

Inflation model building: Higgs inflation

Christian Dioguardi

National Institute Of Chemical Physics And Biophysics Tallinn University of Technology

17 October 2024

Total action is given by the SM action plus Einstein-Hilbert term plus a **non minimal coupling** between the Higgs boson and gravity (metric convention $- + + +$)

$$
S_{tot} = \int d^4x \sqrt{-g} \left(\frac{M^2}{2} R + \xi H^+ H R + \mathcal{L}_{SM} \right)
$$

By going to the unitary gauge $H = \frac{h}{\sqrt{2}}$ $\frac{1}{2}$ and neglecting the gauge interactions we have:

$$
S = \int d^4x \left(\frac{M^2 + \xi h^2}{2} R - \frac{1}{2} \partial_\mu h \partial_\nu h - \frac{\lambda}{4} (h^2 - v^2)^2 \right)
$$

Higgs inflation - Minimal coupling

For $\xi = 0$ the potential $V(\phi) = \frac{\lambda}{4}(h^2 - v^2)^2$ with $v = 246 \text{GeV}$

Expanding the potential we have the identification $m_H^2 = \lambda v^2$ which implies $\lambda = 0.26$ since $m_H = (125.25 \pm 0.17)$ GeV (PDG 2022)

Higgs inflation - Minimal coupling

Slow-roll approximation

$$
V(\phi) = \frac{\lambda}{4} (h^2 - v^2)^2
$$
 tree-level Higgs potential

$$
\epsilon_V(\phi) = \frac{1}{2} \frac{V'(\phi)}{V(\phi)}, \epsilon_V < 1
$$
inflation

$$
\eta_V(\phi) = \frac{1}{2} \frac{V'(\phi)}{V(\phi)}, |\eta_V| < 1
$$
slow-roll condition

CMB observables

 $r = 16\epsilon_V$ tensor-to-scalar ratio

$$
n_s = 1 - 2\eta_V + 6\epsilon_V
$$
 spectral index

$$
A_s = \frac{V}{24\pi^2 \epsilon_V}
$$
 amplitude of the power spectrum

Higgs inflation - Minimal coupling

BICEP/Keck+Planck2018+BAO arxiv.org/abs/2110.00483

Predicts $A_{\sf s} \sim 4 \cdot 10^{-3}$, $r \sim 0.26, n_{\sf s} \sim 0.95$ at 60 e-fold which are not in agreement with the observed values

Produces way too large matter fluctuations which **cannot seed** the current large scale structure

Higgs inflation with non-minimal coupling

 \cdots

By a so called conformal transformation we can get rid of the non-minimal coupling

$$
\tilde{g}_{\mu\nu} = \Omega^2 g_{\mu\nu}, \ \Omega^2 = 1 + \frac{\xi h^2}{M_P^2} \text{ the new transformed action reads:}
$$
\n
$$
S = \int d^4x \sqrt{-\tilde{g}} \left(\frac{M_P^2}{2}\tilde{R} - \frac{1}{2}\partial_\mu \chi \partial_\nu \chi - U(\chi)\right)
$$
\n
$$
\text{with } U(\chi) = \frac{1}{\Omega^4(\chi)} \frac{\lambda}{4} (h^2(\chi) - \nu^2)^2 \text{ and } \frac{d\chi}{dh} = \sqrt{\frac{\Omega^2 + 6\xi^2 h^2 / M_P^2}{\Omega^4}}
$$

Higgs inflation with non-minimal coupling

Higgs inflation with non-minimal coupling

We can use the **slow-roll** approximation to compute the **CMB** observables, this gives:

$$
r = \frac{192}{(4N_e+3)^2} \sim 0.0031, n_s = 1 - \frac{8(4N_e+9)}{(4N_e+3)^2} \sim 0.967 \text{ at } 60 \text{ efolds}
$$

and by fixing $A_s = 2.1 \cdot 10^{-9}$ to the measured one we get $\xi=1.76\cdot 10^4$ and $\mathsf{E}_{\mathit{inf}}\sim (\frac{r}{0.01})^{1/4}10^{16}\mathsf{GeV}\sim 10^{16}\mathsf{GeV}$

Radiative corrections

At high energies the **Higgs potential** $V(h) = \frac{\lambda}{4}(h^2 - v^2)^2$ is modified by quantum corrections

To extrapolate the form of the potential V_{eff} at high energies one can use \overline{MS} scheme

The **potential** can be expressed as a sum of tree level plus increasing loop contribution:

$$
V_{\text{eff}} = V^{(0)} + V^{(1)} + V^{(2)} + \dots
$$

From PDG 2022 world average: $m_{H_{\mu}}^{\text{exp}} = (125.25 \pm 0.17)$ GeV $m_t^{exp} = (172.5 \pm 0.7)$ GeV $\alpha_s^{(5)exp}=0.1179\pm0.0009$

Radiative corrections

Potential is gauge dependent (Landau gauge), but stationary configurations are not and only depend on the input parameters

 $m_t = m_t^c(1 + \delta_t)$ with $m_t^c = 171.0549$ GeV being the critical top **mass** for which the potential is $\boldsymbol{degenerate}$ (after fixing $\alpha_s^{(5)}$, m_H to their central values)

Introducing a non-minimal coupling in the action can help both with **inflation** and the **stability** issue

We recall that in this case the classical potential in the Einstein frame is given by:

$$
U(\chi) = \frac{1}{\Omega^4(\chi)} \frac{\lambda}{4} (h^2(\chi) - v^2)^2
$$

with $\frac{d\chi}{dh} = \sqrt{\frac{\Omega^2 + 6\xi^2 h^2 / M_P^2}{\Omega^4}}$ and $\Omega(\chi)^2 = 1 + \frac{\xi h(\chi)^2}{M_P^2}$

Again the high energy potential can be computed by expanding at loop-order $\mathit{U}_{\mathit{eff}}=\mathit{U}^{0}+\mathit{U}^{1}+\mathit{U}^{2}+...$

Radiative corrections

The non-minimal coupling can help stabilizing the potential at high energies

Value of ξ required to stabilize the potential depends on m_t

But what about inflation?

We will consider 4 cases trough examples:

- $m_t < m_t^i$ stable potential, no new minima appears
- $m_t = m_t^i$ potential with inflection point
- $m_t^i < m_t \le m_t^c$ stable potential, but new minima appears at high energies
- $m_t > m_t^c$ metastable configuration, new minima appears with lower vacuum energy

Radiative corrections $m_t < m_t^{i}$

This case corresponds to stable configurations for which no new minima is developed at high energies ($m_t = 170.4 \text{GeV}$, 3σ lower value)

We flatten this potential with ξ that allows to predict the right value of $A_{\sf s}=2.1\cdot 10^{-9}$ and get $\xi\sim 3\cdot 10^3$

Radiative corrections $m_t=m_t^i$

This case corresponds to the stable configuration for which we have an inflection point at high energies (m_t = 171.0547 \sim 2 σ lower value)

In this case we have $\xi \sim 8 \cdot 10^2$, the value is such that the inflection point disappears

Radiative corrections $m^i_t < m_t \le m^c_t$

This case corresponds to the stable configuration for which we have a new minimum at high energies but at higher values of the EW vacuum (m_t = 171.0549 \sim 2 σ lower value)

In this case we have $\xi \sim 8 \cdot 10^2$, the value is such that the second minimum disappears

Radiative corrections $m_t > m_t^c$

This case corresponds metastable configurations for which we have a new minimum at high energies but at higher values of the EW vacuum $\left(\mathsf{m}_t = \mathsf{m}_t^* = 171.08\mathord{\sim} 2\sigma$ lower value)

In this case we have $\xi \sim 5.5 \cdot 10^2$, the value is such that the second minimum disappears

Radiative corrections - Comments

Unfortunately we cannot rescue the potential stability and at the same time have $\boldsymbol{\mathsf{Higgs\text{-}inflation}}$ for $m_t > m_t^*$

The predictions for r, n_s are not spoiled by quantum corrections and essentially reproduce the tree-level predictions

We can have **viable metric Higgs inflation** but we need $m_t \le 171.08 \text{GeV}$ ($\sim 2\sigma$ lower value) to solve metastibility issues

The end

Thank you for the attention!