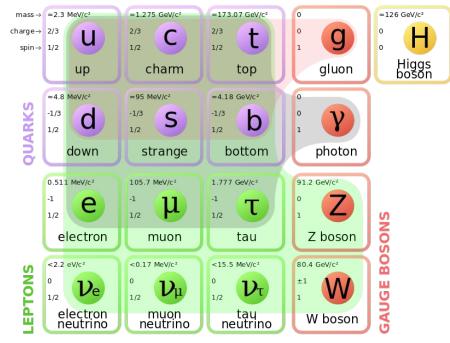
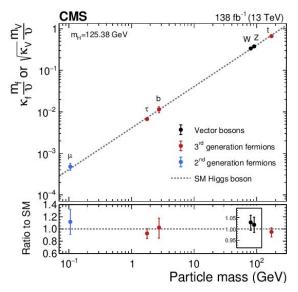


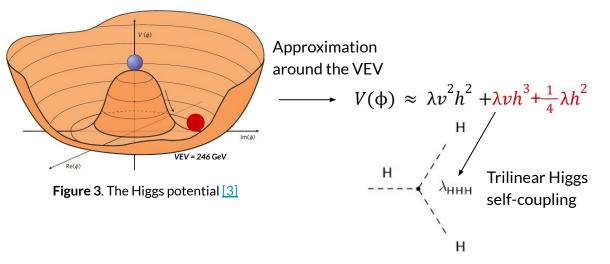
Exploring Vector Boson Fusion Di-Higgs Production in the $b\bar{b}\tau^{+}\tau^{-}$ Final State

Norman Seeba (NICPB,EE)

4th CERN Baltic Conference, 15-17 October 2024

The Standard Model (SM)


Figure 1. The Standard Model of particle physics [1]

Introduction

A wide range of Higgs boson properties have already been precisely measured

However, not much is known about the Higgs potential and the Higgs self-interaction λ

Figure 2. The measured coupling modifiers of the Higgs boson to fermions and heavy gauge bosons, as functions of particle mass [2]

Higgs boson pair (HH) production

HH production allows to directly measure λ

 κ -framework: Used to measure any coupling,

such as: $\kappa_{\lambda} = \lambda^{Obs} / \lambda^{SM}$

Test measurement accuracy and deviation from the SM

Gluon-Gluon Fusion (ggF) - 31.05 fb at 13 TeV

• Dominant production mechanism, sensitive to κ_{A}

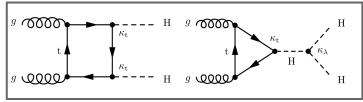


Figure 5. Feynman diagrams for ggHH (gray) and qqHH (red) [5]

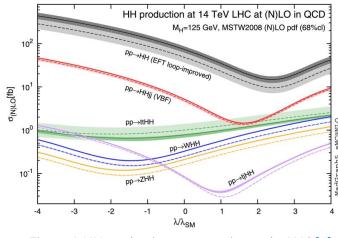
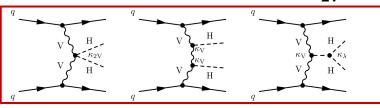
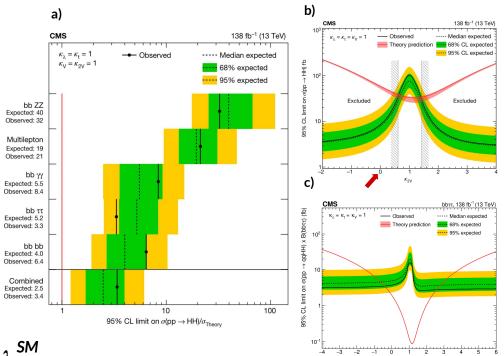



Figure 4. HH production cross section at the LHC [4]

Vector Boson Fusion (VBF) - 1.73 fb at 13 TeV

• Subdominant mechanism, sensitive to κ_{2V}


$CMS\,HH{\rightarrow} b\bar{b}\tau^{+}\tau^{-}\,analysis$

Search for HH production in decay modes with two b-quarks and two tau leptons:

- $H \to b\overline{b}$
- $H \to \tau^+ \tau^-$

Investigating both ggHH and qqHH production

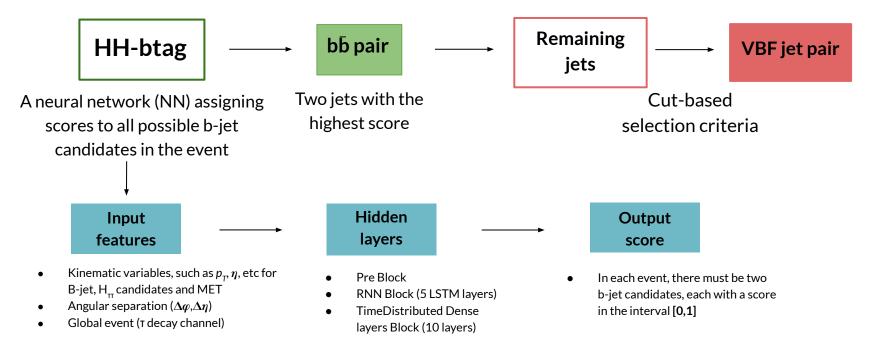

Set upper limits on **SM HH** production **cross section**, constraints on $\kappa_{\lambda} = \lambda_{HHH} / \lambda_{HHH}^{SM}$ and κ_{2V} Run 2 results for HH \rightarrow bbtt published by CMS in <u>Physics Letters B</u> Volume 842, 10 July 2023, 137531

Figure 6. (a) Upper limits on HH production cross section for different final states [2]. Constrains on κ_{2V} for all final states combined (b) [2] and only for bbtt (c) [5]

CMS HH→bb̄t⁺t⁻ analysis

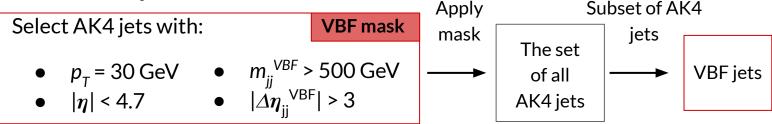
The identification and selection of $b\bar{b}$ and VBF jets in the run 2 analysis:

Strategy for tagging VBF jets for the run 3 analysis

The framework used for this analysis is developed by physicists at Universität Hamburg (UHH) in collaboration with our group, and is based on Columnflow [6]

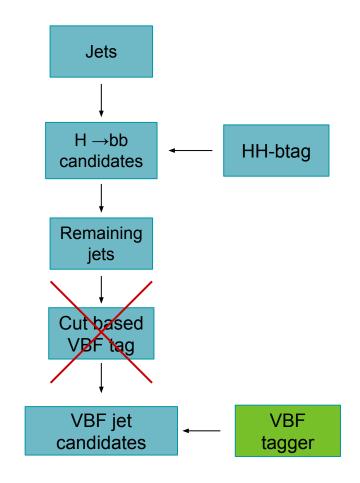
Steps for approaching the tagging of VBF jets:

- Validate the object and event selection criteria
- Study the qqHH signal distributions, develop discriminants
- Train a neural network

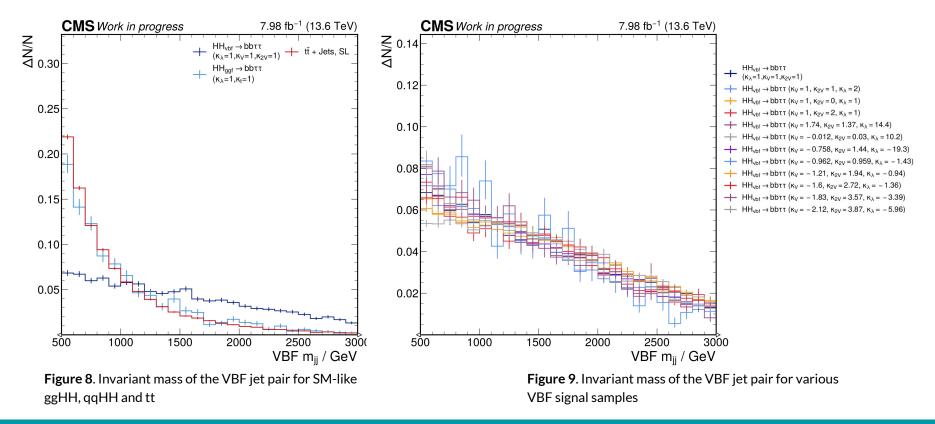


Object and event selection using Columnflow

Current VBF jet selection


VBF tagger

Train a NN capable of finding the VBF jet pair


Analogous to the HH-btag used in the run 2 analysis:

• Assign VBF scores to jets, choose the jets with the highest scores as the VBF pair

Preliminary task - Study qqHH signal distributions

First look at qqHH signal distributions

Current status

Write new producers

• Produce new columns containing the features of the VBF jet pair

Validating the object and event selection

• Generator level jets need to be matched to reco level jets to confirm the correct selection of VBF jets

Investigating the qqHH signal distribution for different variables

• Add new variables in the producers

Summary and outlook

- Search for HH production in the $bb\bar{t}^+\bar{t}$ final state
- Improve the VBF jet pair identification used in the run 2 analysis
- Neural network based VBF tagger development
- Work in progress

References

[1] Wikimedia Commons. Standard Model of Elementary Particle Physics. [Online; accessed October 9, 2024]. 2017. URL : <u>https://commons.wikimedia.org/wiki/File:Standard Model of Elementary Particles.svg</u>

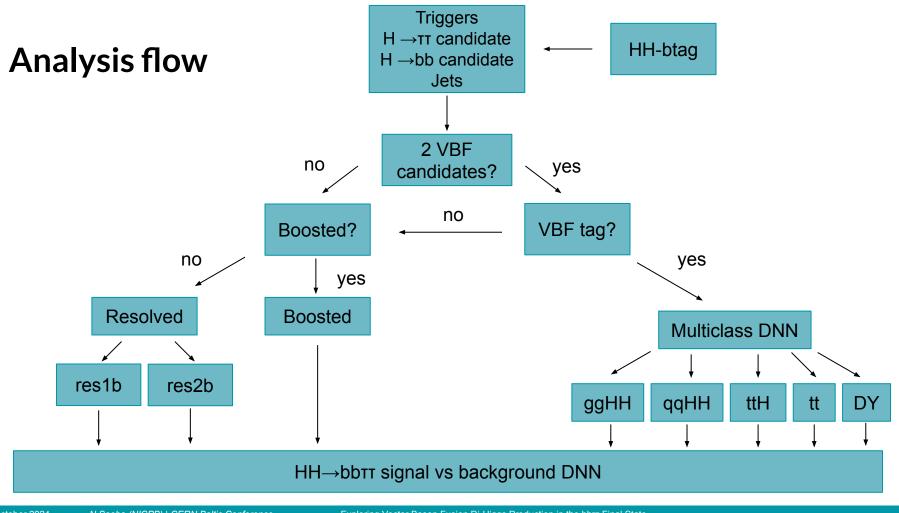
[2] The CMS Collaboration. A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature 607, 60–68 (2022). <u>https://doi.org/10.1038/s41586-022-04892-x</u>

[3] John Ellis, Mary K. Gaillard, and Dimitri V. Nanopoulos. A Historical Profile of the Higgs Boson. The Standard Theory of Particle Physics. October 2016, 255-274. <u>https://doi.org/10.1142/9789814733519_0014</u>

[4] R. Frederix et al. "Higgs pair production at the LHC with NLO and parton-shower effects". In: Physics Letters B 732 (May 2014), pp. 142–149. <u>https://doi.org/10.48550/arXiv.1401.7340</u>

[5] The CMS Collaboration. Search for nonresonant Higgs boson pair production in final state with two bottom quarks and two tau leptons in proton-proton collisions at s=13 TeV.Physics Letters B, Volume 842, 2023, 137531, ISSN 0370-2693.

https://doi.org/10.1016/j.physletb.2022.137531


[6] Columnflow github repository. <u>https://github.com/columnflow/columnflow/tree/master</u>

[7] Marcel Rieger. Columnflow: Fully automated analyses via flow of columns over distributed resources [Online; accessed October 9, 2024]. 2017. URL :

https://indico.cern.ch/event/1330797/contributions/5863284/attachments/2821002/4926186/2024-03-15_columnflow_acac t_poster_talk.pdf

Backup

17th October 2024 N.Seeba (NICPB) | CERN Baltic Conference Exploring Vector Boson Fusion Di-Higgs Production in the bbπ Final State

17th October 2024 N.Seeba (NICPB) | CERN Baltic Conference

Exploring Vector Boson Fusion Di-Higgs Production in the bbtt Final State