

Dependence of vacuum arc initiation dynamics on the application of a static magnetic field

CERN Baltic Conference 2024

Roni Koitermaa [\(roni.koitermaa@cern.ch\)](mailto:roni.koitermaa@cern.ch), Marzhan Toktaganova, Andreas Kyritsakis, Tauno Tiirats, Veronika Zadin, Flyura Djurabekova

ERA CHAIR MATTER (UNIVERSITY OF TARTU)

ACCELERATOR LABORATORY (UNIVERSITY OF HELSINKI)

Vacuum arcing

- Vacuum arcing i.e. vacuum breakdown (VBD): electrical arcing in a vacuum
- In lighting, air ionizes to form a conducting pathway, but what happens in a vacuum?
- Problem in high electric field gradient devices: X -ray sources, vacuum switches, particle accelerators, ...

Vacuum arcing in accelerators

- Vacuum arcing one limiting factor for accelerator projects
- New physics requires higher energies \rightarrow more problems with arcing
- Future accelerators discussed after Large Hadron Collider (LHC), e⁺e⁻ 200 GeV, 27 km• Future Circular Collider (FCC), 350
	- GeV, 100 km
	- Compact linear collider (CLIC), 3 TeV, 50 km
	- **Muon collider, 10 TeV, 27 km**

16.10.2024 Roni Koitermaa

Anodic vacuum arcing in magnetic field

- Muon collider uses extremely large magnetic fields $B \sim 30$ T
- Presence of a magnetic field can potentially change the nature of vacuum arcing (cathodic vs. anodic)
- Magnetic field focuses electron beam → anode heating \rightarrow arc initiation?

Beam radius

• Theoretical beam radius in magnetic field:

$$
\frac{r}{r_0} = \rho |\sin(\rho^{-1})|, \qquad \rho = \frac{a}{B} \sqrt{\frac{E}{y}},
$$

where r is beam radius, y is distance, E is electric field and B is magnetic field.

- In magnetic field, beam amplitude is constant
- Without magnetic field the beam opens as the square root:

 $r_0 = \sqrt{4\eta h y}$,

where η is the spreading factor and h is tip height.

Anode heating

• Heat flux at anode: $P =$ VI $\frac{v_1}{\pi r^2}$ = Ejd , where *j* is current density and *d* is gap size.

Simulations of emitted beam

- Simulation of electron beam can give insight into beam dynamics
	- FEMOCS: particle-in-cell, finite element method
	- GETELEC: electron emission
- Apply static magnetic field, calculate Lorentz force $F =$ $q_e E + q_e v \times B$ for particles
- Coulomb collisions between electrons

MATTEI

Simulation: Magnetic field direction

16.10.2024 Roni Koitermaa 9

Simulation: Beam focusing

Simulation: Anode heating

 $B_{y} = 0$ T $B_{y} = 10$ T

16.10.2024 Roni Koitermaa 11

Simulation: Anode heating

- Simulate anode heating due to electron beam using COMSOL
	- Heat rate at anode: $P = Vj / z_d$, where z_d is the electron CSDA depth in Cu (from ESTAR database).
- Anode temperature highly dependent on spot size
	- For a spot size of 10 μm, anode temperature can reach over 1000 K

16.10.2024 Roni Koitermaa 12

Conclusions

- Presence of a magnetic field can focus emitted electron beams and cause anodic heating, potentially leading to vacuum arcing
	- At large distances, heat flux at a given field will be much higher when magnetic field is present
- High temperatures can be observed at fields on the order of 10 T
- Future work: coupled simulations, plasma formation in magnetic field?

Thank you!