

The influence of electromagnetic power in vacuum breakdown (simulation approach)

Tauno Tiirats

<u>A. Kyritsakis, R. Koitermaa, V. Zadin</u> Tartu University, Institute of Technology ERA Chair MATTER

MATTER

CBC, 16.10.2024

Outline

Introduction

- Motivation & Goal
- Multiscale breakdown simulations & FEMOCS
- Electromagnetic power supply
 - Idea
 - Implementation
 - Preliminary results
- Conclusion

- VBD mitigation techniques:
 - Controlling relevant characteristics
 - electric field strength
 - surface roughness
 - contamination of material surface
 - Limiting the available EM power [1,2]

Accelerating structure (CLIC)

Surface damage in CLIC accelerating structures after the breakdown

Images: Walter Wuensch, CERN

W. Wuensch. The Scaling of the Traveling-Wave RF Breakdown Limit. Technical Report CERN-AB-2006-013. CLIC-Note-649, CERN, Geneva, Jan 2006.
A. Grudiev, S. Calatroni, and W. Wuensch. New local field quantity describing the high gradient limit of accelerating structures. Phys. Rev. ST Accel. Beams, 12:102001, Oct 2009.

- The hypotheses:
 - The power supply limitation hinders the development of plasma exactly at the moment plasma initiates (stage 2-3)
 - The VBD can be described by multi-scale simulations
- The goal:
 - Describe <u>quantitatively</u> the EM power dependence of VBD initiation

Accelerating structure (CLIC)

Surface damage in CLIC accelerating structures after the breakdown

- Dedicated Research project
 - Estonian Research Council
 - Research grant nr. SJD66
 - Horizon 2020 ERA Chair MATTER

Images: Walter Wuensch, CERN

Multiscale breakdown simulations

- VBD involves various phenomena in various space scales:
 - Emission spot formation
 - Thermal runaway
 - Field emission
 - Plasma formation
 - Surface damage
- Need for concurrent, **multi-scale**, **multi-physics simulations**
 - Atomistic simulations
 - Molecular Dynamics (MD)
 - Particle Dynamics (PIC)
 - Continuum simulations
 - Thermomechanics (FEM)
 - Electromagnetics (FEM)

Scheme of considered physics in VBD simulation

Electromagnetic power supply

Peak power demand during VBD onset

- *"Experimental data (CERN, SLAC and KEK) suggests* <u>High-Gradient limit depends on power flow</u>, not only E field" [3]
 - Plasma initiation requires a large influx of power
- Ultimate VBD limit is a function of available power
 - During VBD onset, not before!
 - Local power flow
 - Local surface E field decreases under VBD loading

- Jan Paszkiewicz's solution [4]:
- BD
- Simplified circuit
- VBD dynamics approximated by a "simple" non-linear circuit element (*Child-Langmuir law*)
- For **any point** in the domain evaluate:
 - **dependence of local field** on test current
 - assumed function for VBD site emitted current
 - Find quasi-equilibrium point
- Elegant, but ...

[4] Paszkiewicz, Jan. *Studies of breakdown and pre-breakdown phenomena in high-gradient accelerating structures.* Diss. University of Oxford, 2020.

- Jan Paszkiewicz's solution:
 - Simplified circuit

- VBD dynamics approximated by a "simple" non-linear circuit element (Child-Langmuir law)
- For **any point** in the domain evaluate:
 - **dependence of local field** on test current
 - assumed function for VBD site emitted current
 - Find quasi-equilibrium point
- DOES NOT ACCOUNT FOR THE FULL PHYSICS OF VBD!!!

- FEMOCS to the rescue
 - Evaluate the local VBD physics *accurately*
 - Couple the whole system to the VBD
 - Via <u>impedance *Z*(*s*) (*Thevenin theorem*)</u>
 - <u>At any point in the system</u>
 - V_{sim} as the coupling link:
 - $V_{sim}(s) = V(s) I(s)Z(s)$ with Reverse Laplace transform: $v_{sim}(t) = v(t) - i(t) * \zeta(t)$
- Impulse , response
- *Z*(*s*) as the **system design parameter**
 - Each point has an unique <u>impulse</u> <u>response</u>

VBD initiation example

- Electrons
- Neutrals
- lons

R circuit case study

Voltage drop

Data provided by: Paszkiewicz

Qualitative nature of results

- Z response (from J.Paszkiewicz)
 - 1 MHz ... 1.3 GHz (>10 GHz)
 - RC fit for Z
- Tip geometry dependency (future work)
 - Static tip!
 - β&T

Preliminary LES simulation results

Preliminary LES simulation results

- Conclusions (preliminary)
 - Indications of critical BD current
 - "High" impedance can prevent reaching runaway state
- Ongoing steps
 - Tip geometry influence
 - Critical current (or relevant limit measure)
 - β&T
 - In-dept investigation into Pulse DC system (LES)
 - Surface/tip morphology [R. Koitermaa]

Thank you for your time!

This work is funded by:

Estonian Research Grant nr SJD66 ERA Chair "MATTER"

Selection of FEMOCS Publications:

- Koitermaa, Roni, et al. "Simulating vacuum arc initiation by coupling emission, heating and plasma processes." *arXiv preprint arXiv:2402.08404* (2024).
- M. Veske, A. Kyritsakis, F. Djurabekova, K. N. Sjobak, A. Aabloo, and V. Zadin. Dynamic coupling between particle-in-cell and atomistic simulations. Phys. Rev. E, 101:053307, May 2020.
- M. Veske, A. Kyritsakis, K. Eimre, V. Zadin, A. Aabloo, and F. Djurabekova. Dynamic coupling of a finite element solver to large-scale atomistic simulations. Journal of Computational physics, 367:279 – 294, 2018.
- M. Veske, "Multiscale-multiphysics modelling of metal surfaces." *Report Series in Physics, PhD thesis* (2019).