

Machine Learning Techniques to Probe HNLs at the FCC-ee

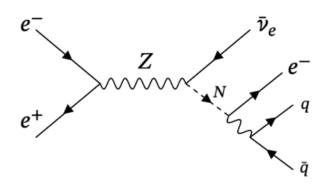
BSM LLPs at FCC-ee, June 6th 2024

Thomas Critchley[†]

Supervsiors: Prof. Anna Sfyrla[†], Dr. Pantelis Kontaxakis[†]

Heavy Neutral Leptons

- Neutrinos are massive objects with very small masses, as shown by baseline neutrino oscillation experiments
- Low-scale inverse seesaw mechnism allows us to search for heavy right handed neutrinos with Yukawa couplings $O(10^{-6})$ in a mass range between 10 100 GeV
- In our analysis, we search for the electron final state with two jets, in the (pseudo-) Dirac HNL model between 10 80 GeV with mixing angles between $10^{-4} < |U_{eN}|^2 < 10^{-10}$



Example LNC diagram for $e^+e^- \rightarrow Z \rightarrow Nv \rightarrow eqq$

Image: <u>Symmetry magazine</u>

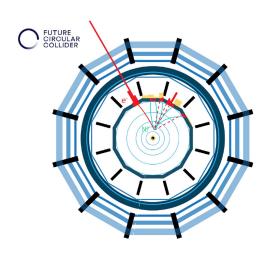
$$M = \begin{bmatrix} 0 & m_D & 0 \\ m_D & \mu_N & m_R \\ 0 & m_R & \mu_S \end{bmatrix} \begin{pmatrix} m_{\nu} & 0 & 0 \\ 0 & m_N & 0 \\ 0 & 0 & m_S \end{pmatrix}$$

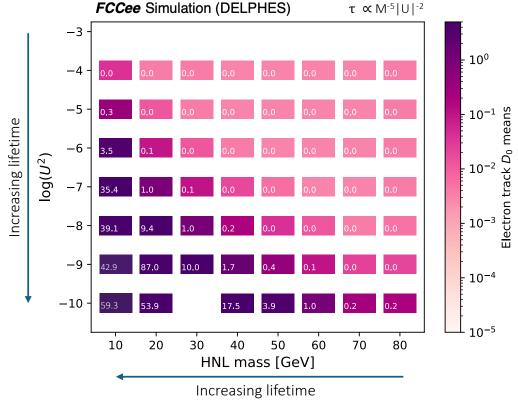
$$\mu_N, \mu_S \ll m_D \ll m_R.$$

$$m_
upprox rac{\mu_S}{m_D^2}rac{m_D^2}{m_D^2+m_R^2}, \ m_N,\, m_Spprox \sqrt{rac{m_D^2+m_R^2}{2}}\mprac{\mu_S}{2}rac{m_R^2}{m_D^2+m_R^2}.$$

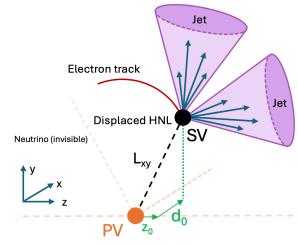
HNL Phenomology at the FCCee

• The FCC-ee will produce some 10¹² Z bosons in the Z-channel run (~3 years of data taking), giving a pileup free high luminosity environment to search for HNLs, and improve upon limits such as those set by LEP



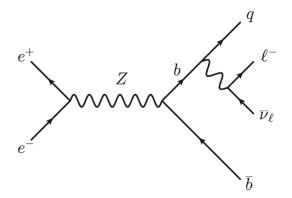


- For many of the mass points considered, a displaced topology arises from consequential lifetime ($\tau \propto M^{-5}|U|^{-2}$)
 - We can tease these signals apart from prompty decaying mass points using any metric to paramaterise the lifetime, e.g. the decay length, the D_0 etc.

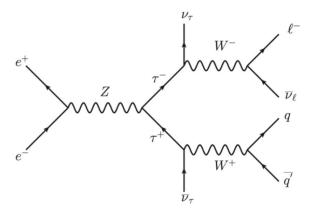


Analysis methods

We consider three SM background processes which dominate the interaction, Z → bb, cc or Z → 4 body final state.



 $Z \rightarrow bb$ production feynman diagram



Example of 4 body final state background

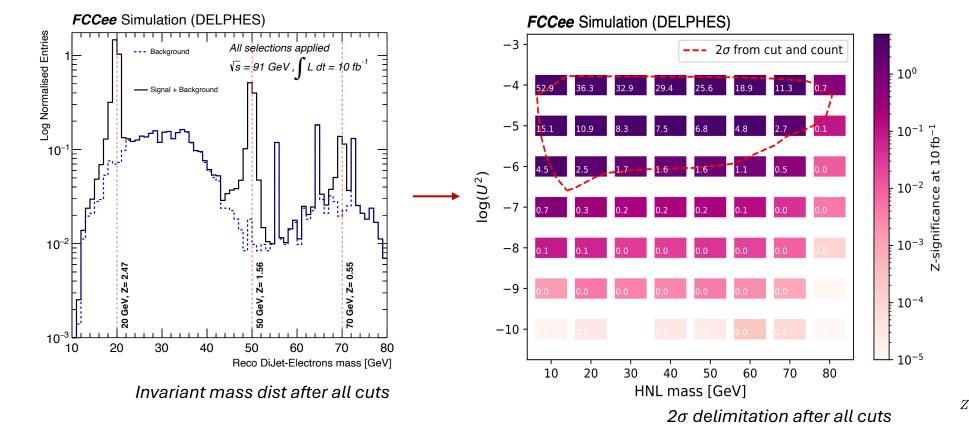
Process	$\sigma(\mathrm{pb})$	Monte-Carlo events	${\bf Production} {\cal L} ({\rm fb}^{-1})$
$Z\to bb$	6.65×10^3	4.39×10^8	6.60×10^1
$Z \to cc$	5.22×10^3	4.98×10^8	1.15×10^2
$Z \to 4body$	1.40×10^{-2}	1.00×10^5	7.14×10^3

Process	σ (pb)	Monte-Carlo events	Events at $\mathcal{L} =$	
			$10~{\rm fb^{-1}}$	150 ab^{-1}
$Z \to bb$	6.65×10^3	4.39×10^{8}	6.65×10^7	9.98×10^{11}
$Z \to cc$	5.22×10^3	4.98×10^{8}	5.22×10^7	7.82×10^{11}
$Z \to 4body$	1.40×10^{-2}	1.00×10^5	1.40×10^2	2.10×10^6
$20 \text{ GeV}, U^2 = 10^{-6}$	3.77×10^{-3}	1.00×10^5	3.80×10^{1}	5.66×10^{5}
$50 \text{ GeV}, U^2 = 10^{-6}$	2.27×10^{-3}	1.00×10^5	2.30×10^{1}	3.40×10^5
70 GeV, $ U^2 = 10^{-6}$	9.06×10^{-4}	1.00×10^5	9.00×10^{0}	1.36×10^{5}

Quite limited by statitsics, only have around 10 fb⁻¹ of lumi with which to model the 150 ab⁻¹ FCC lumi, so we only scale to the full lumi in the final result, and elsewhere work at 10 fb⁻¹

Cut and Count summary

 Cut and count study was replicated to match the cuts made in <u>D. Moulin</u> thesis (2023), as a benchmark for optimisation



Cuts chosen:

Variable	Selection
Missing energy	$> 12\mathrm{GeV}$
Leading electron energy	$> 35\mathrm{GeV}$
3D di-jet Angle	$< 2.4\mathrm{rad}$
Di-jet – Electron ΔR	< 3

Normalising factor:

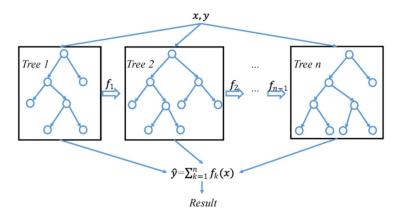
$$N = \frac{\mathcal{L}_{target} \times \sigma}{n_{sample}} \times \xi$$

Significance:

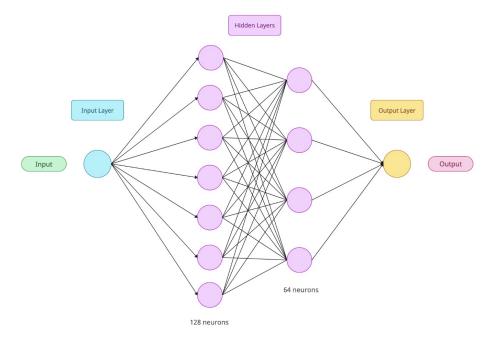
$$Z = \sqrt{2\left(n \cdot \ln\left[\frac{n\left(b + \sigma^2\right)}{b^2 + n\sigma^2}\right] - \frac{b^2}{\sigma^2}\ln\left[1 + \frac{\sigma^2(n - b)}{b\left(b + \sigma^2\right)}\right]\right)}$$

Optimisation strategy

- Boosted Decision Trees (BDTs) and Deep Neural Networks (DNNs) are the natural extension of the cut and count study, we can make a single optimised cut on the BDT/DNN output rather than having to make sequential cuts on specific variables, giving more flexibility and utilising any correlation between discriminating variables
- A ML model can be trained for each individual mass point, meaning we need not focus on some benchmark mass points to find global cuts – this limits our capacity to fully exploit features like prompt and LLPs which a ML can naturally find!
- For the BDTs, XGBoost is used in conjunction with TMVA



For the DNN models, Keras in Tensorflow is used

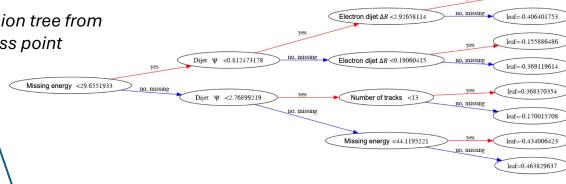


In both cases, we use the following features to train:

Object	Variables
Leading electron	$E, \phi, d_0, \sigma_{d_0}, \Delta R_{ejj}$
Neutrino	$E_{ m miss}, heta$
Di-jet system	$\Delta R_{jj}, \phi$
Vertex and tracks	$n_{ m tracks}, n_{ m primary\ tracks}, \chi^2_{ m vertex}$

BDT workflow

"simple" single decision tree from 10 GeV $|U|^2 = 10^{-4}$ mass point



Data Preparation:

- Stage 1 flat ntuples loaded
- Filter applied: E > 15 GeV
- Training and testing split
- Data sets saved using TMVA

Model training:

- GridSearchCV
- Decision trees made
- Model saved in ROOT file (TMVA)

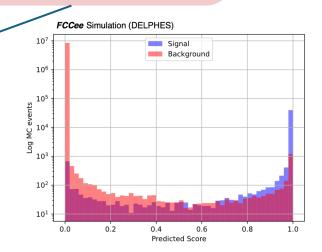
Model predictions:

- Models applied to test
- Normalisation to 10 fb⁻¹
- BDT cut chosen based or optimal significance (as with cut and count)

Process	Training Events	Testing Events
Total Background	5,655,708	11,311,415
$20 \text{ GeV}, U^2 = 10^{-6}$	$26,\!254$	26,254
$50 \text{ GeV}, U^2 = 10^{-6}$	29,991	29,991
70 GeV, $ U^2 = 10^{-6}$	32,194	32,193

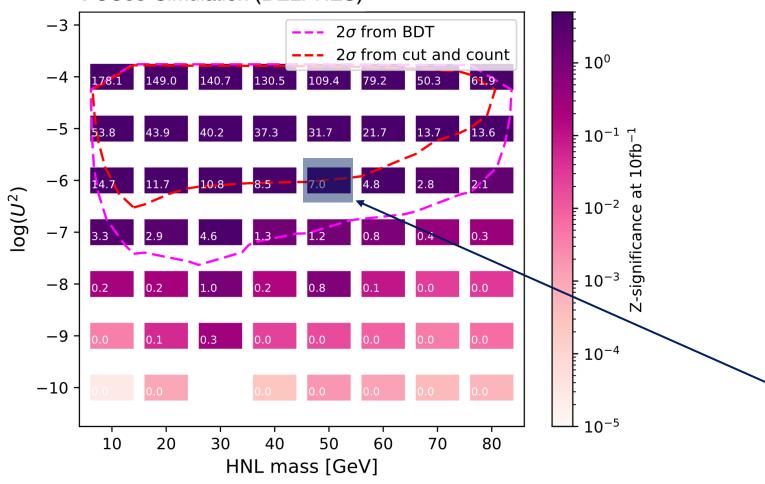
Training / testing split statistics

Example raw BDT classification scores for 70 GeV $|U|^2 = 10^{-6}$ mass point

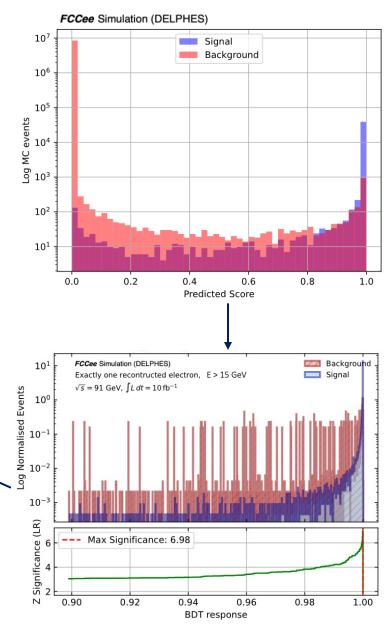


BDT Result

FCCee Simulation (DELPHES)



For the 50 GeV mass point at $|U|^2 = 10^{-6}$ at 10 fb⁻¹ - BDT cut of 0.999 gives 13.5 signal events and 1.12 background events



DNN workflow

Hyperparameter	Range	Step
Units in Input Layer	32 to 512	32
Number of Hidden Layers	1 to 5	1
Units in Hidden Layers	32 to 512	32
Learning Rate	1×10^{-5} to 1×10^{-2}	Log scale
Dropout Rate	0.2	Fixed
Activation Function	ReLU	Fixed
Output Activation Function	Sigmoid	Fixed
Optimizer	Adam	Fixed
Loss Function	Binary Crossentropy	Fixed
Metrics	${\it Accuracy, Precision, Recall, AUC}$	Fixed

Hyperparameter random search for DNN model, including fixed metrics such as the Adam Optimizer

Data Preparation:

- Stage 1 flat ntuples loaded
- Filter applied: E > 20 GeV
- Training and testing split
- Data sets saved in numpy
 - Feature flattening

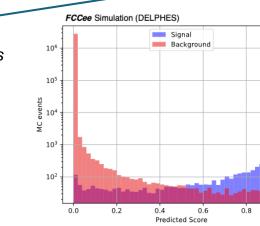
Model training:

- Random search
- Model trained for 100 epochs
- Target: minimise validation loss

Model predictions:

- Models applied to test
- Normalisation to 10 fb⁻¹
- DNN cut chosen based on optimal significance (as with cut and count)

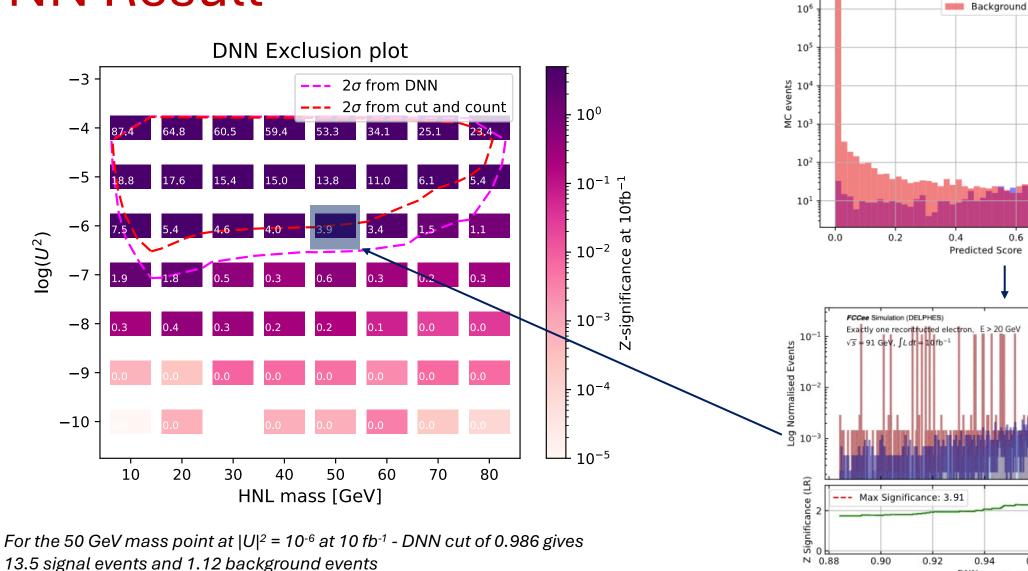
Example raw DNN classification scores for 70 GeV $|U|^2 = 10^{-6}$ mass point



Process	Training Events	Testing Events
Total Background	2,792,099	2,792,099
$20~{\rm GeV}, U^2 =10^{-6}$	19,601	19,600
$50 \text{ GeV}, U^2 = 10^{-6}$	21,471	21,471
$70~{\rm GeV}, U^2 =10^{-6}$	23,951	23,951

Training / testing split statistics

DNN Result



HNLs at the FCC-ee

FCCee Simulation (DELPHES)

Signal

0.8

0.96

DNN response

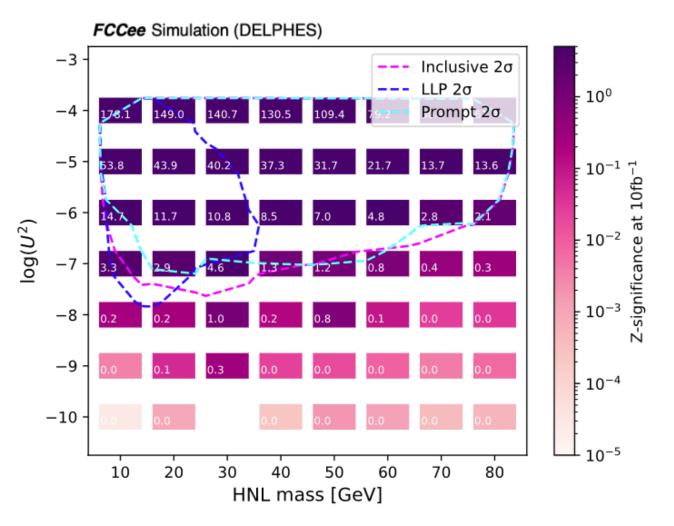
0.98

1.00

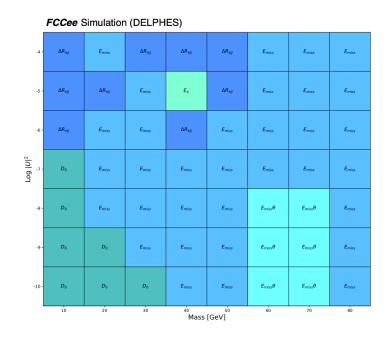
1.0

Z Background

LLP study with BDTs

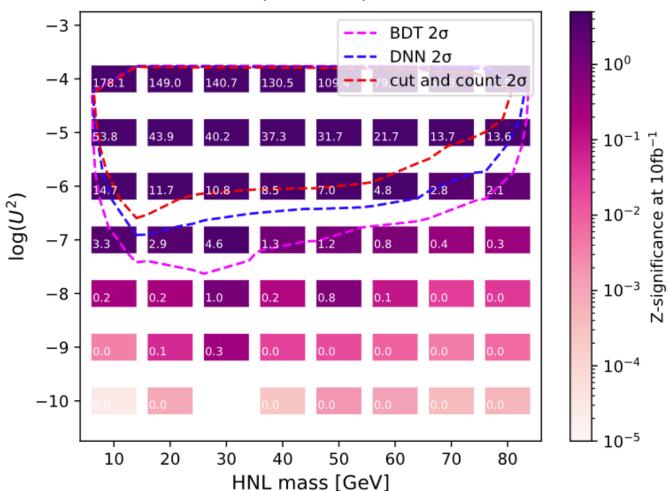


- Attempted to separate the signal using filter involving the impact parameter significance
- Prompt decays are targetting using σ_{d_0} < 5 (cyan) and LLPs are targeted for σ_{d_0} > 5 (blue)
- We find very little improvement (if any) likely because the BDT already uses d_0 as a the most important variable for the LLPs



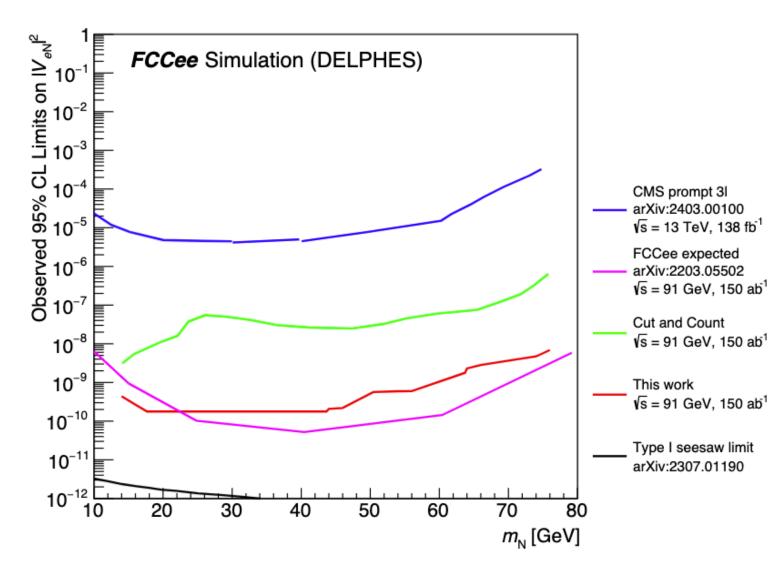
Comparing the strategies

FCCee Simulation (DELPHES)



- BDT models so far elicit almost 2 orders of magnitude more delimitation in the couplings compared to the cut and count at the biggest difference, DNN gives ~ 1 order of magnitude.
- Study not yet robust enough to truly claim that the BDT is "better" but instead we can say that it does require much less optimisation to yield great results
- More work on hyperparameter optimisation, feature engineering etc being done on for the DNN until the submission of my thesis – so still some time to improve this result!

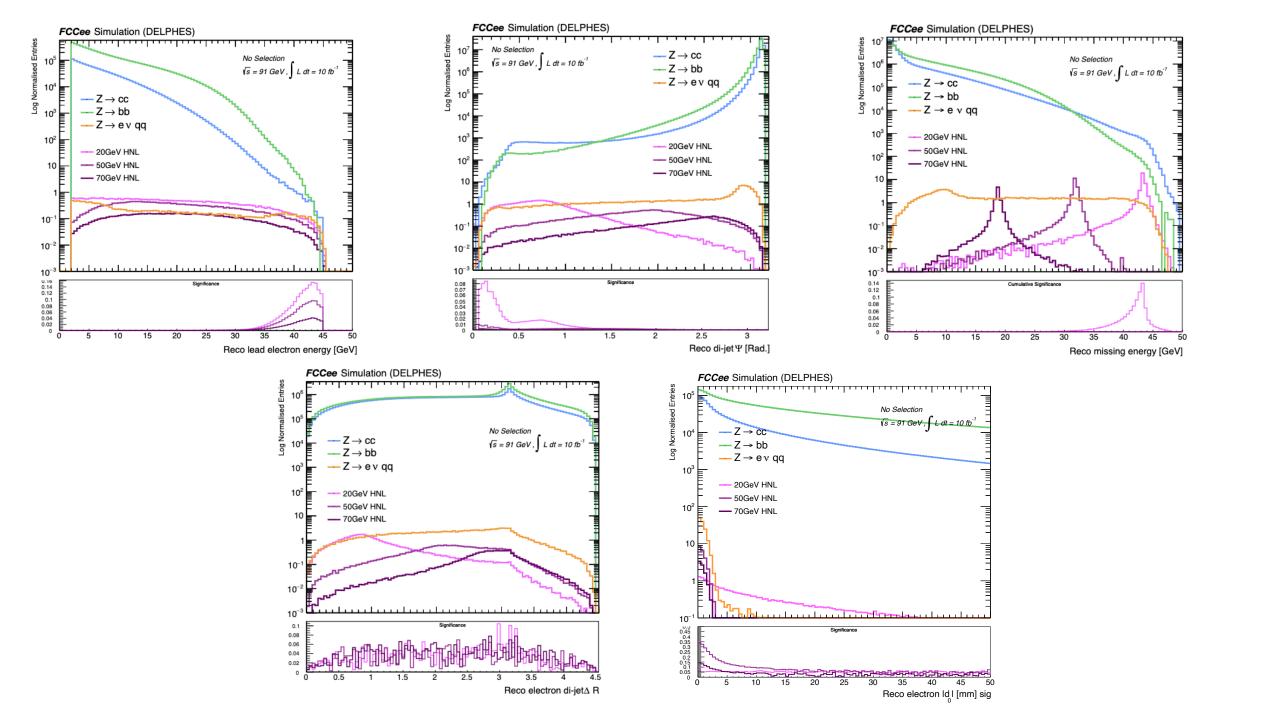
Conclusion: our study in context



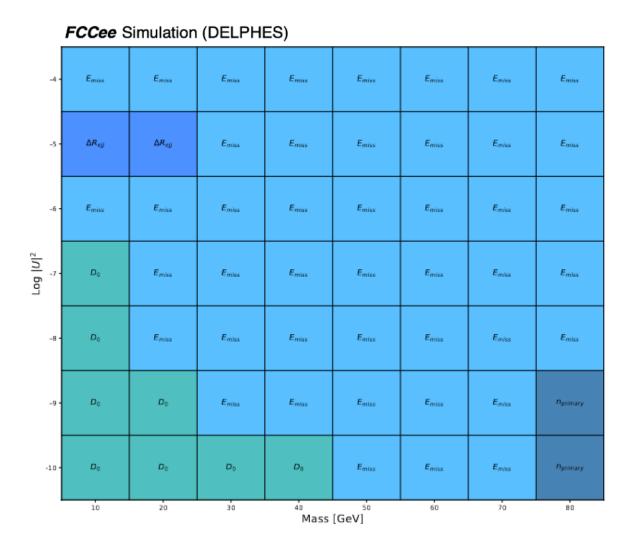
- Scaling to 150 ab⁻¹, with no estimation on statitsical or systematic uncertainty; hence, we can only interpret the plot on the left in terms of how it compares to the cut and count, and we see that it indeed delimits a much broader region of the phase space.
- We begin to crest upon the projected FCC-ee limit, despite working with only ~50% of the branching ratio – though, as said – this should be interpreted only as a guide for improvement strategies since we do not have the associated uncertainties
- Nevertheless, ML seems to be capable of hugely improving our limits, possibly across all final states!
- Increasing MC statistics in signal region crucial for robust studies

Thank you for listening! I would be happy to take any questions (they will be very helpful for continuing this work, and for my thesis defence!)

-- Additional slides --



DNN vs BDT feature importance



FCCee Simulation (DELPHES)

