are the largest for

⇥ = ⇡/2.

As shown in Fig. 4.1, the concurrence and m12 depend on the scattering angle. The largest values
are found at ⇥ = ⇡/2, for which

C = 0.475± 0.0039 and m12 = 1.225± 0.004 (4.12)

The entanglement is not maximal even for ⇥ = ⇡/2 because the final state is not a pure state and
instead contains a mixture of the states discussed in Eq. (4.4).

The significance of the violation of the Bell inequality is nominally 56.2�. This is a lower bound
that could be improved once the correlation in the uncertainties are included.

The same analysis can be done for the case of the  (3686). The decay  (3686) ! ⇤⇤̄ has branching
fraction 3.81⇥ 10�4 [27]. From [41] we find

↵ = 0.690± 0.07|stat ± 0.02|syst and �� = 0.401+0.154
�0.140|stat ± 0.028|syst , (4.13)

and no correlations between the uncertainties are given.
As shown in Fig. 4.2, the concurrence and m12 are, as before, the largest at ⇥ = ⇡/2, for which

C = 0.690± 0.072 and m12 = 1.476± 0.098 (4.14)
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4.1 J/ ! ⇤+ ⇤̄ and  (3686) ! ⇤+ ⇤̄

The helicity states of the final system in

J/ ! ⇤+ ⇤̄ (4.1)

fall in the triplet representation of the product 1
2 ⌦

1
2 = 1� 0. It is constrained by the conservation of

the angular momentum to be described by the three states

| "i / w 1
2

1
2
|12

1
2i ⌦ |12

1
2i (4.2)

| #i / w� 1
2 � 1

2
|12 � 1

2i ⌦ |12 � 1
2i (4.3)

| 0i / w 1
2 � 1

2
|12

1
2i ⌦ |12 � 1

2i+ w� 1
2

1
2
|12 � 1

2i ⌦ |12
1
2i , (4.4)

in which the state in the first line of Eq. (4.4) corresponds to the J/ being transversally polarized
with positive helicity (Jz = +1), the second line to the opposite helicity (Jz = �1) and the third line
to the 0 helicity (Jz = 0), that is, the J/ being longitudinally polarized. The states in Eq. (??) are
written along the z-axis and must be rotated to the direction of the final state momentum.

In the process
e+e� ! � ! cc̄ ! J/ ! ⇤⇤̄ , (4.5)

the J/ is produced polarized. The correlation matrix of the two baryons depends on the scattering
angle ⇥ because the polarization of the J/ does.

The elements of the spin density matrix can be written as
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where D(1)
i,j is the Wigner matrix for the spin 1 representation of SO(3) and the sum is only over the

polarization ±1 because the spin 1 state is produced from unpolarized electrons and positrons with
the electron and positron taken to be massless and, therefore, with only the helicities ±1.

Of the four helicity amplitudes, only two are independent. The density matrix is given by
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The polarization of the ⇤ baryons is given by
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in which C0 = 2 + ↵+ ↵ cos 2⇥. The polarization in Eq. (4.9) agrees with [15,40].
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in which the state in the first line of Eq. (4.4) corresponds to the J/ being transversally polarized
with positive helicity (Jz = +1), the second line to the opposite helicity (Jz = �1) and the third line
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in which the state in the first line of Eq. (4.2) corresponds to the J/ being transversally polarized
with positive helicity (Jz = +1), the second line to the opposite helicity (Jz = �1) and the third line
to the 0 helicity (Jz = 0), that is, the J/ being longitudinally polarized. The states in Eq. (4.2) are
written along the z-axis and must be rotated to the direction of the final state momenta.

In the process
e+e� ! � ! cc̄ ! J/ ! ⇤⇤̄ , (4.3)

the J/ is produced polarized. The correlation matrix of the two baryons depends on the scattering
angle ⇥ because the polarization of the J/ does.

The elements of the density matrix can be written as
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where D(1)
i,j is the Wigner matrix for the spin 1 representation of SO(3) and the sum is only over the

±1 polarizations because the spin 1 state is produced from unpolarized electrons and positrons with
the electron and positron taken to be massless and, therefore, with only the ±1 helicities.

Of the four helicity amplitudes, only two are independent. The density matrix is given by
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in which f⇥ ⌘ (3� cos 2⇥)/4, s⇥ ⌘ sin⇥ and c⇥ ⌘ cos⇥.
The helicity amplitudes can be parametrized as
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The polarization of the ⇤ baryons is given by

B�
i = �B+

i = Tr ⇢⇤⇤1 ⌦ �i = (0,

p
1� ↵2 sin 2⇥ sin��

C0
, 0) , (4.7)

in which C0 = 2 + ↵+ ↵ cos 2⇥. The expression for the polarization in Eq. (4.7) agrees with [15,41].
Ten billion J/ events have been collected at the BESIII detector. The decay J/ ! ⇤⇤̄ has

branching fraction (1.89 ± 0.08) ⇥ 10�3 [28]. The decay into ⇤⇤̄ pairs is reconstructed from their
dominant hadron decays: ⇤ ! p⇡� and ⇤̄ ! p̄⇡�. The maximum likelihood fit yields the values of
the two parameters defining the helicity amplitudes [15]:

↵ = 0.4748± 0.0022|stat ± 0.0031|syst and �� = 0.7521± 0.0042|stat ± 0.0066|syst . (4.8)
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• At the LHC this is already happening, giving access to a wealth of 
observables (entanglement, discord, magic, steering, Bell inequality 
violation…) that can be used to test (and perhaps understand) the 
Standard Model. 

• Like cross sections, these “quantum” observables can be used to 
constrain new physics resulting, for example, in the tau lepton 
anomalous couplings:
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Theoretical quantum tomography for qutrits
In theory, we can compute stuff. Let                               be the 
amplitude for the production of a massive V boson, then: 

Testing Bell inequalities and entanglement with di-boson final states

Luca Marzola
Laboratory of High Energy and Computational Physics, National Institute of Chemical Physics and

Biophysics, Rävala pst. 10, 10143 Tallinn, Estonia.

We explore the phenomenology of quantum entanglement at collider experiments by comput-

ing the polarization density matrix of processes yielding two massive gauge bosons. After

reviewing the formalism, we detail observables suitable to test the presence of entanglement

and quantum correlations in the di-boson system. The implied violation of Bell inequalities

can be observed with future data at the LHC in the decays of the Higgs boson to Z boson

pairs.

1 Quantum tomography

Quantum tomography is a technique that aims to provide full knowledge of a quantum state by
reconstructing the corresponding density matrix through suitable measurements. All quantities
of interest can then be straightforwardly computed by applying the machinery of the density
matrix formalism, including also observables that are not usually investigated in collider ex-
periments. An important example is provided by the entanglement content of the quantum
state under examination. Any interaction between two quantum systems, in fact, is bound to
yield quantum correlations that entangle these systems, thereby bearing e↵ects measurable with
suitable quantum observables. Quantum correlations themselves can be subject to experimental
investigations, aiming in this case to establish the nature of the theory underlying the processes
we observe. Concerning this, John Bell showed in 1964 1 that the presence of quantum corre-
lations makes it possible to distinguish between quantum mechanics and alternative classical
theories proposing a local and deterministic description of Nature. The proof is encapsulated in
an inequality that the correlations computed within local deterministic theories must respect.
By evaluating the same correlations according to the rules of quantum mechanics, we find instead
that the inequality can be violated.

In the followinga we discuss some of the possibilities o↵ered by quantum tomography at
collider experiments focusing mostly on ZZ states. Given that W and Z bosons have three
polarization modes each, we can regard these objects as quantum three-level systems – qutrits,
in short – and investigate correlations in the polarization space spanned by two qutrits originated
in an interaction.

2 Qutrits

The transition amplitude leading to the production of a massive gauge boson with polarization
� 2 {+1, 0,�1} and momentum p can be written as

M(�, p) = Aµ"
µ⇤
�
(p) (1)

a
Drawing from Refs.

2,3
prepared in collaboration with M. Fabbrichesi, R. Floreanini and E. Gabrielli.
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reviewing the formalism, we detail observables suitable to test the presence of entanglement

and quantum correlations in the di-boson system. The implied violation of Bell inequalities

can be observed with future data at the LHC in the decays of the Higgs boson to Z boson

pairs.

1 Quantum tomography

Quantum tomography is a technique that aims to provide full knowledge of a quantum state by
reconstructing the corresponding density matrix through suitable measurements. All quantities
of interest can then be straightforwardly computed by applying the machinery of the density
matrix formalism, including also observables that are not usually investigated in collider ex-
periments. An important example is provided by the entanglement content of the quantum
state under examination. Any interaction between two quantum systems, in fact, is bound to
yield quantum correlations that entangle these systems, thereby bearing e↵ects measurable with
suitable quantum observables. Quantum correlations themselves can be subject to experimental
investigations, aiming in this case to establish the nature of the theory underlying the processes
we observe. Concerning this, John Bell showed in 1964 1 that the presence of quantum corre-
lations makes it possible to distinguish between quantum mechanics and alternative classical
theories proposing a local and deterministic description of Nature. The proof is encapsulated in
an inequality that the correlations computed within local deterministic theories must respect.
By evaluating the same correlations according to the rules of quantum mechanics, we find instead
that the inequality can be violated.

In the followinga we discuss some of the possibilities o↵ered by quantum tomography at
collider experiments focusing mostly on ZZ states. Given that W and Z bosons have three
polarization modes each, we can regard these objects as quantum three-level systems – qutrits,
in short – and investigate correlations in the polarization space spanned by two qutrits originated
in an interaction.

2 Qutrits

The transition amplitude leading to the production of a massive gauge boson with polarization
� 2 {+1, 0,�1} and momentum p can be written as

M(�, p) = Aµ"
µ⇤
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In order to compute the polarization density matrix from the amplitude of the underlying process
we then need an expression for the mapping P. To this end, consider the explicit form of the
wave vector of our massive gauge boson
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by

Sij = SiSj + SjSi �
4

3
1 �ij , (8)

with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr

�
⇢
2
�
= 1).

Quantum state of the V boson
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
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Theoretical quantum tomography for qutrits
In theory, we can compute stuff. Let                               be the 
amplitude for the production of a massive V boson, then: 

Testing Bell inequalities and entanglement with di-boson final states
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We explore the phenomenology of quantum entanglement at collider experiments by comput-

ing the polarization density matrix of processes yielding two massive gauge bosons. After

reviewing the formalism, we detail observables suitable to test the presence of entanglement

and quantum correlations in the di-boson system. The implied violation of Bell inequalities

can be observed with future data at the LHC in the decays of the Higgs boson to Z boson

pairs.

1 Quantum tomography

Quantum tomography is a technique that aims to provide full knowledge of a quantum state by
reconstructing the corresponding density matrix through suitable measurements. All quantities
of interest can then be straightforwardly computed by applying the machinery of the density
matrix formalism, including also observables that are not usually investigated in collider ex-
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investigations, aiming in this case to establish the nature of the theory underlying the processes
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
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From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
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From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
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the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by

Sij = SiSj + SjSi �
4

3
1 �ij , (8)

with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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Theoretical quantum tomography for qutrits
In theory, we can compute stuff. Let                               be the 
amplitude for the production of a massive V boson, then: 

Testing Bell inequalities and entanglement with di-boson final states
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We explore the phenomenology of quantum entanglement at collider experiments by comput-

ing the polarization density matrix of processes yielding two massive gauge bosons. After

reviewing the formalism, we detail observables suitable to test the presence of entanglement

and quantum correlations in the di-boson system. The implied violation of Bell inequalities

can be observed with future data at the LHC in the decays of the Higgs boson to Z boson

pairs.

1 Quantum tomography

Quantum tomography is a technique that aims to provide full knowledge of a quantum state by
reconstructing the corresponding density matrix through suitable measurements. All quantities
of interest can then be straightforwardly computed by applying the machinery of the density
matrix formalism, including also observables that are not usually investigated in collider ex-
periments. An important example is provided by the entanglement content of the quantum
state under examination. Any interaction between two quantum systems, in fact, is bound to
yield quantum correlations that entangle these systems, thereby bearing e↵ects measurable with
suitable quantum observables. Quantum correlations themselves can be subject to experimental
investigations, aiming in this case to establish the nature of the theory underlying the processes
we observe. Concerning this, John Bell showed in 1964 1 that the presence of quantum corre-
lations makes it possible to distinguish between quantum mechanics and alternative classical
theories proposing a local and deterministic description of Nature. The proof is encapsulated in
an inequality that the correlations computed within local deterministic theories must respect.
By evaluating the same correlations according to the rules of quantum mechanics, we find instead
that the inequality can be violated.

In the followinga we discuss some of the possibilities o↵ered by quantum tomography at
collider experiments focusing mostly on ZZ states. Given that W and Z bosons have three
polarization modes each, we can regard these objects as quantum three-level systems – qutrits,
in short – and investigate correlations in the polarization space spanned by two qutrits originated
in an interaction.
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In order to compute the polarization density matrix from the amplitude of the underlying process
we then need an expression for the mapping P. To this end, consider the explicit form of the
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by

Sij = SiSj + SjSi �
4

3
1 �ij , (8)

with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have

⇢ =
Aµ⌫A†

µ0⌫0��M̄
��2

h
Pµµ

0
(k1)⌦ P⌫⌫

0
(k2)

i
, (9)

where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have

⇢ =
Aµ⌫A†

µ0⌫0��M̄
��2

h
Pµµ

0
(k1)⌦ P⌫⌫

0
(k2)

i
, (9)

where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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In order to compute the polarization density matrix from the amplitude of the underlying process
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by

Sij = SiSj + SjSi �
4

3
1 �ij , (8)

with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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Projector; Si (i∈{1,2,3}) are the spin matrices and ni 

are the linear polarizations versors boosted by -p/mV  

S. Y. Choi, T. Lee, and H. S. Song, Phys. Rev. D, 40:2477–2480, Oct 1989

and the state |V µi of the boson V is consequently determined as

|V ⌫i =
X

�

M(�)"⌫
�
. (2)

To construct the corresponding (covariant) density matrix we proceed as usual, obtaining
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(3)

after the normalization of the state vector and having inserted a factor of (-1) to account for the
signature (1, -1, -1, -1) of the Minkowski metric gµ⌫ . To obtain the polarization density matrix
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In order to compute the polarization density matrix from the amplitude of the underlying process
we then need an expression for the mapping P. To this end, consider the explicit form of the
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by

Sij = SiSj + SjSi �
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3
1 �ij , (8)

with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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To construct the corresponding (covariant) density matrix we proceed as usual, obtaining
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after the normalization of the state vector and having inserted a factor of (-1) to account for the
signature (1, -1, -1, -1) of the Minkowski metric gµ⌫ . To obtain the polarization density matrix
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In order to compute the polarization density matrix from the amplitude of the underlying process
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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4

3
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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after doing the math: polarization/spin density matrix
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Theoretical quantum tomography for qutrits
In theory, we can compute stuff. Let                               be the 
amplitude for the production of a massive V boson, then: 

Testing Bell inequalities and entanglement with di-boson final states
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Laboratory of High Energy and Computational Physics, National Institute of Chemical Physics and
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We explore the phenomenology of quantum entanglement at collider experiments by comput-

ing the polarization density matrix of processes yielding two massive gauge bosons. After

reviewing the formalism, we detail observables suitable to test the presence of entanglement

and quantum correlations in the di-boson system. The implied violation of Bell inequalities

can be observed with future data at the LHC in the decays of the Higgs boson to Z boson

pairs.

1 Quantum tomography

Quantum tomography is a technique that aims to provide full knowledge of a quantum state by
reconstructing the corresponding density matrix through suitable measurements. All quantities
of interest can then be straightforwardly computed by applying the machinery of the density
matrix formalism, including also observables that are not usually investigated in collider ex-
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theories proposing a local and deterministic description of Nature. The proof is encapsulated in
an inequality that the correlations computed within local deterministic theories must respect.
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that the inequality can be violated.
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In order to compute the polarization density matrix from the amplitude of the underlying process
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by

Sij = SiSj + SjSi �
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3
1 �ij , (8)

with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
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gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have

⇢ =
Aµ⌫A†

µ0⌫0��M̄
��2

h
Pµµ

0
(k1)⌦ P⌫⌫

0
(k2)

i
, (9)

where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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Theoretical quantum tomography for qutrits
In theory, we can compute stuff. Let                               be the 
amplitude for the production of a massive V boson, then: 

Testing Bell inequalities and entanglement with di-boson final states
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We explore the phenomenology of quantum entanglement at collider experiments by comput-

ing the polarization density matrix of processes yielding two massive gauge bosons. After

reviewing the formalism, we detail observables suitable to test the presence of entanglement

and quantum correlations in the di-boson system. The implied violation of Bell inequalities

can be observed with future data at the LHC in the decays of the Higgs boson to Z boson

pairs.

1 Quantum tomography

Quantum tomography is a technique that aims to provide full knowledge of a quantum state by
reconstructing the corresponding density matrix through suitable measurements. All quantities
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by

Sij = SiSj + SjSi �
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
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of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by
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with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble
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where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
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where the four-vectors ni = ni(p), i 2 {1, 2, 3}, are obtained by boosting the linear polarization
vectors defined in the frame where the boson is at rest – their spatial components form a right-
handed system – to a frame where it has momentum p. With the above expression we find 4,5

Pµ⌫

��0(p) =
1

3

✓
�g

µ⌫ +
p
µ
p
⌫

m
2
V

◆
���0 � i

2mV

✏
µ⌫↵�

p↵ni� (Si)��0 �
1

2
n
µ

i
n
⌫

j (Sij)��0 , (7)
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where mV is the invariant mass of the vector boson V , ✏µ⌫↵� the permutation symbol (✏0123 = 1)
and Si, i 2 {1, 2, 3}, are the SU(2) generators in the spin-1 representation – the eigenvectors of
S3, corresponding to the eigenvalues � 2 {+1, 0,�1}, define the helicity basis. The spin matrix
combinations appearing in the last term are given by

Sij = SiSj + SjSi �
4

3
1 �ij , (8)

with i, j 2 {1, 2, 3} and 1 being the 3⇥ 3 unit matrix.
Eqs. (5) and (7) make it possible to compute the polarization density matrix for an ensemble

of V bosons produced in repeated reactions described by the amplitudeM. The formalism can be
straightforwardly extended to processes yielding a bipartite qutrit state formed by two massive
gauge bosons, V1 and V2. In this case we have

⇢ =
Aµ⌫A†

µ0⌫0��M̄
��2

h
Pµµ

0
(k1)⌦ P⌫⌫

0
(k2)

i
, (9)

where k1 and k2 denote the momenta of the vector bosons in a given frame (the center of mass
frame in the following) and the tensor product, ⌦, operates in polarization space producing a
9⇥ 9 polarization density matrix.

From the experimental side, information about the polarization of decaying W and Z bosons
is carried by the directions of the emitted charged leptons. The polarization density matrix of
the system of interest can then be reconstructed from collider data by analyzing the angular
distribution of the decay products of the massive gauge bosons, as illustrated in Refs. 6,2 for a
bipartite qutrit state. Alternatively, the density matrix can be obtained from measurements of
the helicity amplitudes of the underlying production process, as shown for instance in Ref. 3 for
a simple case in which the bipartite qutrit state is pure (Tr

�
⇢
2
�
= 1).

after doing the math: polarization/spin density matrix
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