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Higgs Inflation

Total action is given by the SM action plus Einstein-Hilbert
term plus a non minimal coupling between the Higgs boson and
gravity (metric convention −+++)

Stot =
∫
d4x

√
−g

(
M2

2 R + ξH+HR + LSM

)
By going to the unitary gauge H = h√

2
and neglecting the gauge

interactions we have:

S =
∫
d4x

(
M2+ξh2

2 R − 1
2∂µh∂νh − λ

4 (h
2 − v2)2

)
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Higgs inflation - Minimal coupling

For ξ = 0 the potential V (ϕ) = λ
4 (h

2 − v2)2 with v = 246GeV

Expanding the potential we have the identification m2
H = λv2

which implies λ = 0.26 since mH = (125.25± 0.17)GeV (PDG
2022)
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Higgs inflation - Minimal coupling

Slow-roll approximation

V (ϕ) = λ
4 (h

2 − v2)2 tree-level Higgs potential

ϵV (ϕ) =
1
2
V ′(ϕ)
V (ϕ) , ϵV < 1 inflation

ηV (ϕ) =
1
2
V ′(ϕ)
V (ϕ) , |ηV | < 1 slow-roll condition

CMB observables

r = 16ϵV tensor-to-scalar ratio

ns = 1− 2ηV + 6ϵV spectral index

As =
V

24π2ϵV
amplitude of the power spectrum
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Higgs inflation - Minimal coupling
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Predicts As ∼ 4 · 10−3, r ∼ 0.26, ns ∼ 0.95 at 60 e-fold which are
not in agreement with the observed values

Produces way too large matter fluctuations which cannot seed
the current large scale structure
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Higgs inflation with non-minimal coupling

By a so called conformal transformation we can get rid of the
non-minimal coupling

g̃µν = Ω2gµν , Ω
2 = 1 + ξh2

M2
P
the new transformed action reads:

S =
∫
d4x

√
−g̃

(
M2

P
2 R̃ − 1

2∂µχ∂νχ− U(χ)
)

with U(χ) = 1
Ω4(χ)

λ
4 (h

2(χ)− v2)2 and dχ
dh =

√
Ω2+6ξ2h2/M2

P
Ω4
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Higgs inflation with non-minimal coupling
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Higgs inflation with non-minimal coupling
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We can use the slow-roll approximation to compute the CMB
observables, this gives:

r = 192
(4Ne+3)2

∼ 0.0031, ns = 1− 8(4Ne+9)
(4Ne+3)2

∼ 0.967 at 60 efolds

and by fixing As = 2.1 · 10−9 to the measured one we get
ξ = 1.76 · 104 and Einf ∼ ( r

0.01)
1/41016GeV ∼ 1016GeV
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Radiative corrections

At high energies the Higgs potential V (h) = λ
4 (h

2 − v2)2 is
modified by quantum corrections

To extrapolate the form of the potential Veff at high energies one
can use M̄S scheme

The potential can be expressed as a sum of tree level plus
increasing loop contribution:

Veff = V (0) + V (1) + V (2)+...

From PDG 2022 world average:
mexp

H = (125.25± 0.17)GeV
mexp

t = (172.5± 0.7)GeV

α
(5)exp
s = 0.1179± 0.0009
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Radiative corrections

Potential is gauge dependent (Landau gauge), but stationary
configurations are not and only depend on the input parameters

mt = mc
t (1 + δt) with mc

t = 171.0549GeV being the critical top

mass for which the potential is degenerate (after fixing α
(5)
s , mH

to their central values)
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Radiative corrections

Introducing a non-minimal coupling in the action can help both
with inflation and the stability issue

We recall that in this case the classical potential in the Einstein
frame is given by:

U(χ) = 1
Ω4(χ)

λ
4 (h

2(χ)− v2)2

with dχ
dh =

√
Ω2+6ξ2h2/M2

P
Ω4 and Ω(χ)2 = 1 + ξh(χ)2

M2
P

Again the high energy potential can be computed by expanding
at loop-order Ueff = U0 + U1 + U2 + ...
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Radiative corrections

The non-minimal coupling can help stabilizing the potential at high
energies

Value of ξ required to stabilize the potential depends on mt

But what about inflation?
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Radiative corrections

We will consider 4 cases trough examples:

mt < mi
t stable potential, no new minima appears

mt = mi
t potential with inflection point

mi
t < mt ≤ mc

t stable potential, but new minima appears at
high energies

mt > mc
t metastable configuration, new minima appears with

lower vacuum energy
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Radiative corrections mt < mi
t

This case corresponds to stable configurations for which no new
minima is developed at high energies (mt = 170.4GeV , 3σ lower
value)

We flatten this potential with ξ that allows to predict the right
value of As = 2.1 · 10−9 and get ξ ∼ 3 · 103
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Radiative corrections mt = mi
t

This case corresponds to the stable configuration for which we
have an inflection point at high energies (mt = 171.0547∼ 2σ
lower value)

In this case we have ξ ∼ 8 · 102, the value is such that the
inflection point disappears
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Radiative corrections mi
t < mt ≤ mc

t

This case corresponds to the stable configuration for which we
have a new minimum at high energies but at higher values of the
EW vacuum (mt = 171.0549∼ 2σ lower value)

In this case we have ξ ∼ 8 · 102, the value is such that the second
minimum disappears
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Radiative corrections mt > mc
t

This case corresponds metastable configurations for which we have
a new minimum at high energies but at higher values of the EW
vacuum (mt = m∗

t = 171.08∼ 2σ lower value)

In this case we have ξ ∼ 5.5 · 102, the value is such that the
second minimum disappears
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Radiative corrections - Comments

Unfortunately we cannot rescue the potential stability and at the
same time have Higgs-inflation for mt > m∗

t

ξ < ξmin can’t predict right As

The predictions for r , ns are not spoiled by quantum
corrections and essentially reproduce the tree-level predictions
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Take-home message

We can have viable metric Higgs inflation but we need
mt ≤ 171.08GeV (∼ 2σ lower value) to solve metastibility issues
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The end

Thank you for the attention!
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