4TH CERN BALTIC CONFERENCE CBC2024

15-17 October, Tallinn, Estonia

Probing Radiative Neutrino Masses and Extra Fermions at the Future Circular Collider

(Based on 2303.12232, CM and Aurora Melis)

Carlo Marzo, NICPB, Tallinn, Estonia

Theory&Pheno in the Standard Model: ~ 60 years of harmony

Dim-6 operators live at TeV scale to appreciate per-cent level deviations

Heavy NP for ~ 0.01 couplings

Top, Higgs, Diboson and EW Fit to the SM Effective Field Theory John Ellis, Maeve Madigan, Ken Mimasu, Veronica Sanz, Tevong You Theory&Pheno in the Standard Model: ~ 60 years of harmony ...

Heavy NP for ~ 0.01 couplings

but NP $\underline{unavoidable}$

Neutrino Masses and Mixing

Strong CP

non-trivial CKM

Baryon Asymmetry

Inflation

Dark Matter

Dark Energy

g-2?

W-mass?

LHC: Discovery through production

We found the Higgs!

8 TeV for \sim EW scale resonance

FCC-ee: Discovery* through precision (+ HL-LHC)

 e^+e^- at $\sqrt{s} = 240,365 \text{ GeV}$

Higgs production:

"Baseline plan:

 $\sim 10^6$ events in ZH $\sim 10^5$ events in WWH "

" σ_{ZH} can be determined ...with an ultimate statistical precision of 0.1%..."

 $\sim {\rm SM}$ radiative corrections

A special Higgs challenge Paolo Azzurri, Gregorio Bernardi, Sylvie Braibant, Davide d'Enterria et al.

Opportunity for THEORY: Heavy NP indirectly accessible (like in LEP!)

Opportunity for THEORY: Heavy NP indirectly accessible

helicity/polarization structure

$$\mathcal{M}\left(\lambda; s_{+}, s_{-}\right) = \sum_{j} F_{j} \mathcal{M}_{j}\left(\lambda; s_{+}, s_{-}\right)$$

... if we have equally precise control over \underline{SM} background

(+NLO)

$$|\mathcal{M}^{\rm NLO}|^2 \simeq \sum_{ij} (F_i^{\rm LO})^* (F_j^{\rm LO} + 2\,\delta F_j) \operatorname{Re}[\mathcal{M}_i^* \mathcal{M}_j],$$

2 SM NLO contributions:

Opportunity for THEORY: Heavy NP indirectly accessible

soft- γ radiation (IR)

...if we have equally precise control over \underline{SM} background

EW

... if we have equally precise control over \underline{SM} background

Getting finite results is desiderable:

Dimensional regularization

+

ON-Shell renormalization (Sirlin '80, see also Denner '91)

$$\begin{array}{c} g_1, g_w, Y_u, Y_d, Y_e, v_h, \lambda, \mu_1^2 \\ & \swarrow \\ m_Z^2, m_W^2, \mathbf{e}, m_{u_i}, m_{d_i}, m_{l=e,\mu,\tau}, m_h^2, t \\ & \downarrow \\ m_Z^2 \rightarrow m_Z^2 + \delta m_Z^2, \ m_W^2 \rightarrow m_W^2 + \delta m_W^2, \\ m_f \rightarrow m_f + \delta m_f, \quad (f=u,d,l) \\ m_h^2 \rightarrow m_h^2 + \delta m_h^2, \ t \rightarrow t + \delta t, \\ \mathbf{e} \rightarrow \mathbf{e} \left(1 + \delta \mathbf{e}\right) \end{array}$$

... if we have equally precise control over \underline{SM} background

Getting finite results is desiderable:

Dimensional regularization

ON-Shell renormalization (Sirlin '80, see also Denner '91)

IR and UV finite result

$$|\mathcal{M}^{\mathrm{NLO}}|^{2} \simeq \sum_{ij} (F_{i}^{\mathrm{LO}})^{*} (F_{j}^{\mathrm{LO}} + 2\,\delta F_{j}) \operatorname{Re}[\mathcal{M}_{i}^{*}\mathcal{M}_{j}]$$
$$\sigma_{Zh}^{\mathrm{SM}}(250 \text{GeV}) = 228.748 \text{[fb]},$$
$$\sigma_{Zh}^{\mathrm{SM}}(350 \text{GeV}) = 123.392 \text{[fb]}$$
$$\operatorname{unpol} \sigma_{Zh}^{SM} \sim 25 \text{[fb] LO-NLC}$$

We are now ready to address BSM (affecting NLO):

$$\mathcal{M}(\lambda; s_{+}, s_{-}) = \sum_{j} F_{j} \mathcal{M}_{j}(\lambda; s_{+}, s_{-})$$

$$|\mathcal{M}^{\mathrm{NLO}}|^{2} \simeq \sum_{ij} (F_{i}^{\mathrm{LO}})^{*} (F_{j}^{\mathrm{LO}} + 2\,\delta F_{j}) \mathrm{Re}[\mathcal{M}_{i}^{*}\mathcal{M}_{j}]$$

$$F_{j}^{LO} = F_{j}^{Born}$$

$$\delta F_{j} = \delta F_{j}^{SM} + \delta F_{j}^{NP}$$

$$\delta F_{j} = \delta F_{j}^{SM} + \delta F_{j}^{NP}$$

$$|\mathcal{M}^{\mathrm{NLO}}|^{2} \simeq |\mathcal{M}^{\mathrm{Born}}|^{2} + 2\mathrm{Re}[\mathcal{M}^{*\mathrm{Born}}(\delta \mathcal{M}^{\mathrm{SM}} + \delta \mathcal{M}^{\mathrm{NP}})]$$

$$\mathcal{M}^{\mathrm{NLO}}|^2 \simeq |\mathcal{M}_{SM}^{\mathrm{NLO}}|^2 + 2\mathrm{Re}[\mathcal{M}^{*\mathrm{Born}}\delta\mathcal{M}^{\mathrm{NP}}]$$

 σ_{Zh} linear in NP!

A minimal/common extension: extra doublet.

Inert Doublet Model

$$H_1 = \begin{pmatrix} G^+ \\ \frac{v_h + h + iG^0}{\sqrt{2}} \end{pmatrix}, \quad H_2 = \begin{pmatrix} H^+ \\ \frac{H^0 + iA^0}{\sqrt{2}} \end{pmatrix}$$

(EW vacuum, no vev for H_2)

$$\mathcal{L}^{\text{IDM}} = \mathcal{L}^{\text{SM}} + |D_{\mu}H_{2}|^{2} - \mu_{2}^{2}|H_{2}|^{2} - \lambda_{2}|H_{2}|^{4} - \lambda_{3}|H_{1}|^{2}|H_{2}|^{2} - \lambda_{4}|H_{1}^{\dagger}H_{2}|^{2} - \frac{\lambda_{5}}{2} \left[(H_{1}^{\dagger}H_{2})^{2} + \text{h.c.} \right]$$

(no scalar mixing, no SM fermion coupling)

$$\begin{split} m_{H^{\pm}}^2 &= m_0^2 - \lambda_4 \frac{v_h^2}{2} \,, \\ m_{H^0}^2 &= m_0^2 + \lambda_5 \frac{v_h^2}{2} \,, \\ m_{A^0}^2 &= m_0^2 - \lambda_5 \frac{v_h^2}{2} \,. \end{split}$$

(2009.03250, Abouabid, Arhrib, Benbrik et Al.)

$$(m_0^2 \equiv \frac{1}{2}(m_{H^0}^2 + m_{A^0}^2) = \mu_2^2 + (\lambda_3 + \lambda_4)\frac{v_h^2}{2})$$

Inert Doublet Model: a portal for BSM NP

(from 2009.03250, Abouabid, Arhrib, Benbrik et Al.)

Parameters?

 λ

 $\lambda_i < 8\pi$

(perturbativity)

Theo bounds:

$$\lambda_2 > 0, \quad \lambda_3, \, \lambda_3 + \lambda_4 - |\lambda_5| > -2\sqrt{\lambda_1\lambda_2} \quad (\lambda_1 \sim 0.132)$$
 (vacuum stability

$$e_{i}^{\pm}| < 8\pi \qquad \begin{array}{l} e_{1}^{\pm} = \lambda_{3} \pm \lambda_{4,5}, \quad e_{2} = \lambda_{3} + 2\lambda_{4} \pm 3\lambda_{5}, \\ e_{4}^{\pm} = -(\lambda_{1} + \lambda_{2}) \pm \sqrt{(\lambda_{1} - \lambda_{2})^{2} + \lambda_{4,5}^{2}}, \\ e_{5}^{\pm} = -3(\lambda_{1} + \lambda_{2}) \pm \sqrt{9(\lambda_{1} - \lambda_{2})^{2} + (2\lambda_{3} + \lambda_{4})^{2}} \end{array}$$
(perturbative unitarity

Precise measurements of Z and W widths at **LEP** forbids $Z \to H^+H^-, Z \to H^0A^0$ and $W^{\pm} \to H^{\pm}H^0(A^0)$:

Pheno bounds:

LEP II chargino searches: $m_{H^{\pm}} > \{70 - 90\} \,\mathrm{GeV}$ **LEP II** neutralino searches do not apply!

Higgs data at **LHC**

 $h \rightarrow \text{invisible:} \quad m_{H^0,A^0} > m_h/2$ Radiative contributions on $h \to \gamma \gamma$ from H^{\pm} : constraint on λ_3 $2m_{H^{\pm}} > m_Z$, $m_{H^0} + m_{A^0} > m_Z$, $m_{H^{\pm}} + m_{H^0.A^0} > m_W$

Inert Doublet Model

$$\begin{split} \delta F_{L,R}^{S,\mathrm{IDM}} &= \frac{\alpha F_{L,R}^{\mathrm{LO}}}{8\pi c_W^2 s_W^2 (S - m_Z^2)} \\ &\times \bigg\{ (c_W^2 - s_W^2)^2 \bigg[1 - \frac{2c_W s_W (1 - m_Z^2/S)}{g_{L,R}^{Ze} (c_W^2 - s_W^2)} \bigg] \\ &\quad \times \bigg(2B_{00}[S, m_{H^\pm}, m_{H^\pm}] - A_0[m_{H^\pm}] \bigg) \\ &\quad + \bigg(2B_{00}[S, m_{A^0}, m_{H^0}] - \frac{A_0[m_{H^0}] + A_0[m_{A^0}]}{2} \bigg) \bigg\} \,, \end{split}$$

$$\begin{split} (\delta F_{L,R}^{S,\mathrm{IDM}})^{ct} = & F_{L,R}^{\mathrm{LO}} \bigg[\frac{\delta m_Z^2}{S - m_Z^2} - \delta_Z - \frac{\delta_{AZ}}{2g_{L,R}^{Ze}} \\ & + \frac{\delta_{ZA}}{2g_{L,R}^{Ze}} \bigg(1 - \frac{m_Z^2}{S} \bigg) \bigg] \end{split}$$

Inert Doublet Model

$$\begin{split} \delta F_{L,R}^{V,\text{IDM}} &= \frac{F_{L,R}^{\text{LO}}}{16\pi^2} \bigg\{ (c_W^2 - s_W^2)^2 \bigg[1 - \frac{2c_W s_W (1 - m_Z^2/S)}{g_{L,R}^{Ze} (c_W^2 - s_W^2)} \bigg] \\ &\quad \times \lambda_3 \bigg(-B_0 [m_h^2, m_{H^\pm}^2, m_{H^\pm}^2] \\ &\quad + 4C_{00} [m_Z^2, m_h^2, S, m_{H^\pm}^2, m_{H^\pm}^2, m_{H^\pm}^2] \bigg) \\ &\quad + \frac{\lambda_3 + \lambda_4 + \lambda_5}{2} \bigg(-B_0 [m_h^2, m_{H^0}^2, m_{H^0}^2] \\ &\quad + 4C_{00} [m_Z^2, m_h^2, S, m_{A^0}^2, m_{H^0}^2, m_{H^0}^2] \bigg) \\ &\quad + \frac{\lambda_3 + \lambda_4 - \lambda_5}{2} \bigg(-B_0 [m_h^2, m_{A^0}^2, m_{H^0}^2] \\ &\quad + 4C_{00} [m_Z^2, m_h^2, S, m_{H^0}^2, m_{A^0}^2, m_{A^0}^2] \bigg) \bigg\}, \end{split}$$

$$\begin{split} (\delta F_{L,R}^{V,\mathrm{IDM}})^{ct} &= F_{L,R}^{\mathrm{LO}} \bigg[\frac{\delta_h}{2} + \delta_Z + \delta \mathrm{e} + \frac{\delta m_Z^2}{2m_Z^2} \\ &+ \frac{c_W^2 - s_W^2}{2s_W^2} \bigg(\frac{\delta m_Z^2}{m_Z^2} - \frac{\delta m_W^2}{m_W^2} \bigg) \bigg] \end{split}$$

Inert Doublet Model (past results)

"... it is observed that weak corrections in the IDM are tipically negative and can reach 9%- 14% at $\sqrt{S} = 250$ GeV..."

(from 2009.03250, Abouabid, Arhrib, Benbrik et Al.)

The IDM, a common IR-tail, would provide a large background for many NP models

Inert Doublet Model + sterile fermions N_k

A gift from the inert-doublet *portal*. By adding extra fermions:

$$(\mathcal{L}^{\rm Scoto} = \mathcal{L}^{\rm IDM} + \mathcal{L}^{\rm RHN})$$

$$\mathcal{L}^{\text{RHN}} = \overline{N}_k \gamma^{\mu} \partial_{\mu} N_k - y_{ik}^N \overline{L}_i \widetilde{H}_2 N_k - \frac{m_{N_k}}{2} \overline{N_k^c} N_k + \text{h.c.}$$

Inert Doublet Model + sterile fermions N_k

Radiative realization of dim-5 $\overline{L}_i \cdot \tilde{H}_1 H_1^T \cdot L_j^c$

$$(m_{\nu})_{ij} = (Y_N \Lambda Y_N^T)_{ij} = \sum_{k=1}^3 y_{ik}^N y_{jk}^N \Lambda_k$$
$$\Lambda_k = \frac{m_{N_k}}{16\pi^2} \left(B_0[0, m_{H^0}^2, m_{N_k}^2] - B_0[0, m_{A^0}^2, m_{N_k}^2] \right)$$

 H^0 and A^0 give equals but opposite in sign contributions: neutrino masses controlled by mass splitting $m_{H_0}^2 - m_{A_0}^2 = \lambda_5 v_h^2$ limit: $m_0 \simeq m_{N_k}$ $\lambda_5 \to 0$

$$(m_{\nu})_{ij} \simeq \frac{\lambda_5 v_h^2}{32\pi^2} \sum_{k=1}^3 \frac{y_{ik}^N y_{jk}^N}{m_{N_k}}$$

size of the see-saw scale reduced by a factor of

$$\lambda_5 v_h^2 / 32\pi^2$$

Scotogenic (dark) model - (Ernest Ma, 2006)

$$\mathcal{L}^{\text{RHN}} = \overline{N}_k \gamma^{\mu} \partial_{\mu} N_k - y_{ik}^N \overline{L}_i \widetilde{H}_2 N_k - \frac{m_{N_k}}{2} \overline{N}_k^c N_k + \text{h.c.}$$

...but also..

Portal Doublet + secluded N_k meet FCC-ee

$$\mathcal{L}^{\text{RHN}} = \overline{N}_k \gamma^{\mu} \partial_{\mu} N_k - y_{ik}^N \overline{L}_i \widetilde{H}_2 N_k - \frac{m_{N_k}}{2} \overline{N_k^c} N_k + \text{h.c.}$$

and no neutrino masses..

Neutrino observable	NH	IH	
$\Delta m_{21}^2 \ [10^{-5} {\rm eV}^2]$	$7.42^{+0.21}_{-0.20}$	$7.42^{+0.21}_{-0.20}$	
$\Delta m_{3l}^2 \; [10^{-3} {\rm eV}^2]$	$+2.515^{+0.028}_{-0.028}$	$-2.498^{+0.028}_{-0.029}$	
$\sin^2 \theta_{12}$	$0.304\substack{+0.013\\-0.012}$	$0.304\substack{+0.012\\-0.012}$	
$\sin^2 \theta_{13}$	$0.02220\substack{+0.00068\\-0.00062}$	$0.02238\substack{+0.00064\\-0.00062}$	
$\sin^2 \theta_{23}$	$0.573^{+0.018}_{-0.023}$	$0.578\substack{+0.017\\-0.021}$	
$\delta_{ m CP}[^\circ]$	194^{+52}_{-25}	287^{+27}_{-32}	

1) Neutrino Pheno

- 2) Survive LFV, address future LFV
- 3) Collider constraints (beyond oblique)
- 4) FCC-ee signal shaped by N_k

(Esteban, Gonzalez-Garcia, Maltoni, Schwetz, Zhou, 2007.14792)

 $y_{ik}^N =$

$$(m_{\nu})_{ij} \simeq \frac{\lambda_5 v_h^2}{32\pi^2} \sum_{k=1}^3 \frac{y_{ik}^N y_{jk}^N}{m_{N_k}} \quad \text{must comply with data (PMNS): Casas-Ibarra reverse problem
$$Y_N = U^{\nu*} \sqrt{\widehat{m}_{\nu}} R \sqrt{\Lambda_k}^{-1} \quad \text{We have some freedom: } R \in \mathbb{C} \text{ such } R^T R = \mathbb{I}$$

$$- \frac{\sqrt{m_1} U_{i1}^{\nu*} R_{1k} + \sqrt{m_2} U_{i2}^{\nu*} R_{2k} + \sqrt{m_3} U_{i3}^{\nu*} R_{3k}} \quad \text{escaping LFV!}$$$$

LFV Process	Current Limit	Future Limit		
${\rm BR}(\mu \to e \gamma)$	$4.2\times 10^{-13}~({\rm MEG}$ at PSI)	$6\times 10^{-14}~({\rm MegII})$		
$BR(\tau \rightarrow e\gamma)$	$3.3\times 10^{-8}~({\tt BaBar})$	$5\times 10^{-9}~({\rm BelleII})$		
$BR(\tau \to \mu \gamma)$	$4.4\times 10^{-8}~({\tt BaBar})$	$10^{-9}~({\tt BelleII})$		
${\rm BR}(\mu\to 3e)$	$1.0\times 10^{-12}~({\rm SINDRUM})$	$10^{-16} \; ({\tt Mu3e})$		
$\mathrm{BR}(\tau\to 3e)$	$2.7\times 10^{-8}~({\rm Belle})$	$5 \times 10^{-10} \; ({\tt BelleII})$		
${\rm BR}(\tau\to 3\mu)$	$2.1\times 10^{-8}~({\rm Belle})$	$5 \times 10^{-10} \; (\texttt{Belle II})$		
$BR(Z \to \mu e)$	$7.5\times 10^{-7}~({\rm LHC}~{\rm ATLAS})$	$10^{-10}-10^{-8} \; ({\rm FCC-ee})$		
$BR(Z \to \tau e)$	$9.8\times 10^{-6}~({\rm LEP~OPAL})$	$10^{-9} \ ({\rm FCC-ee})$		
$BR(Z \to \tau \mu)$	$1.2\times 10^{-5}~({\rm LHC~DELPHI})$	$10^{-9}(\texttt{FCC-ee})$		
$\mathrm{BR}(h \to \mu e)$	$6.1\times10^{-5}~({\rm LHC~CMS})$	-		
${\rm BR}(h\to \tau e)$	$4.7\times 10^{-3}~({\rm LHC~CMS})$	1.77		
${\rm BR}(h\to\tau\mu)$	$2.5\times 10^{-3}~({\rm LHC~CMS})$	-		

Most severe constraint from $\mu \to e\gamma$ MEG experiment.

- 1) Neutrino Pheno
- 2) Survive LFV, address future LFV
- 3) Collider constraints (beyond oblique)
- 4) FCC-ee signal shaped by N_k

Need to compute:

$$BR(l_i \to l_j \gamma), BR(l_i \to 3l_j) \text{ and } BR(Z(h) \to l_j l_j)$$

(LFV in the Scotogenic model - Toma, Vicente)

Use R to elude $\mu \to e\gamma$. Fix its value within MEG II experiment.

Sc.M. inherits IDM sector constraints

one more time: Important bound on λ_3 from H^{\pm} in $h \to \gamma \gamma$.

 $(H^{\pm} \text{ must be included to appreciate } N_k)$

- 1) Neutrino Pheno
- 2) Survive LFV, address future LFV
- **3)** Collider constraints (beyond oblique)
- 4) FCC-ee signal shaped by N_k

Unsuppressed (but perturbative) NP couplings to light fermions + NP scale comparable to M_Z and M_W :

Explicit computation lepton-diagonal decays $Z \to l^+ l^-, \ Z \to \nu_l \nu_l$ and $W^{\pm} \to l^{\pm} \nu_l$

and properly OS-renormalized

$$\begin{split} (\delta F_L^{V,\mathrm{RHN}})^{ct} &= F_L^{\mathrm{LO}} \left[\frac{\delta_Z}{2} + \delta_{e_L} + \delta \mathrm{e} + \frac{\delta_{AZ}}{2g_L^{Ze}} \right. \\ &+ \frac{1}{2s_W^2} \left(\frac{\delta m_W^2}{m_W^2} - \frac{\delta m_Z^2}{m_Z^2} \right) \right] \end{split}$$

- 1) Neutrino Pheno
- 2) Survive LFV, address future LFV
- 3) Collider constraints (beyond oblique)
- 4) FCC-ee signal shaped by N_k

Proper Sco.M. corrections: need for H^{\pm}

And the finite box contributions:

1) Neutrino Pheno

2) Survive LFV, address future LFV

 N_k

 H^+

- 3) Collider constraints (beyond oblique)
- 4) FCC-ee signal shaped by N_k

(approximation! Full formulas and missing amplitudes in the paper)

e

1) Neutrino Pheno

- 2) Survive LFV, address future LFV
- 3) Collider constraints (beyond oblique)

(theory and pheno) constraints + σ_{Zh}^{scoto} :

4) FCC-ee signal shaped by N_k

can we "see" the RHN?

caveat N1

 $\lambda_5 = 0$, YES, but forget massive ν_l $\lambda_5 \neq 0$, challenging!

big λ_5 , too big scale of RHN

target: enhancing
$$\delta \sigma_{Zh}^{\text{RHN}} = \frac{\sigma_{Zh}^{\text{Scoto}} - \sigma_{Zh}^{\text{IDM}}}{\sigma_{Zh}^{\text{SM}}}$$

need tiny
$$\lambda_5$$
, $\leq 10^{-7}$, protected by $U(1)_{PQ}$

WIMP Dark Matter and Neutrino Mass from Peccei-Quinn Symmetry Dasgupta, Ma,Tsumura

1) Neutrino Pheno

- 2) Survive LFV, address future LFV
- 3) Collider constraints (beyond oblique)
- 4) FCC-ee signal shaped by N_k

(theory and pheno) constraints + σ_{Zh}^{scoto} : can we "see" the RHN?

caveat N2

Cannot send to zero the IDM SE in a full degenerate scenario $(\lambda_3 = 0)$

we tried.

Big IDM background prerequisite for sizable $\delta \sigma_{Zh}^{RHN}$

We need large λ_3 and light H^{\pm}

Big IDM background prerequisite for sizable $\delta \sigma_{Zh}^{RHN}$

The search for favourable points is split in two stages:

Stage 1

Scan within IDM parameter space. We find IDM outposts with sizable σ_{Zh} surviving theo and pheno constraints.

 $m_{H^{\pm},H^{0}} = \{80,200\} \text{ GeV} \qquad \lambda_{2} = \{0,4\pi/3\}$ $m_{H_{0}} - m_{A_{0}} = \{10^{-9},10^{-7}\} \text{ GeV} \qquad \lambda_{3} = \{-1.49,1.4\}$

Stage 2

Over surviving benchmarks, full exploration of Yukawa and RH masses

 $m_{N_i} \in \{0.01, 2\} m_{H^{\pm}}$ $m_{\nu_{\inf}} \in \{10^{-7}, 10^{-1}\} eV$ Generating Y_N via Casas-Ibarra for NH and IH . BR $(\mu \rightarrow e\gamma)$ tuned to future probing!

Results: can we see the RHN?

The Sc.M. reduces the negative (compared to SM) IDM contribution.

Point with the largest $\delta \sigma_{Zh}^{\text{RHN}}$ for NH-scenario (black points) and IH-scenario (red points). The blue and red points along a vertical line share the same values of $\lambda_2, \lambda_3, m_{H^0}, m_{A^0}$ and $m_{H^{\pm}}$.

Results: can we see the RHN?

 $N_{i=1,2,3}$: challenging but possible!

Results: can we see the RHN?

Mapping $e^+e^- \rightarrow ZH$ to future LFV: selecting Sc.M. benchmarks

Cross-section	BP1	BP2	BP3	BP4	BP5	BP6
	NH	NH	IH	IH	IH	IH
$\sigma_{Zh}^{\rm Scoto}(250 {\rm ~GeV}) {\rm [fb]}$	223.261	220.897	222.085	223.729	221.060	222.157
$\sigma_{Zh}^{\text{IDM}}(250 \text{ GeV}) \text{ [fb]}$	220.946	219.693	221.593	220.946	219.693	221.593
$\delta \sigma_{Zh}^{ m RHN}(250 { m ~GeV})$	1.0122%	0.5262%	0.2150%	1.2168%	0.5973%	0.2464%
$\sigma_{Zh}^{\rm Scoto}(350 {\rm ~GeV}) {\rm [fb]}$	120.986	120.702	120.973	121.138	120.868	121.121
$\sigma_{Zh}^{\text{IDM}}(350 \text{ GeV}) \text{ [fb]}$	120.191	119.464	119.983	120.191	119.464	119.983
$\delta \sigma_{Zh}^{\rm RHN}(350 { m ~GeV})$	0.6442%	1.0016%	0.8024%	0.7678%	1.1377%	0.9222%
$\delta\Gamma(Z \to ee)^{\rm RHN} [{\rm MeV}]$	0.04388	0.08528	0.09608	0.04026	0.08453	0.09552
$\delta\Gamma(Z \to \mu\mu)^{\rm RHN} [{\rm MeV}]$	0.04502	0.08861	0.09738	0.04390	0.08892	0.09693
$\delta\Gamma(Z \to \tau \tau)^{\rm RHN} [{\rm MeV}]$	0.04459	0.08518	0.09687	0.04803	0.3916	0.08615
$\delta\Gamma(Z \to inv.)^{\rm RHN} \ [{\rm MeV}]$	0.1678	0.3724	0.4419	0.1734	0.3754	0.4318

Mapping $e^+e^- \rightarrow ZH$ to future LFV: selecting Sc.M. benchmarks

LFV process	BP1	BP2	BP3	BP4	BP5	BP6
	NH	NH	IH	IH	IH	IH
$BR(\mu \to e\gamma)$	3.24×10^{-13}	1.02×10^{-13}	2.28×10^{-13}	2.43×10^{-13}	6.22×10^{-14}	1.05×10^{-13}
$BR(\tau \rightarrow e\gamma)$	1.38×10^{-8}	1.09×10^{-8}	3.06×10^{-8}	1.16×10^{-8}	3.10×10^{-8}	8.39×10^{-9}
${\rm BR}(\tau \to \mu \gamma)$	3.60×10^{-9}	2.09×10^{-8}	1.02×10^{-9}	$9.90 imes 10^{-9}$	3.78×10^{-8}	3.89×10^{-9}
$BR(\mu \rightarrow 3e)$	3.52×10^{-13}	1.63×10^{-13}	5.71×10^{-14}	5.37×10^{-13}	4.13×10^{-13}	1.00×10^{-13}
$BR(\tau \rightarrow 3e)$	3.32×10^{-10}	2.73×10^{-10}	4.96×10^{-10}	3.11×10^{-10}	8.80×10^{-10}	1.44×10^{-10}
$BR(\tau \rightarrow 3\mu)$	5.29×10^{-11}	5.43×10^{-11}	1.02×10^{-11}	1.55×10^{-10}	1.54×10^{-10}	3.33×10^{-11}
$BR(Z \to \mu e)$	1.80×10^{-15}	3.71×10^{-15}	1.07×10^{-16}	1.01×10^{-15}	4.21×10^{-15}	4.89×10^{-16}
$BR(Z \to \tau e)$	1.04×10^{-12}	8.92×10^{-13}	2.16×10^{-12}	9.47×10^{-13}	2.59×10^{-12}	6.26×10^{-13}
${\rm BR}(Z\to\tau\mu)$	1.39×10^{-13}	2.15×10^{-12}	3.51×10^{-14}	4.98×10^{-13}	2.00×10^{-12}	1.61×10^{-13}
$BR(h \to \mu e)$	7.75×10^{-15}	2.18×10^{-14}	4.91×10^{-16}	5.05×10^{-15}	2.47×10^{-14}	2.53×10^{-15}
$BR(h \to \tau e)$	4.33×10^{-9}	4.11×10^{-9}	8.80×10^{-9}	3.94×10^{-9}	1.16×10^{-8}	2.50×10^{-9}
${\rm BR}(h\to\tau\mu)$	8.12×10^{-10}	9.27×10^{-9}	1.99×10^{-10}	2.55×10^{-9}	1.12×10^{-8}	8.35×10^{-10}

Barely out of LFV limits . Future LFV ready. Combined signals for revealing Sc. M. .

(in particular $l_i \to l_j \gamma$ and $\mu \to 3e$)

Conclusions:

Focus on minimal models of NP.

Inert Doublet a likely background for many Dark Sectors proposal IDM provides sizable signal ~ 10% from which NP can be distinguished

Theoretical NLO control over the precise Higgs-strahlung determination is a great opportunity, enhanced by parallel signatures in different observables.

QFT a multiscale - multisignal coherent theory

Dark Sector, Neutrino Mass Models visible at collider and LFV (with NLO!) Future:

Less minimal, complex Yukawas, CP violations, polarization effects...