Novel linear accelerator design for injection of helium ions into a particle therapy synchrotron and parallel radioisotope production

Presenter: Lazar Nikitovic (CERN/RTU) Supervisors: Maurizio Vretenar (CERN) Toms Torims (RTU)

Content

- □ Aims of the study
- □ Facility and linac layout
- Different linac structures
- □ Energy Ramping (ER) and Debunching (DB) cavities
- □ Synchrotron injection
- □ Radioisotope production
- **Summary**
- □ Further steps

- To develop a dual function linac that can:
 - Inject helium ions into a cancer therapy synchrotron, and
 - Produce in parallel a wide range of therapeutic radioisotopes.

Linac layout

Alvarez Drift Tube Linac (DTL)

- Simplest 0-mode structure;
- Every drift tube (DT) contains permanent magnet quadrupole (PMQ);
- Strong transversal focusing;
- Isn't suitable for acceleration of low energy particles;

Quasi-Alvarez Drift Tube Linac (QA-DTL)

- Modification of Alvarez DTL;
- Every third DT contains PMQ;
- DTs containing PMQ are 2 times longer than the ones present in Alvarez DTL;
- Due to DTs length the lower energy particles can be accelerated in comparison to standard Alvarez DTL;

QA-DTL drift tube with PMQ

- The overall dimensions of each DT is carefully designed;
- Special complexity creates the DTs consisting PMQ;
- The Halbach quadrupole with 16 sections placed inside longer DT;

Energy Ramping (ER) & Debunching (DB) cavities

- Both ER and DB cavities consist of one or multiple cells, depending on required voltage and size of energy ramping step;
- Both ER and DB cavities can be 0-mode or pi-mode structures;
- For ER cavity the manipulation of synchronous phase is crucial;
- For DB cavity the voltage needs to be chosen carefully;

Energy Ramping (ER) & Debunching (DB) cavities

Proposed linac design

All the units are in [cm].

[11]

Linac as synchrotron injector

- The linac as synchrotron injector must deliver 5 mA of helium ions at the energy of 5 MeV/u;
- Since multiturn injection in the synchrotron at relatively high intensity requires a careful control of the longitudinal beam parameters, two short RF cavities are included as separate sections in the DTL1 and DTL2:
 - Energy Ramping (ER) cavity providing a fast ramping of beam energy for longitudinal painting, and
 - Debunching (DB) cavity to minimize energy spread;

RF design of linac as synchrotron injector

All the units are in [cm].

RF design of linac as synchrotron injector

	QA-DTL	ER	DB	Units
Designed ions		⁴ He ²⁺		-
RF frequency		352.2		MHz
Length	425	9	11	cm
Input energy	1	-	-	MeV/u
Output energy	5	-	-	MeV/u
Max. surface field	1.8	1.	3	kp
Synchronous phase	-35 to -24	-146.9 to -33.1	-90	o
RF power	535	35	38	kW
Avg. axial el. field	3.5	3.	.1	MV/m
No. of cells/superperiods*	17	1	1	-

Beam optics of linac as synchrotron injector

	LINAC	Units
Beam current	5	mA
Energy ramping	-	MeV/u
In. trans. norm. emit. [rms] (xx')	0.250	π.mm.mrad
Out. trans. norm. emit. [rms] (xx')	0.265	π.mm.mrad
In. trans. norm. emit. [rms] (yy')	0.250	π.mm.mrad
Out. trans. norm. emit. [rms] (yy')	0.259	π.mm.mrad
In. long. norm. emit. [rms]	0.394	π.deg.MeV
Out. long. norm. emit. [rms]	0.401	π.deg.MeV
Energy spread	±1.02	%
Transmission	100	%

Beam optics of linac as synchrotron injector

	LINAC	Units
Beam current	5	mA
Energy ramping	-0.1 to 0.1	MeV/u
In. trans. norm. emit. [rms] (xx')	0.250	π.mm.mrad
Out. trans. norm. emit. [rms] (xx')	0.264	π.mm.mrad
In. trans. norm. emit. [rms] (yy')	0.250	π.mm.mrad
Out. trans. norm. emit. [rms] (yy')	0.261	π.mm.mrad
In. long. norm. emit. [rms]	0.394	π.deg.MeV
Out. long. norm. emit. [rms]	0.403	π.deg.MeV
Energy spread	±0.37	%
Transmission	100	%

Linac for radioisotope production

- The linac needs to provide both alpha particles and deuterons at 2 energies:
 - 7.1 MeV/u for production of ²¹¹At, the most promising alpha emitter, used for Targeted Alpha Therapy (TAT);
 - **10 MeV/u** for production of other radioisotopes like ⁴⁷Sc, ⁶⁷Cu and ¹²³I;

RF design of linac for radioisotope production

All the units are in [cm].

RF design of linac for radioisotope production

	QA-DTL	DTL1	DTL2	Units
Designed ions		⁴ He ²⁺ / ² H ⁺		-
RF frequency		352.2		MHz
Length	425	174	228	cm
Input energy	1	5	7.1	MeV/u
Output energy	5	7.1	10	MeV/u
Max. surface field	1.8	1.	.3	kp
Synchronous phase	-35 to -24	-2	24	o
RF power	535	235	300	kW
Avg. axial el. field	3.5	3.	.1	MV/m
No. of cells/superperiods*	17	18	20	-

Beam optics of linac for radioisotope production

	LINAC	Units
Beam current	35	mA
Energy ramping	-	MeV/u
In. trans. norm. emit. [rms] (xx')	0.250	π.mm.mrad
Out. trans. norm. emit. [rms] (xx')	0.283	π.mm.mrad
In. trans. norm. emit. [rms] (yy')	0.250	π.mm.mrad
Out. trans. norm. emit. [rms] (yy')	0.279	π.mm.mrad
In. long. norm. emit. [rms]	0.394	π.deg.MeV
Out. long. norm. emit. [rms]	0.466	π.deg.MeV
Energy spread	±2.31	%
Transmission	100	%

Beam optics of linac for radioisotope production

	LINAC	Units
Beam current	35	mA
Energy ramping	-	MeV/u
In. trans. norm. emit. [rms] (xx')	0.250	π.mm.mrad
Out. trans. norm. emit. [rms] (xx')	0.287	π.mm.mrad
In. trans. norm. emit. [rms] (yy')	0.250	π.mm.mrad
Out. trans. norm. emit. [rms] (yy')	0.287	π.mm.mrad
In. long. norm. emit. [rms]	0.394	π.deg.MeV
Out. long. norm. emit. [rms]	0.534	π.deg.MeV
Energy spread	±1.03	%
Transmission	100	%

- RF design and beam optics studies of E-mode DTL structures (DTL and QA-DTL) as injector for helium therapy synchrotron and for radioisotope production in parallel have been done;
- RF design and beam optics studies of Energy Ramping and Debunching cavities before helium ions injection into therapy synchrotron have been accomplished;
- Radioisotope production with proposed Linac;

- RF design and beam optics study of different types of H-mode DTL structures and its adaptation to 176 MHz frequency;
- The comparison between E-mode and H-mode DTL structures for acceleration of alpha particles for injection into therapy synchrotron and for radioisotope production in parallel;

Thank you!