

Study of Non-Resonant HH Production in WWZZ Decay Mode at CMS Experiment

Antra Gaile¹ on behalf of the CMS Collaboration

 Riga Technical University, Faculty of Natural Sciences and Technology, Institute of Particle Physics and Accelerator Technologies, Riga, Latvia 16.10.2024

Why HH – why Higgs boson pairs?

The measurement of the pair production of Higgs bosons can probe its **self-coupling**, crucial for probing Higgs potential, testing of the **electroweak symmetry breaking** (and not only!)

antra.gaile@cern.ch

 $N \approx 80$

events

Endgoal: combine multiple HH channels

channels investigated Many for Run2 balancing between the purity of the final state and the branching ratio of the HH decay for the given channel

CMS

 $\kappa_{\lambda} = \kappa_{t} = 1$

 $\kappa_{\rm V} = \kappa_{\rm 2V} = 1$

Limit plot from: The CMS Collaboration. A portrait of the Higgs boson by the CMS experiment ten vears after the discovery. Nature 607, 60-68 (2022). https://doi.org/10.1038/s41586-022-04892-x

- Observed

16.10.2024

138 fb⁻¹ (13 TeV)

----- Median expected

68% expected

----- 95% expected

The ATLAS collaboration, Search for Higgs boson pair production in the WW(*)WW(*) decay channel using ATLAS data recorded at \sqrt{s} = 13 TeV. J. High Energ. Phys. 2019, 124 (2019). <u>https://doi.org/10.1007/JHEP05(2019)124</u>

16.10.2024

Analysis Strategy

- DATA: Run3 Run2
- MONTE CARLO (MC):
 - Signal ggHHto4V
 - Backgrounds WWZZ without di-Higgs WWW, WWZ, WZZ, ZZZ WW, WZ, ZZ
 ttW, ttZ, tt+jets ttt, ttVV ttH, VH DY+jets, W+jets

- STRATEGY
 - Categorize events using simple cuts;
 - Estimate DY+Jets, W+jets and ttbar backgrounds from control region in data;
 - Extract the signal in each category from a dedicated boosted decision tree (BDT);
 - Use a simple cut-and-count to estimate signal and background yields (no shape analysis).

Lepton identification follows other analysis

Electrons		Muons	
Observable	Tight	Observable	Tight
Cone- <i>p</i> _T	> 10 GeV	р т	> 10 GeV
$ \eta $	< 2.5	$ \eta $	< 2.4
$ d_{xy} $	< 0.05 cm	d _{xy}	< 0.05 cm
$ d_z $	< 0.1 cm	$ d_z $	< 0.1 cm
d/σ_d	< 8	d/σ_d	< 8
l _e	< 0.4 × <i>p</i> _T	I_{μ}	< 0.4 × <i>p</i> _T
$\sigma_{i\eta i\eta}$	< { 0.011 / 0.030 }	PF muon	>WP-medium
H/E	< 0.10		
1/E - 1/p	> -0.04		
Conversion rejection	\checkmark	+MVA TTH identification	
Missing hits	= 0		
EGamma POG MVA	>WP-loose		

Categorisation aimed at high signal efficiency

Events that pass dilepton and trilepton triggers with leptons passing ID and $p_T > 10 \text{ GeV}$, with vetoed b-tagged jets with $p_T > 20 \text{ GeV}$

OS – opposite sign; OF – opposite flavour; SF – same flavour

First focus – 3 and 4 lepton categories

Dominant backgrounds after preselection: • WZ, DY and ZZ CMS Private work 4.1 4.2 0.0 0.2 0.4 0.6 0.8 1.0 signal | bkg 0.0110 | 8.6 0.0032 | 6.6

Dominant backgrounds after preselection:ZZ, DY, TTZ and ZH

Trained a BDT for signal extraction

- 14 parameters
- Privately generated signal samples
- Globally generated background 'soup'

BDT - boosted decision tree

Preliminary limit has expected sensitivity

- mean expected limit:
 r < 249.969 +/- 2.74285 @ 95%CL
- median expected limit: r < 242.992 @ 95%CL
- 68% expected band:
 167.807 < r < 338.134
- 95% expected band: 138.533 < r < 464.443
- A simple counting experiment with the signal and overall background yields, only 3 input bins
- Very preliminary results with only statistical uncertainty + lumi nuisance

Conclusions and Next Steps

- HH → WWZZ → leptons + jets analysis could join HH analyses in view of combination as is unique not only in CMS but also LHC;
- Categorisation is defined;
- Dedicated BDT per category for signal extraction is developed;
- First estimate of upper limit set!

Ongoing

- Checking for data and MC agreement in control regions;
- Developing data driven background estimates.

Next

- Implement and update corrections;
- Cover full Run 2 and early Run 3 (2022, 2023).

Questions?

Let us know your thoughts! <u>cms-hh-wwzz@cern.ch</u>

16.10.2024