

Inflation model building: Higgs inflation

Christian Dioguardi

National Institute Of Chemical Physics And Biophysics Tallinn University of Technology

17 October 2024

Total action is given by the SM action plus Einstein-Hilbert term plus a non minimal coupling between the Higgs boson and gravity (metric convention - + ++)

$$\mathcal{S}_{tot} = \int d^4x \sqrt{-g} \Big(rac{M^2}{2} R + \xi H^+ H R + \mathcal{L}_{SM} \Big)$$

By going to the unitary gauge $H = \frac{h}{\sqrt{2}}$ and neglecting the gauge interactions we have:

$$\mathcal{S} = \int d^4x \left(\frac{M^2 + \xi h^2}{2} R - \frac{1}{2} \partial_\mu h \partial_\nu h - \frac{\lambda}{4} (h^2 - v^2)^2 \right)$$

Higgs inflation - Minimal coupling

For $\xi = 0$ the potential $V(\phi) = \frac{\lambda}{4}(h^2 - v^2)^2$ with v = 246 GeV

Expanding the potential we have the identification $m_H^2 = \lambda v^2$ which implies $\lambda = 0.26$ since $m_H = (125.25 \pm 0.17) GeV$ (PDG 2022)

Higgs inflation - Minimal coupling

Slow-roll approximation

$$V(\phi) = \frac{\lambda}{4}(h^2 - v^2)^2$$
 tree-level Higgs potential
 $\epsilon_V(\phi) = \frac{1}{2}\frac{V'(\phi)}{V(\phi)}, \ \epsilon_V < 1$ inflation
 $\eta_V(\phi) = \frac{1}{2}\frac{V'(\phi)}{V(\phi)}, \ |\eta_V| < 1$ slow-roll condition

CMB observables

 $r = 16\epsilon_V$ tensor-to-scalar ratio

$$n_{s}=1-2\eta_{V}+6\epsilon_{V}$$
 spectral index

$$A_s = rac{V}{24\pi^2\epsilon_V}$$
 amplitude of the power spectrum

Higgs inflation - Minimal coupling

BICEP/Keck+Planck2018+BAO arxiv.org/abs/2110.00483

Predicts $A_s \sim 4 \cdot 10^{-3}$, $r \sim 0.26$, $n_s \sim 0.95$ at 60 e-fold which are not in agreement with the observed values

Produces way too large matter fluctuations which **cannot seed the current large scale structure**

Higgs inflation with non-minimal coupling

. . 0

By a so called **conformal transformation** we can get rid of the non-minimal coupling

$$\tilde{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}, \ \Omega^2 = 1 + \frac{\xi h^2}{M_P^2}$$
 the new transformed action reads:
 $S = \int d^4 x \sqrt{-\tilde{g}} \left(\frac{M_P^2}{2} \tilde{R} - \frac{1}{2} \partial_\mu \chi \partial_\nu \chi - U(\chi) \right)$
with $U(\chi) = \frac{1}{\Omega^4(\chi)} \frac{\lambda}{4} (h^2(\chi) - v^2)^2$ and $\frac{d\chi}{dh} = \sqrt{\frac{\Omega^2 + 6\xi^2 h^2/M_P^2}{\Omega^4}}$

Higgs inflation with non-minimal coupling

Higgs inflation with non-minimal coupling

We can use the **slow-roll** approximation to compute the **CMB observables**, this gives:

$$r=rac{192}{(4N_e+3)^2}\sim 0.0031, n_s=1-rac{8(4N_e+9)}{(4N_e+3)^2}\sim 0.967$$
 at 60 efolds

and by fixing $A_s = 2.1 \cdot 10^{-9}$ to the measured one we get $\xi = 1.76 \cdot 10^4$ and $E_{inf} \sim (\frac{r}{0.01})^{1/4} 10^{16} GeV \sim 10^{16} GeV$

Radiative corrections

At high energies the Higgs potential $V(h) = \frac{\lambda}{4}(h^2 - v^2)^2$ is modified by quantum corrections

To extrapolate the form of the potential V_{eff} at high energies one can use \bar{MS} scheme

The **potential** can be expressed as a **sum of tree level plus increasing loop contribution**:

$$V_{eff} = V^{(0)} + V^{(1)} + V^{(2)} + \dots$$

From PDG 2022 world average: $m_{H}^{exp} = (125.25 \pm 0.17) GeV$ $m_{t}^{exp} = (172.5 \pm 0.7) GeV$ $\alpha_{s}^{(5)exp} = 0.1179 \pm 0.0009$

Radiative corrections

Potential is gauge dependent (Landau gauge), but **stationary configurations are not** and only depend on the input parameters

 $m_t = m_t^c(1 + \delta_t)$ with $m_t^c = 171.0549 GeV$ being the **critical top** mass for which the potential is **degenerate** (after fixing $\alpha_s^{(5)}$, m_H to their central values) Introducing a **non-minimal coupling** in the action can help **both** with **inflation** and the **stability** issue

We recall that in this case the classical potential in the Einstein frame is given by:

$$U(\chi) = rac{1}{\Omega^4(\chi)} rac{\lambda}{4} (h^2(\chi) - v^2)^2$$

with $rac{d\chi}{dh} = \sqrt{rac{\Omega^2 + 6\xi^2 h^2/M_P^2}{\Omega^4}}$ and $\Omega(\chi)^2 = 1 + rac{\xi h(\chi)^2}{M_P^2}$

Again the high energy potential can be computed by **expanding** at loop-order $U_{eff} = U^0 + U^1 + U^2 + ...$

Radiative corrections

The non-minimal coupling can help stabilizing the potential at high energies

Value of ξ required to stabilize the potential depends on m_t

But what about inflation?

We will consider 4 cases trough examples:

- $m_t < m_t^i$ stable potential, no new minima appears
- $m_t = m_t^i$ potential with inflection point
- $m_t^i < m_t \le m_t^c$ stable potential, but new minima appears at high energies
- $m_t > m_t^c$ metastable configuration, new minima appears with lower vacuum energy

Radiative corrections $m_t < m'_t$

This case corresponds to stable configurations for which no new minima is developed at high energies ($m_t = 170.4 GeV$, 3σ lower value)

We flatten this potential with ξ that allows to predict the right value of $A_s = 2.1 \cdot 10^{-9}$ and get $\xi \sim 3 \cdot 10^3$

Radiative corrections $m_t = m'_t$

This case corresponds to the stable configuration for which we have an inflection point at high energies ($m_t = 171.0547 \sim 2\sigma$ lower value)

In this case we have $\xi \sim 8 \cdot 10^2,$ the value is such that the inflection point disappears

Radiative corrections $m_t^i < m_t \leq m_t^c$

This case corresponds to the stable configuration for which we have a new minimum at high energies but at higher values of the EW vacuum ($m_t = 171.0549 \sim 2\sigma$ lower value)

In this case we have $\xi \sim 8 \cdot 10^2,$ the value is such that the second minimum disappears

Radiative corrections $m_t > m_t^c$

This case corresponds metastable configurations for which we have a new minimum at high energies but at higher values of the EW vacuum ($m_t = m_t^* = 171.08 \sim 2\sigma$ lower value)

In this case we have $\xi\sim 5.5\cdot 10^2,$ the value is such that the second minimum disappears

Radiative corrections - Comments

Unfortunately we cannot rescue the potential stability and at the same time have Higgs-inflation for $m_t > m_t^*$

The predictions for r, n_s are not spoiled by quantum corrections and essentially reproduce the tree-level predictions

We can have viable metric Higgs inflation but we need $m_t \leq 171.08 \, GeV \ (\sim 2\sigma \text{ lower value})$ to solve metastibility issues

The end

Thank you for the attention!