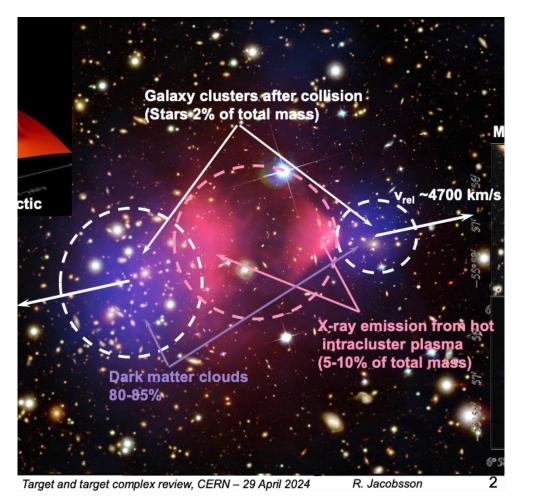


BDF/SHiP at the High Intensity ECN3 (HI-ECN3) Facility

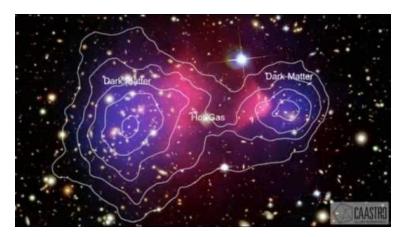
M. Fraser (SY-ABT-BTP)

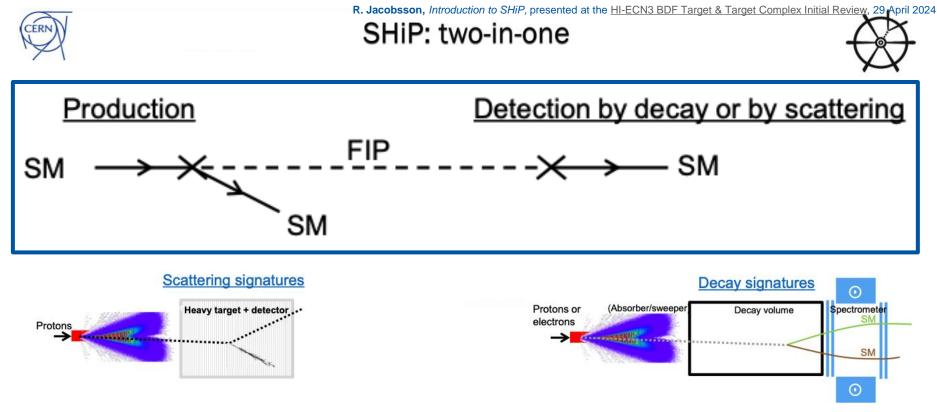

presenting on behalf of the HI-ECN3 Study Project Team

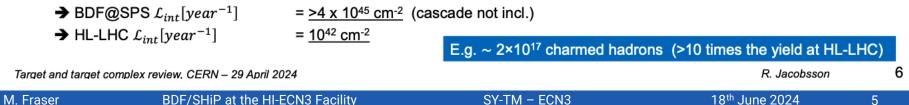
SY Technical Meeting CERN, Geneva, Switzerland 18th June 2024 C. Ahdida et al., SPS Beam Dump Facility - Comprehensive Design Study, CERN-2020-002* C. Ahdida et al., Findings of the Physics Beyond Colliders ECN3 Beam Delivery Task Force, CERN-PBC-REPORT-2023-001*

My charge from Simone...

- "Focus on the requirements from SY groups for ECN3 and hear the reactions from the groups"
 - <u>TDR phase</u>: some are well known from <u>SPS BDF CDS</u>, many others are currently being defined*


"Clarify the interfaces between CONS and ECN3"




Target and target complex

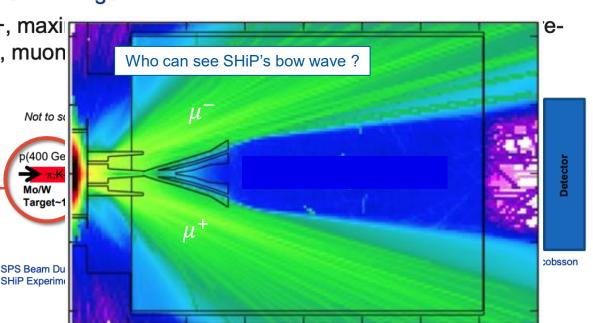
- The Window to Hidden Sectors! -Target and target complex review, CERN – 29 April 2024

→ BDF luminosity with the optimised target and 4x10¹⁹ protons on Mo target per year currently available in the SPS

R. Ximenes et al., Target design baseline and challenges, presented at the <u>HI-ECN3 BDF Target & Target complex Initial Review</u>, 29 April 2024 M. Ferro-Luzzi, *Muon shield status and strategy*, 28th SHiP collaboration meeting, 17 April 2024

BDF/SHiP Concept

Beam Dump Target / SHiP Target


Fully absorbe all p+, maxi absorption of pions, muon

High energy \rightarrow production of charmed and beauty mesons

High ppp & POT \rightarrow overcome small prod cross-section of extra rare events of hidden particles

High p, Z & A \rightarrow Maximize p+ interaction

Shortest $\lambda \rightarrow$ Force absorption of K & π to reduce muon & neutrino background

Target design baseline and challenges | HI-ECN3 WP3 | Target & Target Complex ICR

7

6

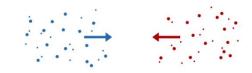

BDF/SHiP at the HI-ECN3 Facility

SY-TM - ECN3

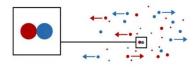
BBC News

Cern: Scientists search for mysterious ghost particles

By Pallab Ghosh

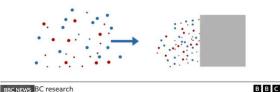

Artwork: Ghost particles can't currently be detected

More bangs per particle

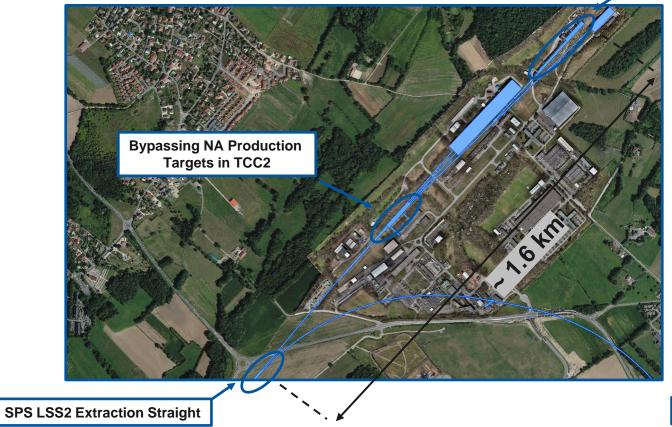

24 March 2024

Collisions

Particles collide with each other in bunches in accelerators



But the chance of two particles colliding is about one in a billion


Fixed target

With a fixed target system, nearly all the particles are smashed into smaller pieces

Experimental Cavern North 3

TCC8 & ECN3 (SPS's only underground experimental cavern!)

SPS LSS4

河 M. Fraser

BDF/SHiP at the HI-ECN3 Facility

SY-TM - ECN3

18th June 2024

Project Timeline

Inclusion in MTP2024: ratified by CERN Council this week (we hope!)

Research Board Decision for SHiP: March 2024

M.

Civil Engineering for ECN3 is the critical path: ~ 3 – 4 years

Beam on target for Facility Commissioning:

2030

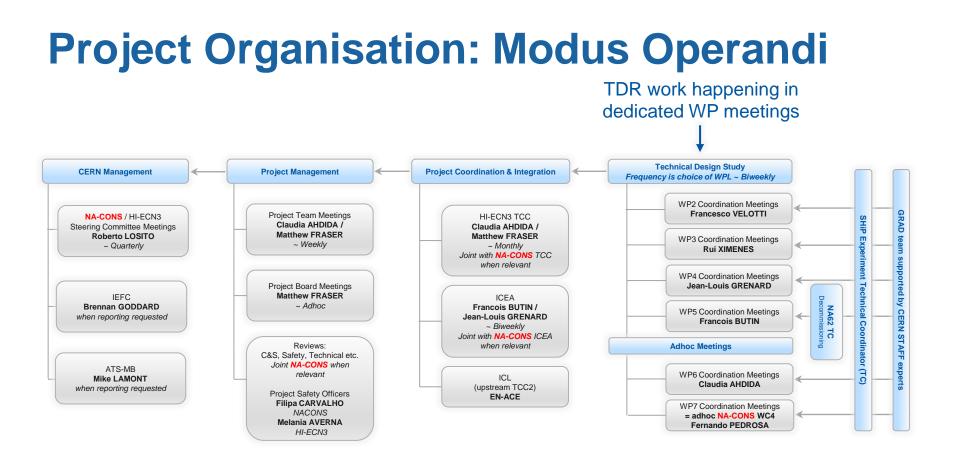
~ 2 years operation for SHiP before LS4

		BDF/SHiP at	t HI-ECN3 - Ir	ndicative Sch	edule & Cons	traints				
Machine/Facility/Experiments	2023	2024	2025	2026	2027	2028	202	29	2030	2031
LHC				LS3			Commiss	sioning		
SPS				LS3						
NA-CONS	Preparation 8	YETS Impleme	ntation Phase	NA-CC	A-CONS Phase 1 (LS3)					
HI-ECN3 Beam Delivery via NA-CONS	Engineerin	g & Implementa	tion Phase	Ins	Installation (LS3) Commissioning			. ↓		
BDF Target Complex in TCC8	Engir	ieering Design F	hase	Final Opt. & PRR	Preparation, Dismantling	Procuremen Assembly			Installation/ Commissioning	
SHiP Experiment in ECN3	Proposal	TDR	TDR	TDR/PRR	Production	Construction	on Installa	ation/Co	ommissioning	
RK IN Certain items c			_	N3 TDR dline						
<i>GRESS</i> because of NA-CONS timeline!			_	TDR dline						
raser BDF/SHil	o at the HI-E	CN3 Facility		SY-	TM – ECN3			18 th	June 2024	

Project Work Breakdown Structure v 0.1 WP8 - Radiation field and R2E & R2M effects

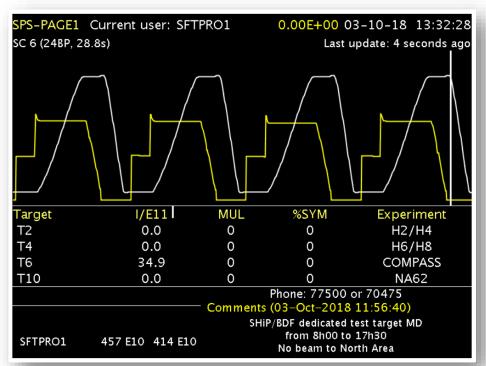
Work Package Descriptions drafted during TDR phase!

M. Fraser


BDF/SHiP at the HI-ECN3 Facility

SY-TM - ECN3

18th June 2024


10

Luigi ESPOSITO

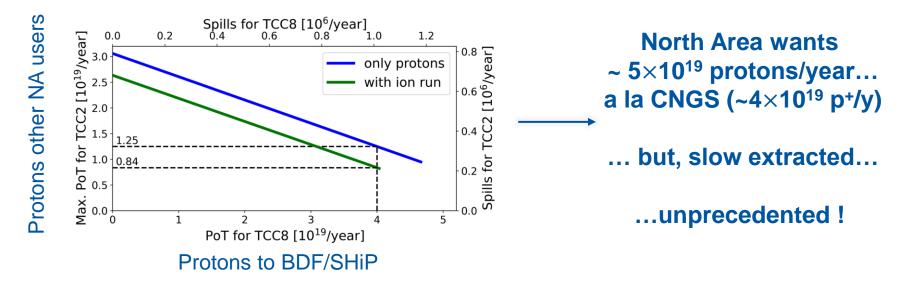
M. Fraser

How many protons for BDF / SHiP? (i)

Short CNGS-like 7.2 s SFTPRO cycle with a 1.2 s FT (~ 1 s spill)

Compared to 10.8 s SFTPRO cycle and 4.8 s FT (~4.5 s spill): actually limited in repetiation rate by RMS power limit of SPS mains dipoles to one cycle every 14.4 s.

SPS Page 1 during BDF prototype target test at T6 in 2018


M. Fraser

SY-TM - ECN3

How many protons for BDF / SHiP? (ii)

• North Area Sharing:

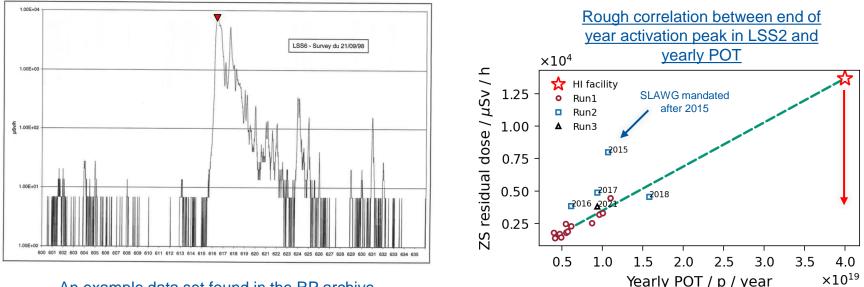
 Assuming 80% availability with transmission assumptions, RMS power limit and including other SPS constraints like LHC filling, AWAKE, HiRadMat etc.: 35 weeks, 2x 30h TS's

How many protons for CERN facilities?

Complex – full and diverse physics programme 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 L4, PSB, PS LS3 LS4 2 L3, LEIR LS3 LS4 SPS LS3 LS4 LHC Run 3 LS3 Run 4 LS4 CLEAR Review Review LS4 ISOLDE BD **HIE-ISOLDE** LS4 MEDICIS Review LS4 n TOF EAST AREA LS4 ELENA LS4 **BDF/SHiP requests high flux** AWAKE AWAKE Run 2a.b Review CNGS Run 2c Run 2d for 15 operational years North Area **NA-CONS Ph1** NA-CONS Ph2 ECN3 Dedicated Project to follow higher intensity FT beams ? (IPP collecting input now) SY equipment likely implicated across the complex, to find creative solutions to increase flux Is SFTPRO > 4×13 ppp e.g. PS barrier bucket, parasitic ISOLDE users, multi-bunch n_TOF beams, etc. 57 interesting for CERN?

M. Fraser

BDF/SHiP at the HI-ECN3 Facility

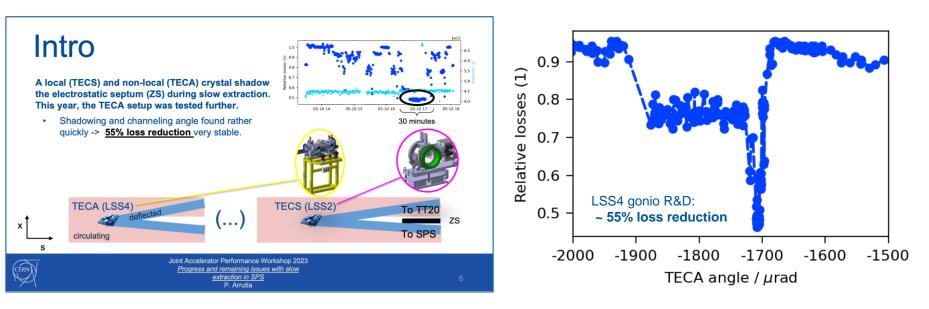

SY-TM - ECN3

18th June 2024

SY Groups: SY-ABT, SY-STI: factor 4 reduction ready for 2030

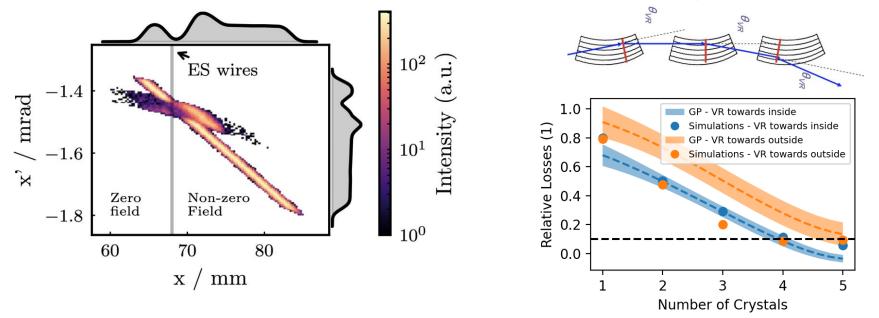
Slow extraction beam loss reduction

SY challenge: achieve a beam loss reduction factor of ~ 4 in stable, in long-term operation



An example data set found in the RP archive (30h survey after 1998 WANF operation in LSS6)

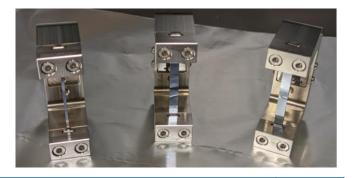
Slow extraction beam loss reduction (ii)


SY challenge: achieve a beam loss reduction factor of ~ 4 in stable, in long-term operation

- Crystal "shadowing" technique (LSS2 & LSS4)
- Phase-space folding using octupole magnets already installed in SPS
- Improved electrostatic septa (straightness and low density)

Slow extraction beam loss reduction (iii)

Longer-term R&D challenge: achieve an even higher loss reduction factor (x10?!) with advanced crystal technology installed in SPS LSS4 ("shadowing" the electrostatic septum):


Multiple thin, bent crystals aligned for Volume Reflection

DECRYCE project

DEvelopment of CRYstals for Collimation and Beam Extraction (DECRYCE) project for in-house development of crystals:

- Procurement
- Cutting & polishing
- Engineering the bender system
- Validation of crystals:
- X-ray diffractometry for crystal characterization
- ✓ Beam characterisation in NA
- ✓ Development of Timepix4 based telescope

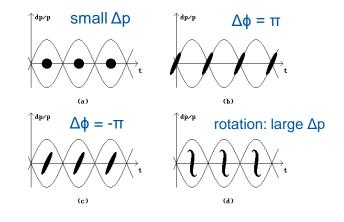
A critical SY effort for the future of SPS's Fixed Target programme!

WP1	Project Management	STI
WP2	Crystal/wafer preparation	CEM
WP3	Design & construction of the crystal bender	STI
WP4	Characterization of crystal assembly with X-rays	CEM
WP5	Validation of crystal assembly with beam	STI
WP6	Telescope and data acquisition system for beam validation	BI

SY-TM - ECN3

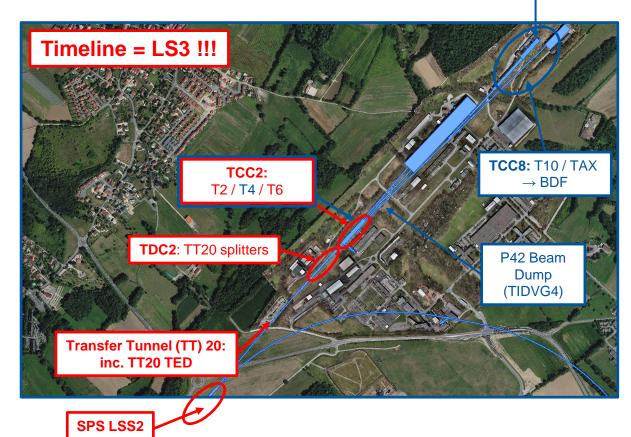
Slow extraction spill quality

Spill quality is already long running saga at SPS (SY-EPC investigations):


- SY-BI has already developed spill monitors for 200 and 800 MHz via OTR
- SY-RF involved in using advanced RF techniques to improve spill quality, e.g. 800 MHz RF system now used operationally for "empty bucket channeling"

TDR challenges:

- Identify techniques to increase speed of debunching, critical for SHiP? (SY-ABT/RF)
- Identify other RF techniques to improve spill quality (transverse / longitudinal noise) ? (SY-ABT/RF)
- Can we revive the Schottky monitor for SX R&D / operation ? (SY-BI/RF)

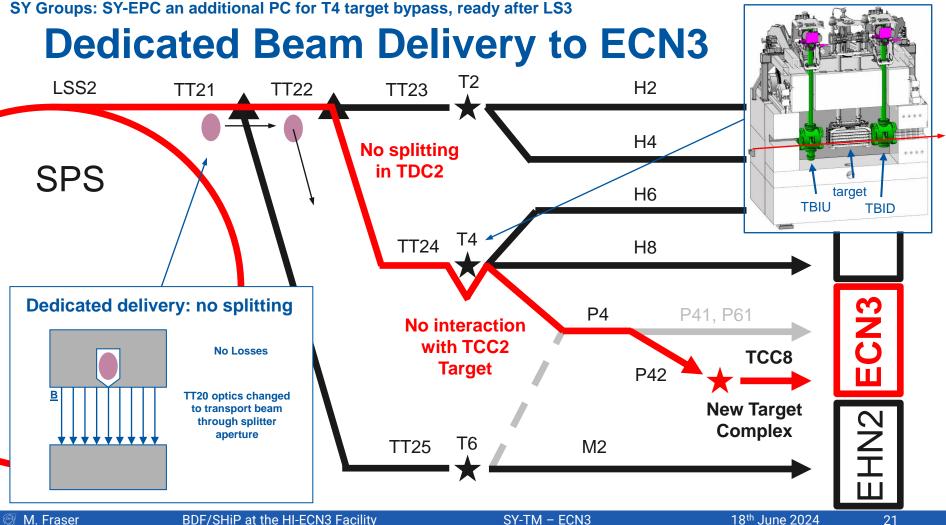

Develop a fast spill monitor (up to 10 GHz?) together with the SHiP Collaboration (EP & SY-BI)

Today's RF gymnastics for debunching

NA-CONS & HI-ECN3

ECN3

BDF/SHiP requirements affect:


CONSOLIDATION Phase 1

UPGRADE

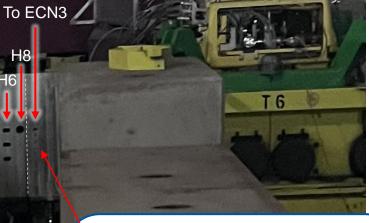
- (i) Scope of NA-CONS project
- (ii) Upgraded items needed

Impacted NA-CONS items:

- T4 target system (inc. XTAX)
- Beam instrumentation
- Magnets / power converters
- Infrastructure & services (BAs)
- Machine protection

M. Fraser

BDF/SHiP at the HI-ECN3 Facility


SY Groups: collaboration needed between BE-EA & SY-STI

Major impact on T4 in TCC2: XTAX (ii)

Looking downstream from on top of T4 target

To avoid scattering BDF/SHiP beam on air inside P42 TAX, it will be replaced by a <u>fixed absorber</u> with a vacuum chamber

Urgent design effort ongoing !

M. Fraser

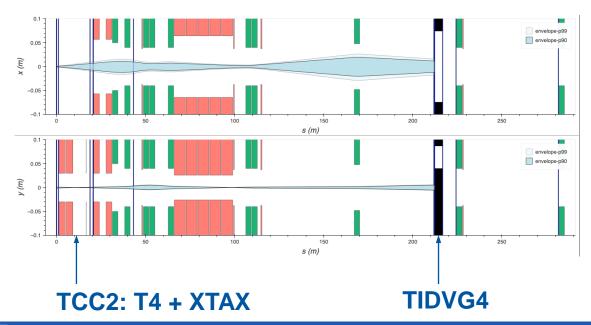
BDF/SHiP at the HI-ECN3 Facility

SY-TM - ECN3

18th June 2024

Absolute beam intensity measurements

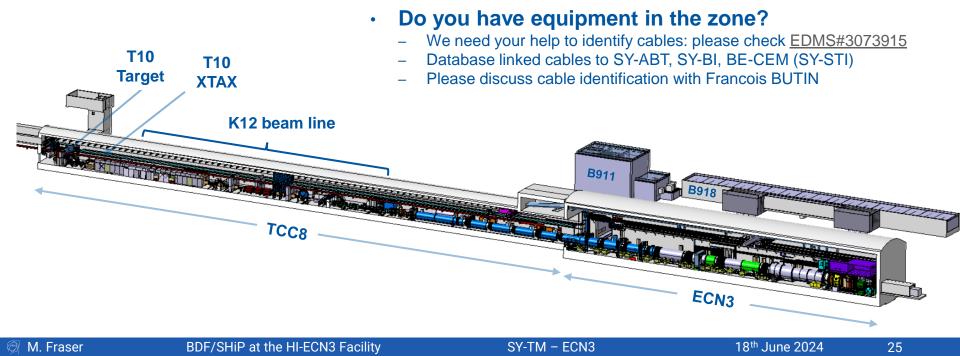
Strategy needed to attain a measurement accuracy of ~ % in the North Area:


- Consolidation of SEM intensity monitors foreseen as part of NA-CONS
- Renewed importance now we consider 5 ×10¹⁹ POT/year

CERN	CCC Mini-workshop		
19 June 2024 CERN Europe/Zurich timezone	Enter your search term	Q	

Timetable			rators (CCC) is to be held at CERN. With experts e latest developments, lab results and beam
Contribution List	tests will be presented. The CCC perspect	tive for FAIR and	d CERN for the coming years will be addressed.
Registration			
Participant List	Starts 19 Jun 2024, 09:00 Ends 19 Jun 2024, 18:00	9	CERN 30/7-018 - Kiell Johnsen Auditorium
Venue	Europe/Zurich		Go to map
Travel to CERN	Jocelyn Tan		
Privacy information			
Contact	You are registered for this event.		▲ 17 See details >
Jocelyn.Tan@cern.ch			
SY.BI.Secretariat@cern.ch			

P42 beam dump: TIDVG4


- Permanently blocking aperture after Long Shutdown 3
- To commissioning of TCC2 in 2028 2030 & prepare for high intensity before BDF/SHiP operation

NA62 in ECN3

 Dismantling will start immediately in LS3 to allow civil engineering works to get underway ASAP

TCC8 / ECN3 Dismantling for HI-ECN3

To be circulated....

Date 10.06.2024 EDMS 3104537

MEMORANDUM

 To
 : Francois BUTIN, Hans DANIELSSON, Jean-Louis GRENARD

 Cc
 : Melania AVERNA, Dipanwita BANERJEE, Cedric BAUD, Olga BELTRAMELLO, Markus BRUGGER, Benoit DELILLE, Marco CALVIANI, Anne FUNKEN, Christelle GAIGNANT, Brennan GODDARD, Richard JACOBSSON, Rhodri JONES, Yacine KADI, Manfred KRAMMER, Karl Gunnar LINDELL, Roberto LOSITO, Laurence NEVAY, Thomas OTTO, Federico RAVOTTI, Stefan ROESLER, Jean-Philippe TOCK, Francesco VELOTTI, Kurt WEISS

 From
 : Matthew FRASER / HI-ECN3 Study Project Leader, Claudia AHDIDA / HI-ECN3 Deputy HI-ECN3 Study Project Leader

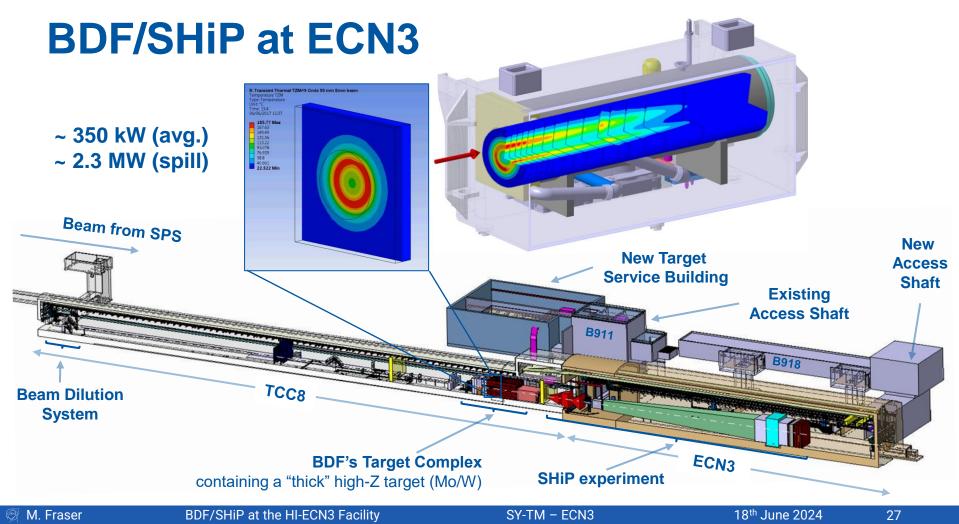
 Subject
 - Reamona Study Project Leader

Subject : Responsibilities for the TCC8/ECN3 Dismantling for HI-ECN3

Hans Danielsson NA62 Dismantling Project Leader

> Francois Butin HI-ECN3 WP5 WPL ECN3 Dismantling

Jean-Louis GRENARD HI-ECN3 WP4 WPL TCC8 Dismantling T10 target - XTAX

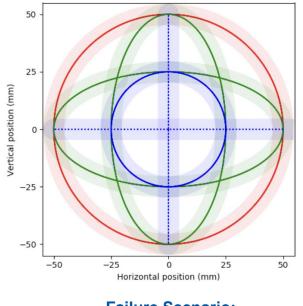


SY strongly supporting the dismantling effort in the radioactive area

🕅 M. Fraser

SY-TM - ECN3

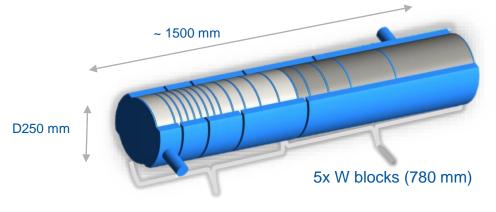
RP studies underway



BDF dilution system

TDR challenge: protection of the target critical, loss of dilution during single spill will likely damage the target

Present baseline:


- $\pi/2$ scheme: independently powered laminated dipole magnets:
 - 2H + 2V magnets (~ 0.5 mrad, 0.7 Tm per plane)
 - de-phased by 90 degrees to give circular spill
 - "slow" sweep = 4 Hz over a 1 second spill
- Protection on needed from FGC current interlock (SY-EPC)
- Beam profiler(s) to check beam position, size & sweep postoperation (like LHC IPOC) (SY-BI)
- Independent interlock system likely needed for redundancy:
 - Independent DCCTs current measurement at magnets ?
 - Dedicated "live" monitoring of beam during its sweep ? (SY-BI)

- ---- Failure 2H OR 2V
 - Failure 1H OR 1V
 - Failure 1H AND 1V

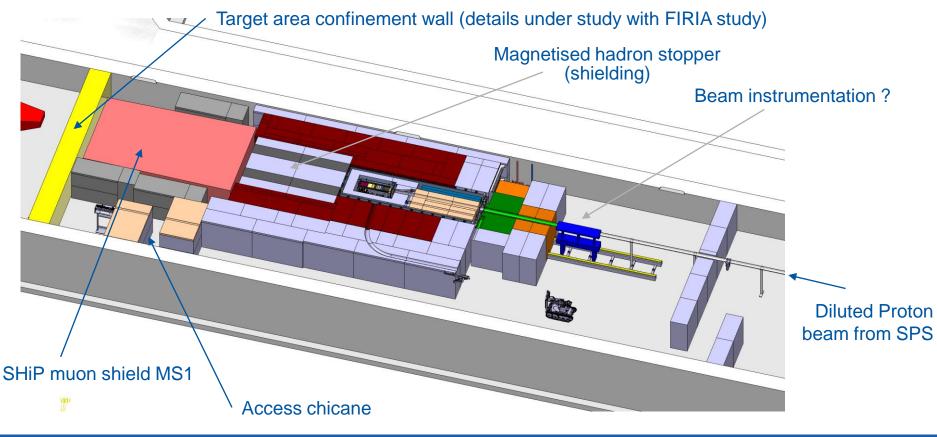
SY Groups: SY-STI BDF Target Baseline Design

13 x TZM blocks (580 mm)

Baseline design:

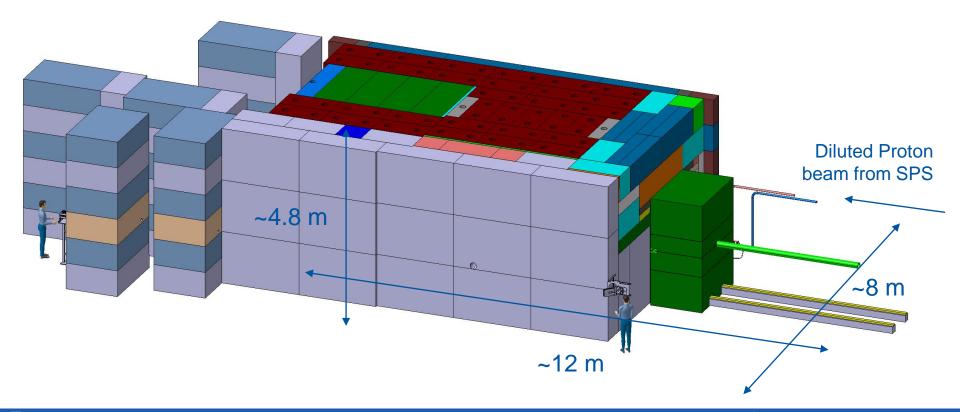
- Water-cooled, Mo & W blocks (cladded with Ta)
- Tested with beam in 2018 & PIE

TDR phase needed to improve CDS design:

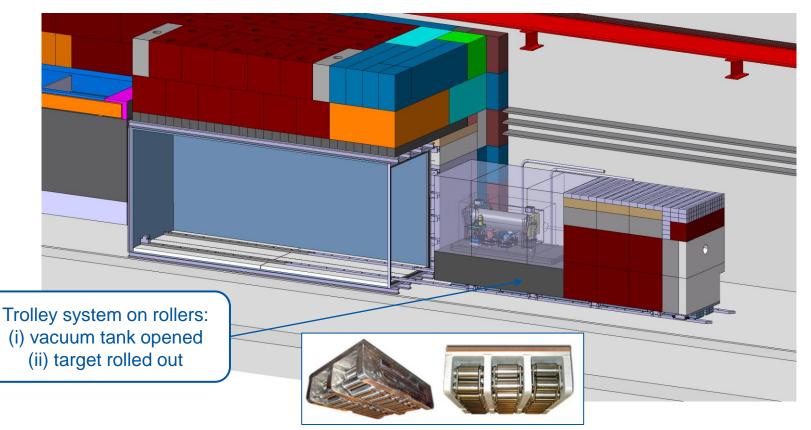

• Alternatives to water-cooling to avoid cladding and the risk of development of free radicals (hydrogen)

Baseline beam parameters of the BDF Target operation. https://doi.org/10.23731/CYRM-2020-002

Proton momentum (GeV/c)	400
Beam intensity (p ⁺ /cycle)	4×10^{13}
Cycle length (s) $\sim 4.0 \times 10^{19} \text{ p}^+/\text{y}$	7.2
Spill duration (s)	1.0
Beam dilution pattern	Circular
Beam sweep frequency (turns/s)	4
Dilution circle radius (mm)	50
Beam sigma (H, V) (mm)	(8, 8)
Average beam power (kW)	356
Average beam power deposited in target (kW)	305
Average beam power during spill (MW)	2.3

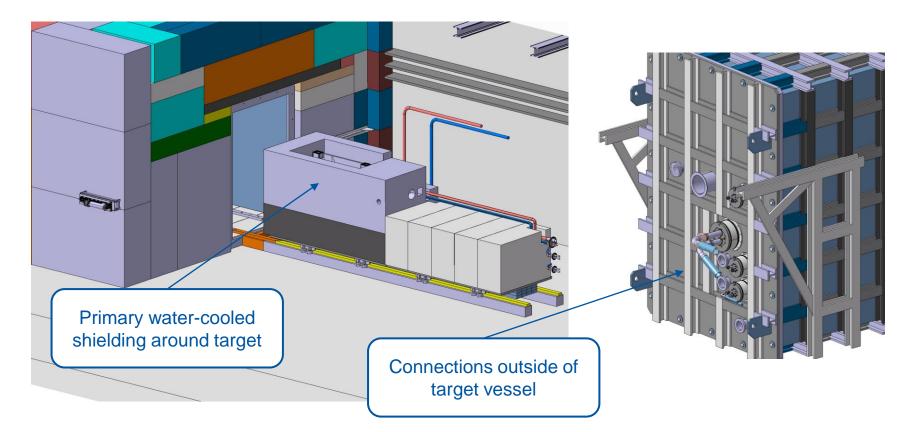

Very similar requirements to a neutron spallation target, synergies with other labs are being pursued: He rather than H₂O cooling?

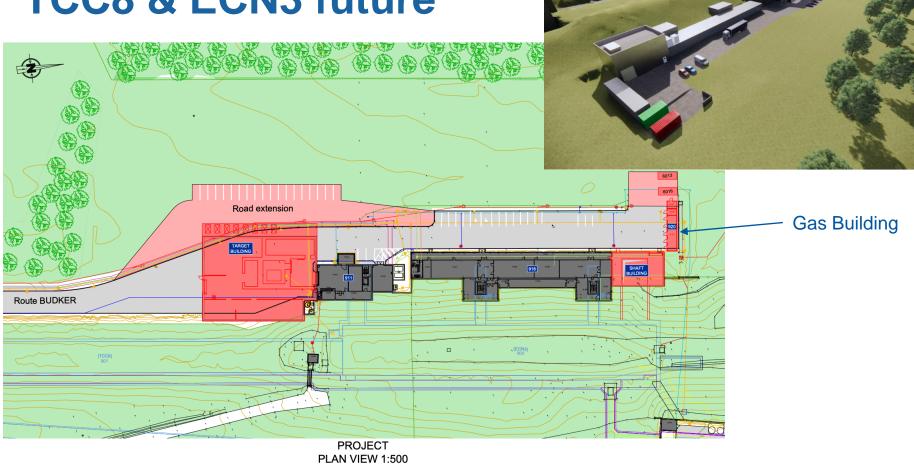
SY Groups: SY-STI, SY-EPC, SY-BI BDF Target Complex in TCC8 (i)



JL Grenard et al., Target Complex, presented at the HI-ECN3 BDF Target & Target complex Initial Review, 29 April 2024

BDF Target Complex in TCC8 (ii)

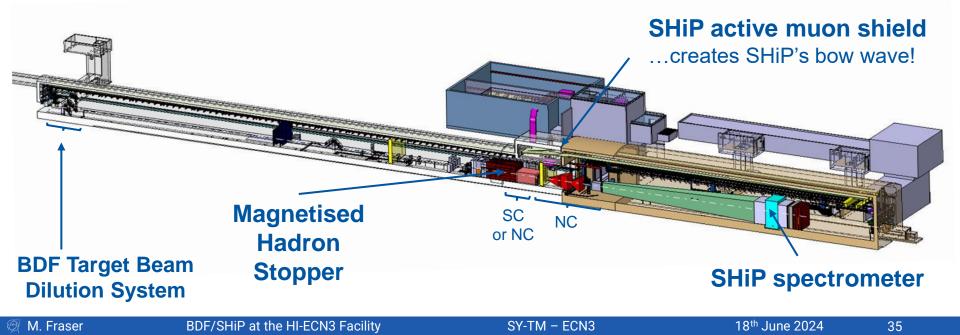

BDF Target Complex in TCC8 (iii)


32

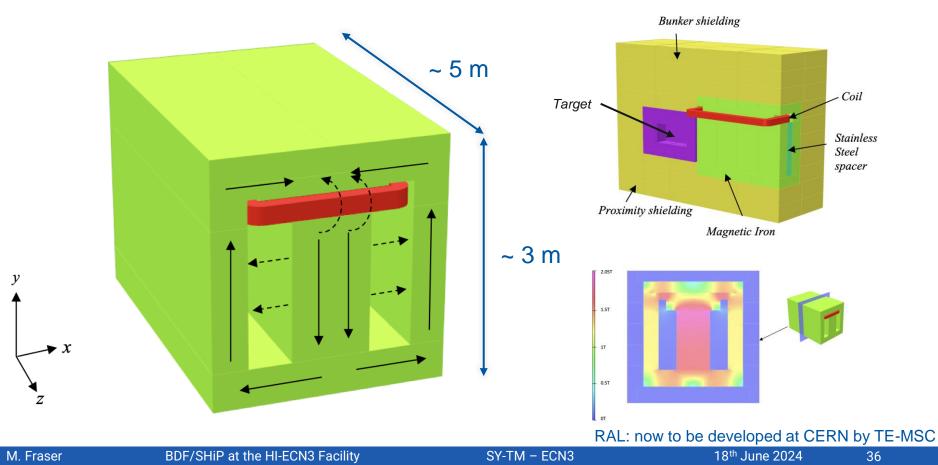
21 March 2024

BDF Target Complex in TCC8 (vi)

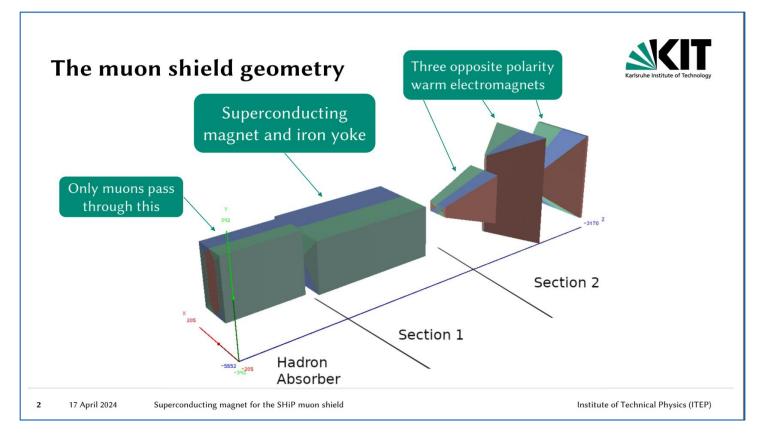
TCC8 & ECN3 future


34

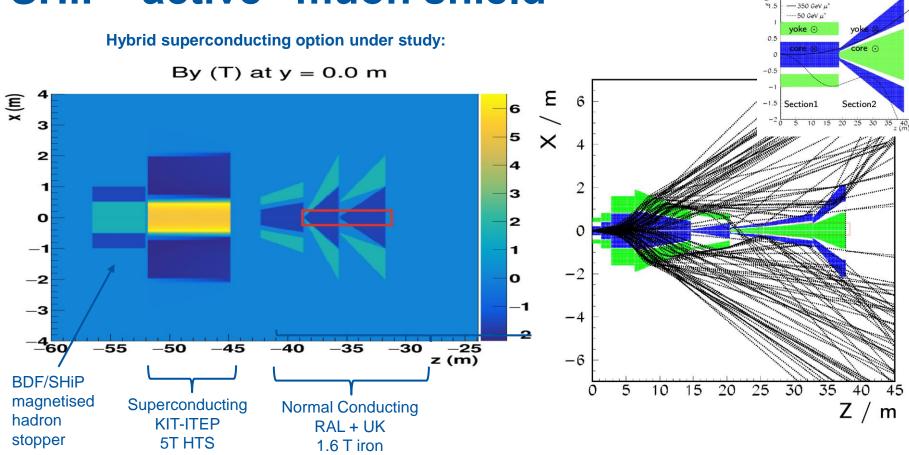
21 March 2024


SY Groups: SY-EPC, installation >LS3, commissioning 2030

Powering of the BDF/SHiP magnets

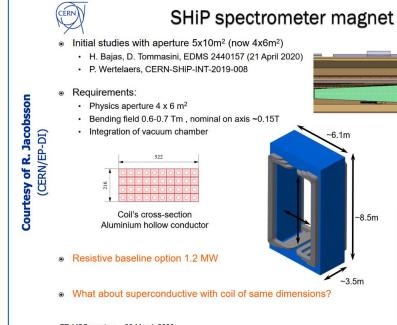

TDR challenge: to find standard powering solutions & integrate them in synergy with the NA-CONS (BA82?), with the required infrastructure & services, and scope & timeline

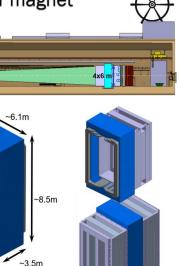
BDF/SHiP magnetised hadron stopper



SHiP "active" muon shield

ε


SHiP "active" muon shield



BDF/SHiP at the HI-ECN3 Facility

SHiP spectrometer

Spectrometer Magnet Requirements and Initial Design Proposal(s)

- Design requirements
- aperture: 4 x 6 m²;
- bending strength: 0.6-0.7 T.m;
- Integration of vacuum chamber (can be simplified with He option).
- Initial design developed by P. <u>Wertelaers</u> and A. Perez in 2019, relying on normal conducting magnets

- First study of superconducting options by D. Tommasini and H. Bajas in 2020 (incl., Nb–Ti, Nb₃Sn, MgB₂ and ReBCO)
- ⇒ all options feasible; choice to be made on conductor availability and cooling type.

TE-MSC seminar – 23 March 2023

CERN

A. Devred, et al. | Proposal for SHiP Spectrometer Magnet

24

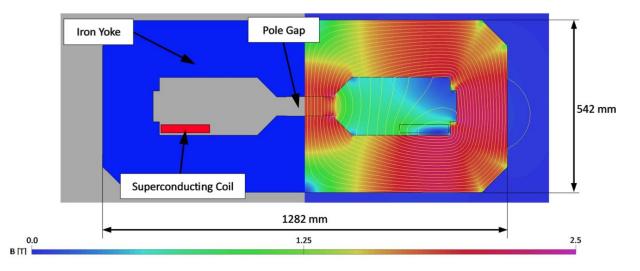
🐑 M. Fraser

BDF/SHiP at the HI-ECN3 Facility

18 April 2024

SY-TM - ECN3

R. Jacobsson


18th June 2024

 $[\]Rightarrow$ ~1.2 MW power consumption!

A. Devred, Proof-of-Principle of an Energy-Efficient, Iron-Dominated Electromagnet for Physics Experiments IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 34, NO. 5, AUGUST 2024

SHiP spectrometer

Potential application for HL-LHC R&D to **superferric magnets.** Proof-of-principle demonstrator for an energy-efficient, iron-dominated magnet (large gap and moderate fields < 2T) relying on a HTS MgB₂ superconducting coil:

Factor ~100 energy saving targeted compared to typical ~ MW NC magnets

Thanks...

Thanks to everyone who supported the PBC ECN3 Beam Delivery Task Force effort...

... the BDF & CB WGs...

... the NA-CONS project...

... including all CERN's equipment & service groups...

...and the HIKE, SHADOWS and SHiP collaborations

CERN-PBC-REPORT-2023-001

11 March 2023

Findings of the Physics Beyond Colliders ECN3 Beam Delivery Task Force

C. Ahdida, H. Bartosik, J. Bernhard, M. Brugger, M. Calviani, A. Colinet,
L.S. Esposito, R. Franqueira Ximenes, M.A. Fraser, F. Gautheron,
J.L. Grenard, Y. Kadi, V. Kain, A. Lafuente, I. Josifovic, K. Li,
G. Mazzola, E. Nowak, K. Pal, T. Prebibaj, R. Ramjiawan,
I. Romera Ramírez, F. Roncarolo, P. Schwarz, F.M. Velotti, C. Vendeuvre,
M. van Dijk, H. Vincke, C. Zamantzas, T. Zickler
CERN, CH-1211 Geneva, Switzerland

Keywords: PBC, NA-CONS, ECN3, beam delivery, task force, high intensity upgrade

Summary

The ECN3 Beam Delivery Task Force was mandated by the PBC Study Group to assess the technical feasibility of increasing the proton beam intensity to the ECN3 hall of the North Area to satisfy the demands of a compelling set of PBC experimental physics proposals. This report summarises the findings of the Task Force that converge on a technically feasible solution with an implementation timeline that could exploit and build upon the investment already foreseen as part of Phase 1 of the NA-CONS project, and take the SPS complex into a new intensity frontier for Fixed Target physics in Run4.

Thank you !

BDF/SHiP at the High Intensity ECN3 facility

18 June 2024

HI-ECN3 Study Project Mandate

Mandate for Project Leader of ECN3 High Intensity Study

The proposed ECN3 High Intensity (HI) facility will provide unique capabilities for delivering high-intensity, high energy beam for fixed target physics. The funding for the initial Technical Design Report (TDR) phase of the beam delivery and facility study was approved by Council in September 2023 Council following recommendation by the Research Board. A decision on the specific experimental implementation and overall approval is expected in late 2023 early 2024.

The overall feasibility has already been investigated and documented by the ECN3 Task Force, with the following working assumptions:

- ECN3 beam delivery via T4 target with magnetic bump bypass
- Dedicated HI mode with no splitting in TDC2 or impact on TCC2 targets Readiness in Run 4 with no impact on EHN1 and EHN2 NA operation post-LS3
- New target complex for TCC8 using ALARA principles for operation, maintenance and decommissioning
- Use of new target complex service building for additional power converters (instead of BA82)
- Recovering iron shielding blocks from CNGS hadron absorber, TT7 neutrino facility dump and Opera

The formation of an HI-EC3 Project Team to deliver the facility TDR is requested by the ATS Director. The Project Leader's mandate is to define and implement the project structure and team, finalise the technical studies and present the coherent upgrade proposal (including timeline and resource and budget needs) in the form of the TDR.

It is important to note the close links to NACONS, and the imperative to minimise the extra work for the technical teams - this needs to be a guiding principle of the organisation, including the common coordination with NACONS.

The following items will form the basis for the deliverables for the TDR phase, which for the ATS aspects needs to be completed by the beginning of LS3. This list includes a number of decisions already needed in 2023.

- Technical specifications and engineering studies of equipment and infrastructure systems for high intensity beam delivery
- Agreement with CERN groups to recruit GRADs by November 2023, along with required STAFF resources for their supervision
- Manage HW expenditure linked to some aspects of beam delivery and infrastructure in parallel to TDR phase
- Define the detailed implementation schedule
- Construct efficient project interface and workflow to NACONS
- Finalise cost and resource estimates and profiles (update of EDMS #2825627) Perform ECN3 hydrological study
- Proposal for ECN3 bridge and EHN1 ramp RP shielding
- Oversee 2023 and 2024 beam tests

Form a Project Team:

- Project structure and team being created with synergy of NA-CONS at its heart
- Aggressive schedule: necessary project structures put in place in anticipation of formal approval in 2024
- Positive discussions with CERN groups, recruitment underway: GRAD (with STAFF supervision agreed)
- EN-ACE support project planning/scheduling
- BE-EA support configuration management
- SY support Project Admin & Project Safety

Deliver a TDR by end of 2025:

- Despite delays, technical work on Beam Delivery (experiment-independent) continues in earnest
- Need to get going on Target Complex & Experimental Area ASAP!
- Refined timeline with resource and budget needs
- Already on the critical path for Civil Engineering: careful optimisation of schedule needed

BDF/SHiP at the HI-ECN3 Facility

SY-TM - ECN3

SY linkpersons for TDR phase

Support from CERN groups:

- i. GRAD support (2 yr) TDR phase only if STAFF supervision guaranteed (no STAFF M2P)
- ii. Synergy to NA-CONS key (if possible, same STAFF member on both projects)
- iii. WP descriptions (agreed deliverables & resources) to be written with the GRAD support

Group	Contact	Activity	GRAD Support 2024/25
SY-BI	David BELOHRAD	BI	\checkmark
SY-AR	Katarina SIGERUD	Project Admin Support: Ane-Mona BRANZA (SY-ABT)	
SY-ABT	Francesco VELOTTI	WP2	\checkmark
SY-EPC	Yves GAILLARD	TDR	
SY-EPC	Ivan JOSIFOVIC	TDR	
SY-RF	Giulia PAPOTTI	TDR (RF support for slow extraction)	
SY-STI	Rui FRANQUEIERA XIMENES	WP3	\checkmark
SY-STI	Jean-Louis GRENARD	WP4	\checkmark
SY-STI	Nicolas QUINQUIS	TCC8 Dismantling	
SY-STI	Ruben ALIA	R2E support TDR	
SY-HDO	Anne FUNKEN	Safety Support	
SY-STI	Melania AVERNA	Project Safety Officer	
SY-STI	Luigi ESPOSITO	FLUKA support for TDR	\checkmark

Study Project (TDR) GRAD Team

Person	Role	Group	Supervisor	Programme	BC Description	PRQ	Start Date
Ixone VAQUERO	Planning & Coordination	EN-ACE	Fernando PEDROSA	ORIGIN	HI-ECN3 / NA-CONS	Completed	1/10/2023
Xavier PALLE	Planning & Coordination	EN-ACE	Fernando PEDROSA	ORIGIN	HI-ECN3 / NA-CONS	Completed	1/3/2024
Kincso PAL	TDR	SCE	John OSBORNE	TEMP	HI-ECN3	Completed	1/1/2024
James CURRIE	TDR	HSE-OHS	Simon MARSH	ORIGIN	HI-ECN3	Completed	1/2/2024
TBC	FIRIA	HSE-OHS	Saverio LA MENDOLA	QUEST	HI-ECN3 / HSE	2024	Q3 2024
TBC	$TDR \rightarrow Implementation$	SCE	Natacha LOPEZ	QUEST	HI-ECN3	2025	Q1 2025
Nikola ZARIC	TDR	EN-CV	Roberto BOZZI	QUEST	HI-ECN3	Completed	1/2/2024
Angelo PETRELLESE	Secondary Vacuum	BE-EA	Miguel SANTOS	ORIGIN	HI-ECN3 / NA-CONS / PBC	Completed	1/4/2024
Fabian METZGER	TDR	BE-EA	Laurence NEVAY	GRAF	HI-ECN3	Completed	1/4/2024
TBC	TDR / LS3 prep	BE-EA	Francois BUTIN	ORIGIN	HI-ECN3	2024/25	TBC
Beatriz MARTINEZ	TDR	BE-EA	Michael LAZZARONI		HI-ECN3	Completed	2/5/2024
Ming LIU	TDR	EN-EL	Eva CANO GONZALEZ	QUEST	HI-ECN3 / NA-CONS	Completed	2/5/2024
Cristina DURAN	TDR	EN-HE	Roberto RINALDESI	ORIGIN	HI-ECN3	Completed	1/6/2024
GUTIERREZ							
Olin PINTO	TDR	HSE-RP	Claudia AHDIDA	QUEST	HI-ECN3	Completed	1/2/2024
Mike PARKIN	TDR	SY-STI	Rui FRANQUEIRA XIMENES	QUEST	HI-ECN3	Completed	1/3/2024
Giuseppe MAZZOLA	R2E / FLUKA	SY-STI	Luigi ESPOSITO	QUEST	HI-ECN3	Completed	1/2/2022
TBC	BLM	SY-BI	Christos ZAMANTZAS	ORIGIN	HI-ECN3	?	?
TBC	TCSC CONS	SY-STI	Nicolas SOLIERI	QUEST	NA-CONS	?	?
TBC	TDC2 / TCC2	HSE-RP	Helmut VINCKE	QUEST	NA-CONS	2024	TBC
Luke DYKS	TDR	BE-EA	Dipanwita BANERJEE	GRAF	PBC / HI-ECN3	Completed	1/9/2022
Alexander GORN	TDR	SY-ABT	Matthew FRASER	GRAF	PBC / SY	Completed	1/10/2023
Tamara BUD	ECN3 tasks on request	SCE	John OSBORNE	QUEST	PBC	Completed	1/1/2024
Francesca LUONI	ECN3 tasks on request	HSE-RP	Claudia AHDIDA	FELL	PBC	Completed	1/9/2023
Tirsi PREBIBAJ	ECN3 tasks on request	BE-ABP	Hannes BARTOSIK	GRAF	PBC	Completed	1/3/2023

BDF/SHiP at the HI-ECN3 Facility

Project Resources: quick reminder (i)

- **PBC ECN3 Task Force:** budget estimate (~ Class 3 4)
 - Agreed by CERN groups at 324th IEFC meeting 3 March 2023 (no project STAFF M2P)
 - Presented to the 244th CERN Research Board 6 March 2023
 - Beam Delivery = 14 MCHF

Cost	Descurres Context (including M2D)	2023	2024	2025	2026	2027	2028	2029	2030	2031	Total
Categories	Resource Context (including M2P)				[kCHF	rouna	led to cl	osest 25	5k]*		
Beam	Operation Critical (NA-CONS**) and HI specific	125	450	1150	2525	3550	2875	575	225	0	11475
Dolivory	TDR: Engineering & Optimization Phase (GRAD)***	550	1125	1125	0	0	0	0	0	0	2800
	Sub-Total:	675	1575	2275	2525	3550	2875	575	225	0	14275

* Budget profiling is a very rough estimate (peaking after LS3) and needs to be iterated in TDR phase

** NA-CONS new baseline items motivated by risk to reliability of HI-ECN3 operation after LS3

*** TDR GRAD request based on same ratio of GRAD/CtC of NA-CONS project working out at ~ 2.8 MCHF or 10 FTE for 3 years

C. Ahdida et al., Findings of the Physics Beyond Colliders ECN3 Beam Delivery Task Force, CERN-PBC-REPORT-2023-001 Synaxis AG, ... ECN3 & TCC8 - Report of Preliminary Study, EDMS#2815529

Project Resources: quick reminder (ii)

- **PBC ECN3 Task Force:** budget estimate (~ Class 3 4)
 - Agreed by CERN groups at 324th IEFC meeting 3 March 2023 (no project STAFF M2P)
 - Presented to the 244th CERN Research Board 6 March 2023
 - Beam Delivery = 14 MCHF + BDF/SHiP facility (50 MCHF) → Total = 64 MCHF

Cost	Resource Context (including	2023	2024	2025	2026	2027	2028	2029	2030	2031	Total	%
Categories	M4P)				[kCHF	round	ed to cl	osest 2.	5k]*			
	Civil Engineering	0	100	200	300	500	2450	3350	2450	500	9850	20
	Target Station & beam dilution	0	200	425	625	1050	5250	7150	5250	1050	21000	42
	Infrastructure & Services	0	150	300	475	775	3850	5250	3850	775	15425	31
	Integration, Dismantling, Installation	25	150	375	825	1150	925	175	75	0	3700	7
	Sub-Total.	25	600	1300	2225	3475	12475	15925	11625	2325	<mark>49975</mark>	<u>100</u>

* Budget profiling is a very rough estimate (peaking after LS3) and needs to be iterated in TDR phase

👮 M. Fraser

C. Ahdida et al., Findings of the Physics Beyond Colliders ECN3 Beam Delivery Task Force, CERN-PBC-REPORT-2023-001 Synaxis AG, ... ECN3 & TCC8 - Report of Preliminary Study, EDMS#2815529

Project Resources: quick reminder (iii)

- **PBC ECN3 Task Force:** budget estimate (~ Class 3 4)
 - Agreed by CERN groups at 324th IEFC meeting 3 March 2023 (no project STAFF M2P)
 - Presented to the 244th CERN Research Board 6 March 2023
 - No significant cost difference between experiment options
 - Beam Delivery = 14 MCHF + HIKE/SHADOWS facility (46 MCHF) → Total = 60 MCHF

Cost	Becourse Context (including M3D)	2023	2024	2025	2026	2027	2028	2029	2030	2031	Total	%
Categories	Resource Context (including M2P)				[kCHF	round	led to c	losest 2	25k]			
	Civil Engineering (no additional access shaft requested)	0	50	125	175	300	1500	2025	1500	300	5975	13
	Target Station	0	175	325	500	825	4150	5650	4150	825	16600	36
ніке /	Infrastructure & Services	0	175	350	525	850	4300	5850	4300	850	17200	37
SHADOWS	Integration, Dismantling, Installation	25	150	375	825	1150	925	175	75	0	3700	8
	Phase-II Beamline & Infrastructure Changes	0	0	0	0	0	0	0	0	2500	2500	6
	Sub-Total:	25	550	1175	2025	3125	10875	13700	10025	4475	<mark>45975</mark>	100
Fraser	BDF/SHiP at the HI-ECN3 Facility			SY-TM	1 – ECN	٧3			18 th	June 2	024	48

MTP 2023 request

- MTP 2023 request of 2.85 MCHF for 2023 & 2024:
 - This included additional NA-CONS items deemed critical for the future operation of the HI-ECN3 facility: we requested an increase in the Cost-to-Completion of NA-CONS

														Reques	<mark>ted</mark> budget	per year in	[kCHF]						
No	n for MTP document	Sector /Unit	tment	Project Name/ Operati on	Type of Budget	Request short description	Request Justification / Comments	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	Total 2023 - 2033 [kCHF]	Total 2023 - 2028 [kCHF]	Total 2024 - 2033 [kCHF]	Total 2024 - 2028 [kCHF]	Total 2023 2024 [kCHF]
	MTP Funding Request	ATS	ATS	ECN3	Materials	HI-ECN3 facility	Outcome of the ECN3 TF Study -> high-intensity beamline: ~14MCHF -> experiment dependent implementation (figures presented here as request for the SHIP case as the slightly more expensive one) SHIP ECN3: ~50MCHF HIKE/SHADOWS: ~46MCHF Resource summary: EDMS #2825627 ECN3 TF Study report: CERN- PBC-REPORT-2023-001	225	1,225	2,400	4,100	6,150	13,950	15,250	11,000	2,175			56,475	28,050	56,250	27,825	1,450
	MTP Funding Request	ATS	ATS	ECN3	Grad	HI-ECN3 facility	see comments above	450	950	1,175	625	875	1,400	1,250	850	150			7,725	5,475	7,275	5,025	1,400
Total								675	2175	3575	4,725	7,025	15,350	16,500	11,850	2,325	0	0	64,200	33,525	63,525	32,850	2,850

M. Fraser

MTP 2023 arbitration

• MTP 2023 decision by the DG:

 - 'Allocate 2.5 MCHF for 2023 and 2024 for the preliminary works, waiting for the project to be officially approved.'

														Allocated	budget per	r year in [kC	HF]						
No	Classificatio n for MTP document	Sector		Project Name/ Operati		Request short description	Request Justification / Comments	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	Total 2023 - 2033 [kCHF]	Total 2023 - 2028 [kCHF]	Total 2024 - 2033 [kCHF]	Total 2024 - 2028 [kCHF]	Total 2023 2024 [kCHF]
ΨÎ	↓ 1	i 🖵	-	on 🛪	·	·	▼	-	Ŧ	Ŧ	Ŧ	~	-	-	-	-	-	*		· ·	-	*	-
41	MTP Funding Request	ATS	ATS	ECN3	Materials	HI-ECN3 facility	Outcome of the ECN3 TF Study -> high-intensity beamline: ~14MCHF -> experiment dependent implementation (figures presented here as request for the SHIP case as the slightly more expensive one) SHIP ECN3: ~50MCHF HIKE/SHADOWS: ~46MCHF Resource summary: EDMS #2825627 ECN3 TF Study report: CERN- PBC-REPORT-2023-001	225	875	0	0	0	0	0	0	0			1100	1100	875	875	1100
42	MTP Funding Request	ATS	ATS	ECN3	Grad	HI-ECN3 facility	see comments above	450	950	0	0	0	0	0	0	0			1400	1400	950	950	1,400
Total								675	1825										2500				

🕅 M. Fraser

Budget Transfer to NA-CONS

- 700 kCHF was transferred from HI-ECN3 to NA-CONS to advance on many new LS3 critical consolidation items requested for HI-ECN3:
 - TCSC (Transfer Line Splitter Collimator) consolidation
 - RP support for primary NA zones
 - Transfer line magnets (magnetic measurements, spares, etc.)
 - Beam instrumentation
- HI-ECN3 Study Project therefore has a shortfall in 2023/24 of 350 kCHF requested:
 - 1.8 MCHF approved vs. 2.85 MCHF requested (after items assigned NA-CONS)

Туре	Funding	Total
Goods	CERN	278
Grad	CERN	1,521
Total		1,799

TDR GRAD team budget

• **Discussion continue with CERN groups:** the team is now reaching the 2.8 MCHF TDR GRAD budget request:

Dep	Group	WP	Category	BC Description	Detailed Description	2023	2024	2025	2026	Total
SY	SY-STI	3&4	QUEST	TDR preparation: SY-STI	Target R&D		82.5	110	27.5	220
EN	EN-ACE	1	ORIGIN	TDR preparation: EN-ACE	Planning/Scheduling	10	40	30	0	80
EN	EN-ACE	1	ORIGIN	TDR preparation: EN-ACE	Planning/Scheduling		30	40	10	80
HSE	HSE-RP	6	QUEST	TDR preparation: HSE-RP	Including 25% RP source term contribution		101	110	9	220
EN	EN-CV	3&4&5	QUEST	TDR preparation: EN-CV	TDR		110	110	0	220
EN	EN-EL	4&5	QUEST	TDR preparation: EN-EL	TDR		55	55	0	110
EN	EN-HE	4&5	ORIGIN	TDR preparation: EN-HE	TDR		60	80	20	160
EN	EN-HE	4&5	TEMP	TDR preparation: EN-HE	External Contractor 4 months at average of 30%		11			11
BE	BE-EA	2	GRAF	TDR preparation: BE-EA-LE	TDR: Beam Line Support		110	110	0	220
SCE	SCE-PPM	7	QUEST	TDR preparation: SCE-PPM	Supporting handover to implementation phase		55	110	55	220
SCE	SCE-SAM	7	TEMP	TDR preparation: SCE-SAM	4-month handover to new PBC FELL		37			37
HSE	HSE-RP	6	QUEST	TDR preparation: HSE-OHS-RP	FIRIA - RP Environmental Engineer, FIRIA 25% contribution:			27.5	27.5	55
HSE	HSE-OHS	6	QUEST	TDR preparation: HSE-OHS-IB	FIRIA - Fire Safety Engineer, Shared 50:50 with HSE		14	55	41	110
HSE	HSE-OHS	6	QUEST	TDR preparation: HSE-OHS-PE	Technical Safety Engineer		101	110	9	220
SY	SY-STI	3&4&5	QUEST	TDR preparation: SY-STI	R2E / FLUKA studies			110	110	220
SY	SY-BI	2	ORIGIN	TDR preparation: SY-BI	Electronics for BLM work (oBLMS &ICs)		20	80	60	160
BE	BE-EA	2	ORIGIN	TDR preparation: BE-EA	Supporting P42 Vacuum upgrade, Shared with PBC and NA-CONS:		27	27		53
SY	SY-BI	2	TECH	TDR preparation: SY-BI	P42 BLM Part 2 TECH			42		42
BE	BE-EA	5	ORIGIN	TDR preparation: BE-EA	Integration support for dismantling and shielding recovery			80	80	160
BE	BE-EA	5	ORIGIN	TDR preparation: BE-EA	Integration support for ICEA		20	80	60	160
Total						10	872	1'366	510	2'758

Urgent Items (in view of approval)

Dep	Group	WP M	/ P Category	HI-ECN3 Category	BC Description Detailed Description	2023	2024	2025
SY	SY-ABT	1	Material	TDR	Project Management		150	150
HSE	HSE-RP	2	Material	Beam Delivery	Additional RP Monitors for Beam Delivery	35	10	
BE	BE-GM	4&5	M+P	Experiment - HIKE/SHADOWS	5 TDR preparation: BE-GM		65	65
SY	SY-STI	3	Material	Experiment	Target R&D including Prototype Beam Test		230	470
TE	TE-MSC	2	Material	Beam Delivery	Production of Laminated Magnets for T4 Bump and P42 Dump		45	45
SY	SY-BI	2	Material	Beam Delivery	Repayment of P42 BLM Part 1			130
SY	SY-BI	2	Material	Beam Delivery	P42 BLM Part 2	0	39	27
HSE	HSE-RP	2	M+P	Beam Delivery	EHN1 ramp Classification RP		50	100
HSE	HSE-RP	2	M+P	Beam Delivery	ECN3 bridge shielding		50	150
SY	SY-STI	3	Material	Beam Delivery	P42 Beam Dump	20	180	
TE	TE-MPE	2	M+P	Beam Delivery	Machine Protection for Beam Delivery		100	100
SY	SY-ABT	2	M+P	Beam Delivery	Low-Z Electrostatic Septa		100	100
TE	TE-MSC	2	Material	Beam Delivery	Production of 11 Laminated MDX for P42		15	240
BE	BE-EA	2	Material	Beam Delivery	XTAX High Intensity Upgrade - Design		10	
SY	SY-EPC	2	Material	Beam Delivery	Production of 2 POLARIS for T4 Bump and P42 Dump			150
BE	BE-EA	2	Material	Beam Delivery	P42 Vacuum upgrade			200
SY	SY-ABT	2	QUEST	Beam Delivery	Extraction and Beam Transfer			28
SY	SY-STI	4	M+P	Experiment	TT7 shielding recovery		200	700
SY	SY-STI	4	M+P	Experiment	Target and coil handling system		25	25
SY	SY-STI	4	M+P	Experiment	Vacuum Vessel containing target system		35	55
SY	SY-STI	4	M+P	Experiment	Target system integration & R&D		50	50
BE	BE-EA	5	MPA	Experiment	Cable Identification Campaign Pre-LS3		10	10
EN	EN-HE	4&5	M+P	Experiment	TCC8/ECN3 transfer table refurbishment			100
EN	EN-HE	4	M+P	Experiment	Complete upgrade of the TCC8 crane			400
SCE	SCE-PPM	7	M+P	Experiment	SCE pre-studies needed in 2025		3	100
Total						55	1'367	3'395

HI-ECN3 Study Project Budget Request 2024/25

	2023 [kCHF]	2024 [kCHF]	2025 [kCHF]	 Project Total [kCHF]
TDR GRADs	10	872	1366	-
Reprofile of Urgent HI-ECN3 Items	55	1367	3395	-
To NA-CONS	206	495	920	4733
HI-ECN3 Study Project	271	2734	5681	65083
MTP 2023 Request	700	2175	3575	64250
	-429	+559	+2106	+833

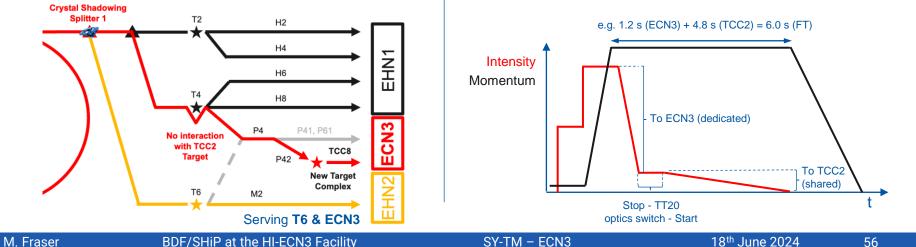
T. Prebibaj et al., SPS Operation and Future Proton Sharing Scenarios for the ECN3 facility, CERN-PBC-NOTE 2023-001

Proton sharing: ECN3 super-cycles

Realistic supercycle composition for physics production, e.g. night/weekend operation without HL-LHC filling

TCC2	(SFTPRO)		ECN3 (HI	KE / SHADO	DWS)	SC	TCC2 &
FT Length [s]	N _{cycles} [/SC]	Duty Cycle [%]	FT Length [s]	N _{cycles} [/SC]	Duty Cycle [%]	length [s]	ECN3 FT Duty Cycle [%]
4.8	1	11.1	4.8	2	22.2	43.2	33.3*
9.6	1	11.4	4.8	4	22.9	84.0	34.3*

TCC2 (SFTPRO)			ECN3 (SHiP, CNGS-like)			SC	TCC2 &
FT Length [s]	N _{cycles} [/SC]	Duty Cycle [%]	FT Length [s]	N _{cycles} [/SC]	Duty Cycle [%]	length [s]	ECN3 FT Duty Cycle [%]
4.8	1	11.1	1.2	4	11.1	43.2	22.2
9.6	1	17.4	1.2	4	8.7	55.2	26.1


*SPS MBA/B RMS power limit @ 400 GeV

M. Fraser	BDF/SHiP at the HI-ECN3 Facility	SY-TM – ECN3	18 th June 2024	55
-----------	----------------------------------	--------------	----------------------------	----

*M. Tat, TT20 beam loss reduction, CERN-STUDENTS-Note-2019-219 *P. Arrutia, Optimisation of Slow Extraction and Beam Delivery from Synchrotrons, CERN-THESIS-2020-259

Proton sharing: upgrades

- We could investigate more complex solutions to ease proton sharing via targeted R&D if we can push the SPS pulse intensity:
 - Splitting dedicated ECN3 cycles:
 - Splitting >4×10¹³ ppp with crystal shadowing* on splitter 1 to serve T6 & ECN3, or splitter 2 to serve T2 & ECN3
- Multi-PPM "multi-user" spills:
 - Exploit margin on RMS power available in SPS, extract to ECN3 on longer FT before stopping extraction (changing optics & destination) and sharing to TCC2 and pushing > 4×10¹³ ppp

Very preliminary power converter specs

Magnetisation of hadron stopper (RAL, taken over by TE-MSC)

24 mΩ @ 20°C, DC 135 A → Bipolar 50V, 200A (POLARIS?)

Muon shield SC magnets (T. Arndt, KIT-ITEP)

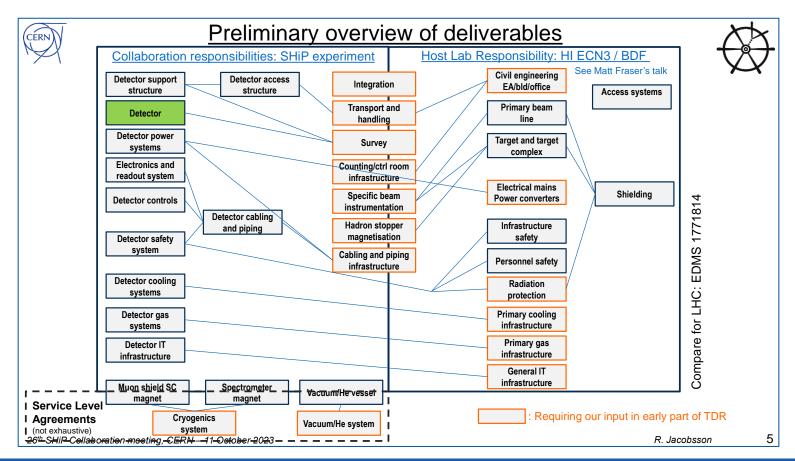
- 5-7 PCs, DC 3000A/10V, 3phase 400V/63A grid connection and simple air-cooling, 7 kW power loss to air
- Note: Cu-current leads might need some additional power/ water-cooling, potentially aim for higher voltages for faster ramping

Muon shield NC magnets (3 x) (RAL+UK)

0.5 – 2 Ω @ 20°C, 50-100 A, DC, air cooled → Unipolar Combo, no water cooling, 2 units?

Spectrometer magnet (L. Baudin, A. Devred, TE-MSC)

Accounting for 100 m of Cu supply cable, and rough estimation of the resistance in the current leads:


- Super-ferric: 10 mΩ @ 20°C, 4000A, DC, Tset 30s → BOREAL 4P for DC operation, 330 V / 6000 Arms (Source 18kV) OR "BOREAL 4P-mini" for DC operation, 50 V / 4000 Arms (Source 400V)
- Resistive OPTION: 100 mΩ @ 20°C, 3000A, DC, Tset 30s → BOREAL 2P for DC operation, 330V / 3000 Arms ?

BDF/SHiP power converter discussion, CERN – 23 May 2024

18th June 2024

• Important job for F. Butin in WP5:

M. Fraser

BDF/SHiP at the HI-ECN3 Facility

SY-TM - ECN3

5

18th June 2024