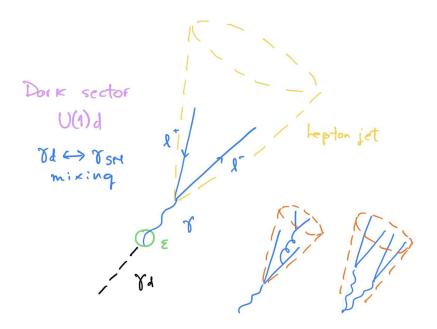
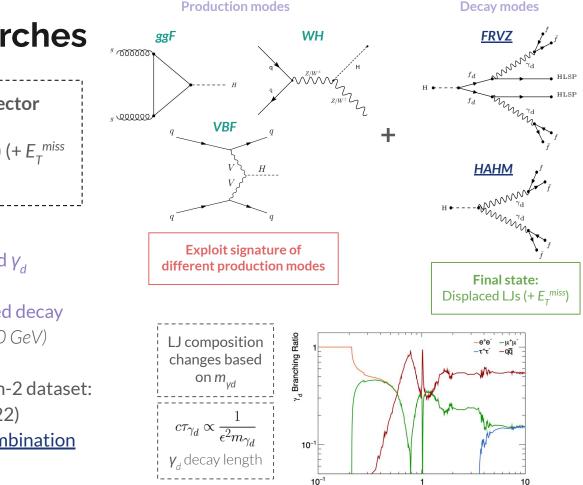


Dark photon production in Higgs decays at FCC-ee Expression of interest

Richards González, Yanyan Gao The University of Edinburgh


FCC LLP meeting


6 June 2024

Dark sectors signatures

- Light dark sectors as general possibility in colliders (minimal extensions, DM candidates, various exotic signatures)
- At the LHC, **light dark particles** would be produced with large boosts, causing their decay products to form jet-like structures
- LJ-like signatures arise in models with a dark sector composed of unstable particles with MeV-GeV masses decaying to SM particles
- Studies in ATLAS:
 - Searches for **displaced LJ-like signatures** in Run-2 data
 - Different **Higgs production modes:**
 - ggF+WH production
 - VBF production
 - Run-3 analysis ongoing

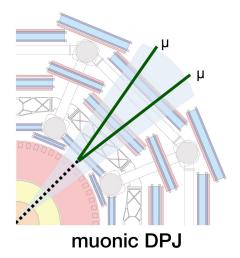
Lepton jet (LJ) = cluster of collimated light charged particles $(e^+e^-, \mu^+\mu^-, qq')$

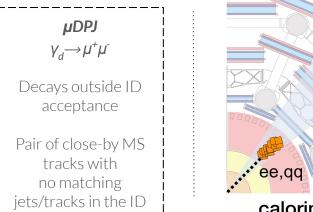
Production modes

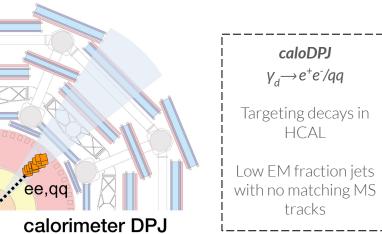
ATLAS Run-2 searches

- $H \rightarrow 2\gamma_{d}$ (+ X) via **Higgs & vector** portals
- SM final states $(\gamma_d \rightarrow \ell^+ \ell'/qq) (+ E_T^{miss})$ signature in FRVZ decay)

- Small coupling ε : long-lived γ_d $0 \quad 10^{-7} < \varepsilon < 10^{-5}$
- With $m_{vd} << m_{H}$: collimated decay \circ m_{vd} ~ O(10 MeV)-O(10 GeV)
- Two searches using full Run-2 dataset:
 - ggF+WH search (2022) 0
 - VBF search & full combination Ο (2023)

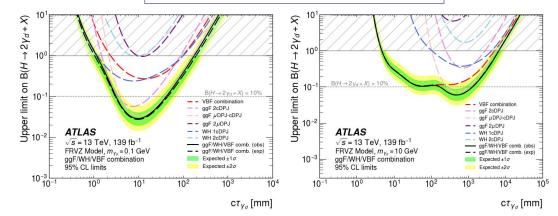

m, [GeV]

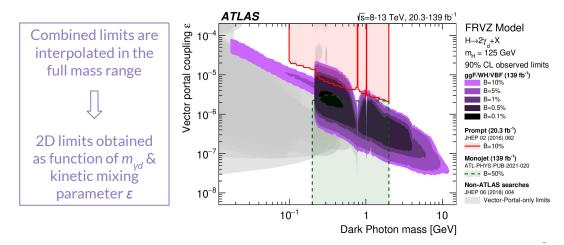

Displaced LJ signatures


Custom reconstructed objects: Dark Photon Jets (DPJ)

Sensitive to γ_d decays after pixel detector

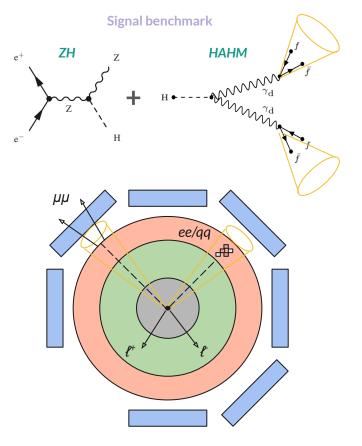
	Collisional	Non-collisional		
Backgrounds	Multi-jet (e.g.,	Cosmic rays	Beam-induced	
	QCD MJ, V+jets)	(µDPJ)	(caloDPJ)	





Run-2 results

Combination with observed ggF/WH limits

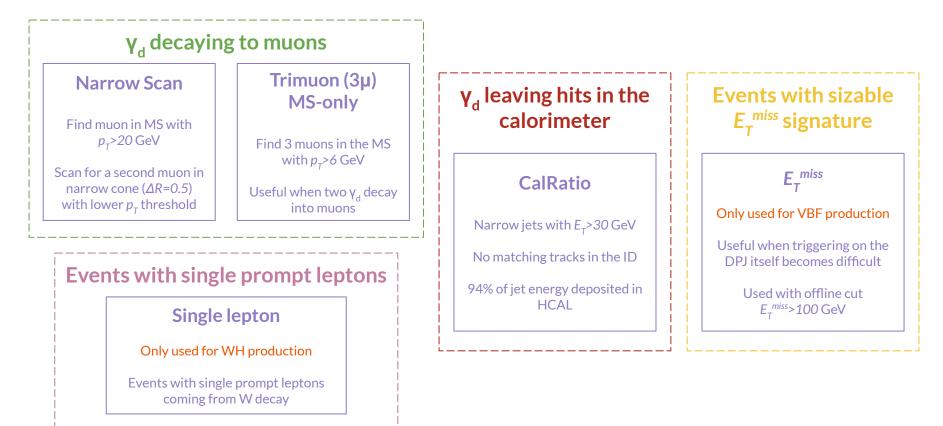

- Explored γ_d masses \in [0.017, 15] GeV
- Explored lifetimes translating in $c\tau_{yd} \in [2, 1000] \text{ mm}$
- Interpretation of results:
 - Exotic Higgs decays to LLPs
 - Dark sector models (FRVZ, HAHM)
 - Caveat:
 - Full combination is FRVZ
 - Not commonly used compared to minimal models studied by other facilities

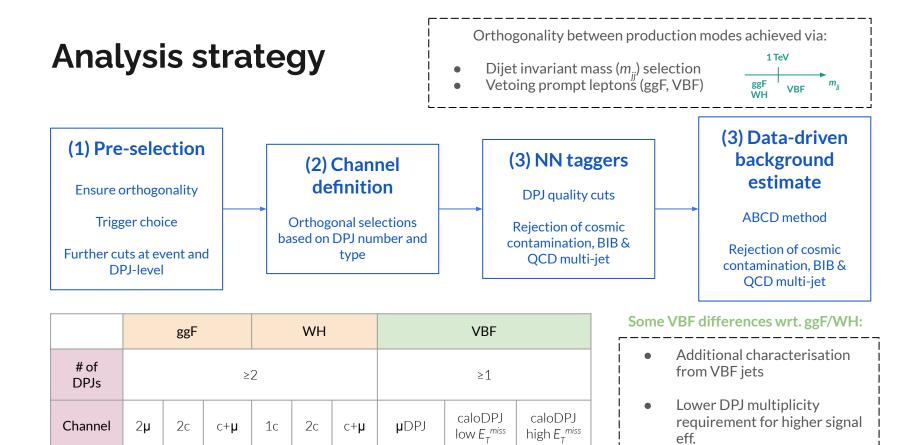
What about a similar thing at FCC-ee?

- First look into dark photon production in Higgs decays at FCC-ee
- Good complementarity with ongoing FCC LLP searches:
 - Similarity with displaced signatures from ALPs
 - Additional exotic Higgs decay scenario
- Targeting FCC-ee ZH production & HAHM Higgs decay
 - $\circ \quad e^+e^- \longrightarrow Z(\ell^+\ell')H(2\gamma_d) @ \text{ecm } 240 \text{ GeV}$
- Experimental signature:
 - A reconstructed Z boson from l^+l^- pair
 - A displaced DPJ from each long-lived γ_d

Signal MC and future plans

- Signal simulated using MadGraph5 HAHM UFO model
 - 100k events per sample
 - MG5_aMC v3.5.4 for LHE production
 - Pythia8 + Delphes using IDEA Delphes card
- Backgrounds:
 - Candidates: ZH, ZZ, Zqq, etc
 - Checking existing samples in winter2023 camp.
- Future plans:
 - Generator level studies (LHE level kinematics)
 - FCCAnalyses framework to study reco-level info
 - Explore low-level detector response; e.g.,
 - Calocluster and muon information (including timing)


$m_{\gamma d} = 0.1 \text{GeV}$ $c \tau_{\gamma d} = 15 \text{mm}$	$m_{yd} = 2-6 \text{ GeV}$ $c\tau_{yd} = 100-1000$ mm
$BR(\gamma_d \rightarrow e^+e^-)=100\%$	Allow $\gamma_d \rightarrow \mu^+ \mu^-$ since $m_{vd} > 2m_{\mu}$
Useful for caloDPJ	since $m_{\gamma d} > 2m_{\mu}$
signatures	Useful for µDPJ signatures


Displaced DPJ considerations

- µDPJ final states as "safe option" since easier to reconstruct (collimated muons in narrow cone or resolved dimuons with simple vertexing)
- Explore ATLAS-like NN taggers to distinguish displaced caloDPJs from prompt jets

Trigger strategy

NS/3µ/

 E_{T}^{miss}

Single lepton

 E_{τ}^{miss}

Narrow Scan/3µ/

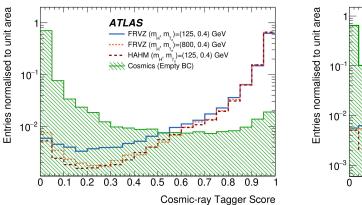
CalRatio

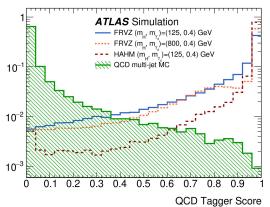
Trigger

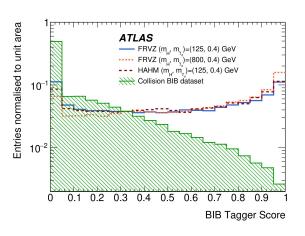
•	E_{τ}^{miss} triggers for both DPJ
	signatures & no CalRatio

NN-based taggers for DPJ quality

Cosmic-ray tagger (µDPJ)


- Based on track parameters and RPC timing information
- Per-track tagging classifying **cosmic background against tracks originated by collision products**


QCD tagger (cDPJ)


- 3D representations of jet energy built with calo-clusters
- Using energy deposit, *Φ* and *η* in each calorimeter sampling
- CNN trained to classify QCD MJ from signal-like jets

BIB tagger (cDPJ)

- Using same information than QCD tagger
- CNN trained to classify
 Beam-Induced Background jets
 from signal-like jets

Signal region definitions

$\mathrm{SR}^{\mathrm{ggF}}_{2\mu}$	$\mathrm{SR}_{\mathrm{2c}}^{\mathrm{ggF}}$	$SR_{c+\mu}^{ggr}$
2	0	1
0	2	1
yes	-	-
yes	-	yes
-	yes	-
-	< 2.5	-
-	< 0.4	-
$> \pi/5$	$> \pi/5$	$> \pi/5$
-	> 0.2	> 0.2
< 4.5	< 4.5	< 4.5
-	> 0.95	> 0.9
	$\frac{1}{0}$ yes $\frac{1}{2}$ $> \pi/5$	$\begin{array}{c ccc} 0 & 2 \\ \hline 0 & 2 \\ \hline \\ yes & - \\ yes \\ - & yes \\ - & 2.5 \\ - & < 2.5 \\ - & < 0.4 \\ > \pi/5 & > \pi/5 \\ - & > 0.2 \\ < 4.5 & < 4.5 \end{array}$

Requirement / Region	SR_c^{WH}	SR_{2c}^{WH}	$SR_{c+\mu}^{WH}$
Number of μ DPJs	0	0	1
Number of caloDPJs	1	2	1
Single-lepton trigger (μ, e)	yes	yes	yes
$m_{\rm T}$ [GeV]	> 120	-	-
$ t_{caloDPJ} $ [ns]	< 4	< 4	< 4
Leading (far) caloDPJ width	< 0.08	< 0.10 (0.15)	< 0.1
caloDPJ $p_{\rm T}$ [GeV]	> 30	-	-
JVT	< 0.6	< 0.6	< 0.6
$\min(\Delta\phi)$	$< 3\pi/5$	$< 3\pi/10$	$< 7\pi/20$
min(QCD tagger)	> 0.99	> 0.91	> 0.9

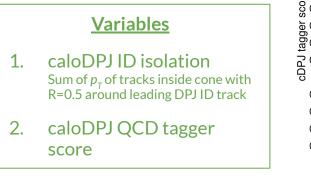
VBF

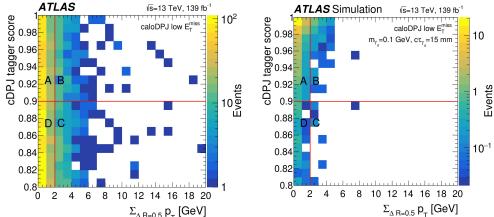
Requirement / Region	SR_μ	$\mathrm{SR}^{\mathrm{L/H}}_{\mathrm{c}}$
Number of DPJs	≥ 1	≥ 1
Leading DPJ type	$\mu { m DPJ}$	caloDPJ
	$E_{\mathrm{T}}^{\mathrm{miss}}$	
Trigger	Tri-muon MS-only	$E_{\mathrm{T}}^{\mathrm{miss}}$
	Muon narrow-scan	
$p_{\rm T}({\rm jet}) \; [GeV]$	> 30	> 30
$N_{ m jet}$	≥ 2	≥ 2
$m_{ m jj} \; [GeV]$	≥ 1000	≥ 1000
$ \Delta \eta_{ m jj} $	> 3	> 3
$ \Delta \phi_{ m jj} $	< 2.5	< 2.5
N_ℓ	0	0
$N_{b ext{-jet}}$	0	0
$C_{\rm DPJ}$	> 0.7	-
$\Delta \phi_{\min}$	-	> 0.4
$E_{\mathrm{T}}^{\mathrm{miss}} \left[GeV \right]$	> 100	SR_{c}^{L} : [100, 225]
T [Gev]	> 100	$SR_c^H: > 225$
—µDPJ charge—	0	-
caloDPJ tagger	-	> 0.9
$\sum_{\Delta R=0.5} p_{\rm T} [{\rm GeV}]$	< 2	< 2

Data-driven background estimation: ABCD method

• Estimate expected QCD multi-jet background in each SR

- Non-collisional backgrounds (CR, BIB) are suppressed before populating ABCD planes
- Validations performed in BC & DC subplanes
 + additional validation regions (backup)


Estimation using ABCD


- Define plane using two uncorrelated variables
- Split plane in A, B, C & D regions:

• A = Signal-enriched

- B,C,D = Background-enriched
- Estimate N_A as: $N_A = \frac{N_B \times N_D}{N_C}$

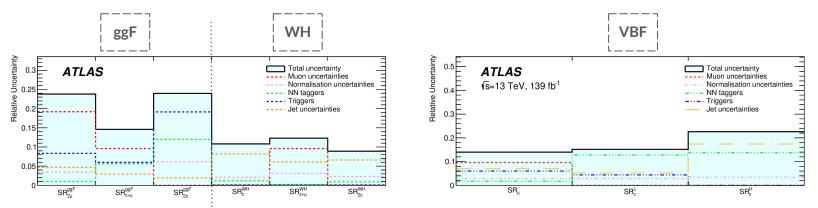
• e.g., ABCD planes for VBF low E_T^{miss} channel:

Unblinded results: anything new?

Unblinding Populate signal regions with real data and check if we have found something new!

-

- Before unblinding:
 - Estimate expected exclusion limits on observable of interest $BR(H \rightarrow 2\gamma_d + X)$
- After unblinding:
 - No new physics found!
 - All predictions in good agreement with observations
 - Estimate observed exclusion limits on observable of interest BR($H \rightarrow 2\gamma_d + X$)

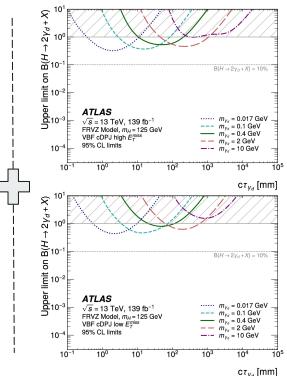

Selection	Search channel	CRB	CRC	CRD	SR expected	SR observed
	2μ	55	61	389	317 ± 47	269
ggF	$c+\mu$	169	471	301	108 ± 13	110
	2c	97	1113	12146	1055 ± 82	1045
	с	1850	3011	155	93 ± 12	103
WH	$c+\mu$	30	49	31	19 ± 8	20
	2c	79	155	27	14 ± 5	15

			VB	=	
Selection	CRB	CRC	CRD	SR expected	SR observed
SR_μ	44	22	21	42 ± 14	41
$\mathrm{SR}_{\mathrm{c}}^{\mathrm{L}}$	224	256	1123	983 ± 95	923
$\frac{\mathrm{SR}_{\mathrm{c}}^{\mathrm{L}}}{\mathrm{SR}_{\mathrm{c}}^{\mathrm{H}}}$	9	11	35	29 ± 14	46

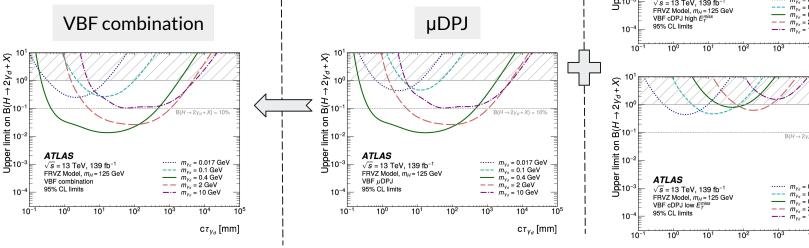
ggF & WH

Systematic uncertainties

- ABCD method syst. uncertainty obtained by propagating the stat. uncertainty in the CRs
- **Experimental uncerts.** are evaluated from **data/MC differences** in the DPJ reconstruction and **NN taggers**
 - **Muon uncertainties:** Reconstruction of close-by muon, evaluated using a tag-and-probe method on $J/\Psi \rightarrow \mu\mu$ as function of $\Delta R_{\mu\mu}$
 - Normalisation uncerts.: Luminosity and pile-up reweighting
 - **NN taggers:** Set of weights is extracted from $Z \rightarrow \mu\mu$ or dijet samples and propagated to signal samples to cover MC/data differences
 - **Triggers:** Same close-by muon tag-and-probe approach is adapted to *trimuon* and *NarrowScan* triggers. *MET trigger* uncertainty obtained by propagating 100% of scale factors uncertainty
 - Jet energy resolution and energy scale are considered, plus additional jet energy scale uncert. for low EM fraction jets

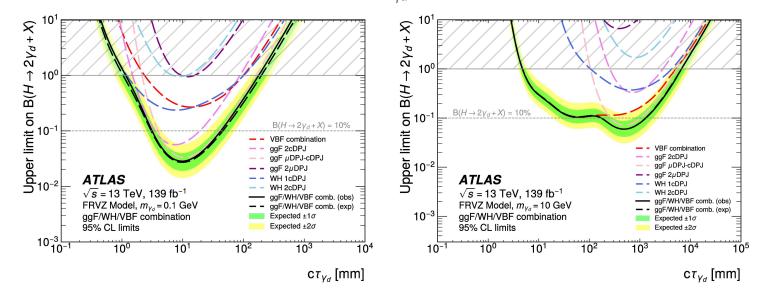


Upper limits on BR(H→2γ_d+X): e.g., VBF


- Single ABCD limits for each channel and mass point
- Observed upper limits on $BR(H \rightarrow 2\gamma_d + X)$ for each SR and overall VBF combination
- Limits available for ggF & WH allow for full combination!

Limits on single *ct* are extrapolated via lifetime reweighting to other cr values (backup)

caloDPJ

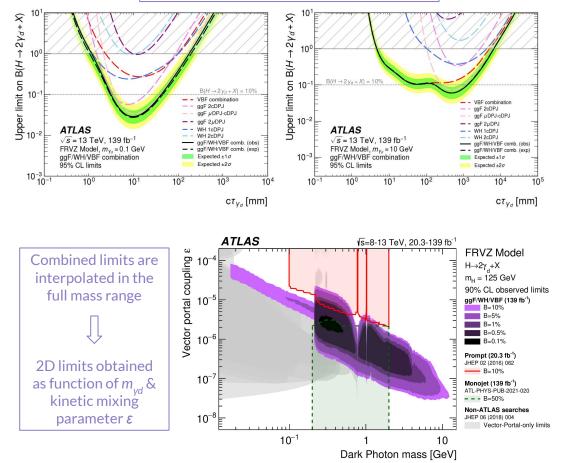


16

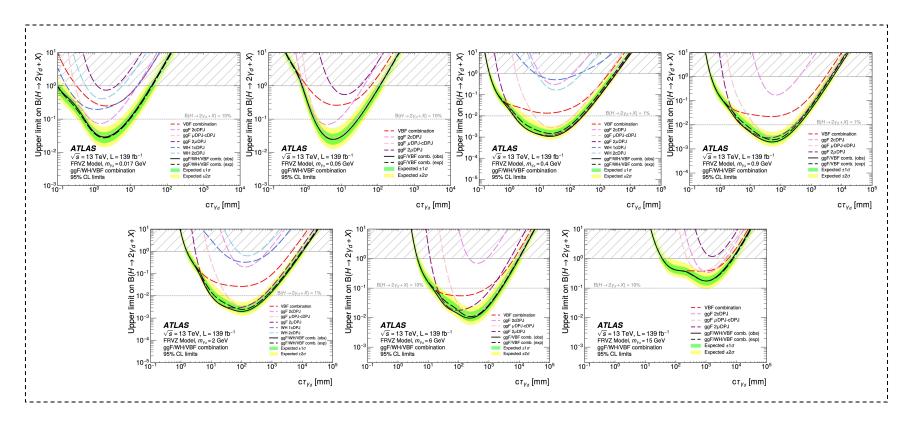
Combined limits on BR(H→2γ_d+X): ggF+WH+VBF

- Limits on $BR(H \rightarrow 2\gamma_d + X)$ combining all ggF/WH/VBF SRs per γ_d mass point
- Combination of observed limits obtained for $m_{vd} \in [0.017, 15]$ GeV

- Higher sensitivity obtained from ggF channels
- VBF offers competitive sensitivity at low and high $c\tau_{vd}$, particularly at high m_{vd} values

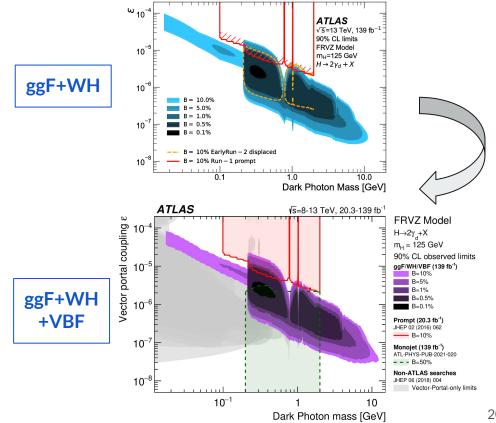

Displaced LJs VBF

- First ATLAS search using VBF production
- Analysis performed for combination with previous ggF/WH iteration

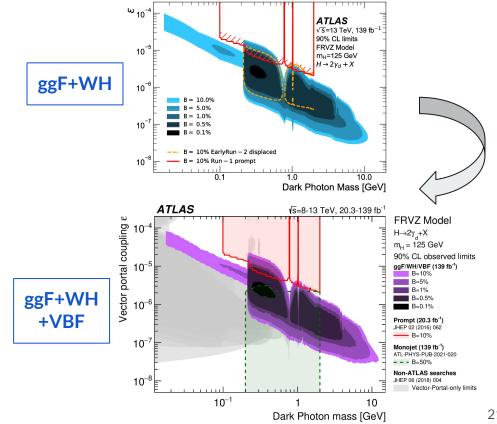

1	Event selection	 VBF jets cuts, triggers, etc. Per-DPJ object selection µDPJ/caloDPJ signal regions
2	Background estim. & signal efficiency extrapol.	 Data-driven background estimate per SR (ABCD) Signal acceptance x efficient extrapol. as function of cr_{yd}
3	Exclusion limits on $B(H \rightarrow 2\gamma_d + X)$	 Expected & observed ULs on B(H→2γ_d+X) from VBF Full combination with ggF/WH limits

- Combination renders strongest limits
- up-to-date for displaced LJs searches in ATLAS
- Analysis presented in EPS-HEP 2023
- Paper submitted to EPJC on Nov/2023
- Inclusive production study for Run-3 is on the way!

Combination with observed ggF/WH limits



BR(H→2γ_d+X) combined limits: ggF+W/H+VBF


FRVZ vector portal interpretation: (ϵ , m_{vd}) limits

- 2D limits obtained as a function of m_{vd} & kinetic mixing parameter ε
- For each generated $(m_{vd}, c\tau_{vd})$ pair, the analysis efficiency is extrapolated to the 2D plane:
 - Along *ɛ* using the lifetime reweighting curves
 - Along m_{vd} according to γ_d branching ratio
- Combination renders **strongest limits** up-to-date for displaced LJ searches in ATLAS

FRVZ vector portal interpretation: (ϵ , m_{vd}) limits

- For each generated $(m_{vd}, c\tau_{vd})$ pair, the analysis efficiency is extrapolated to the 2D plane:
 - Along **ɛ** using the lifetime reweighting curves
 - Along m_{vd} according to γ_d branching ratio
- 2D limits are obtained doing a simultaneous fit of the available ggF/WH/VBF analysis **channels** in a $(m_{vd}, c\mathbf{r}_{vd})$ grid
- The final limit is obtained by running a linear interpolation between the results from each simultaneous fit

Status and current work

Run-2

- No new physics for now!
- Observed limits obtained for all mass points in each signal region
- Full ggF+WH+VBF combined limits on $BR(H \rightarrow 2\gamma_d + X)$ at 95% CL
- $[\varepsilon, m_{yd}]$ limits for full combination \rightarrow Strongest ATLAS exclusion for displaced LJ searches!

Run-3: Preliminary studies

- Inclusive production analysis is ongoing!
- Several opportunities for improvement:

Explore HAHM signals

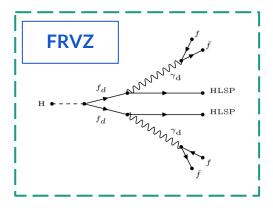
Study additional signal benchmark with low E_T^{miss} signature

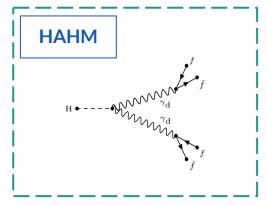
Improved trigger strategy

Exploring NS+VBF for µDPJ signatures

CalRatio+VBF for caloDPJ signatures

Implement updated taggers


NN taggers trained in newest release for performance improval


Optimised SR definitions

Explore further observables for background rejection/prediction

Run-3: Trigger studies for VBF

- Three signatures crucially related to trigger selections:
 - Production mode (VBF jets)
 - Displaced reconstruction (LLPs)
 - Missing transverse energy
- VBF & LLP: Low trigger efficiency on their own
- **Run-2 VBF:** E_T^{miss} trigger forces offline cut that reduces sensitivity to models with low intrinsic E_T^{miss} (e.g., HAHM)
- Run-3 wishlist:
 - **µDPJ:** VBF + NarrowScan MS-only
 - Inclusive NS ready for stable beam this year
 - caloDPJ: VBF + CalRatio
 - Studying low m_{ii} L1 threshold
 - CalRatio development ongoing

VBF analysis

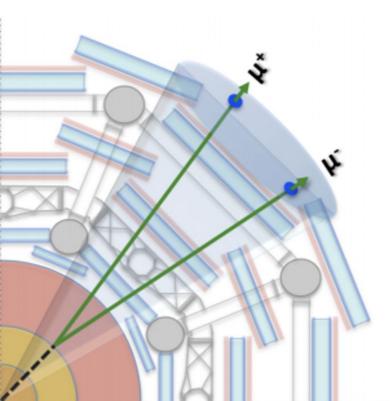
VBF analysis strategy (2) Per-DPJ type selection Inclusive DPJ selection: (1) Pre-selection μ DPJ channel \rightarrow Leading DPJ is μ DPJ caloDPJ channel \rightarrow Leading DPJ is caloDPJ VBF jets selection: At least two jets with p_{τ} >30 GeV (3) NN tagger cuts $m_{ii} > 1 \text{ TeV} |\Delta \eta_{ii}| > 3 |\Delta \Phi_{ii}| < 2.5$ Taggers implemented in ggF/WH Trigger: public analysis: μ DPJ channel \rightarrow NarrowScan || Trimuon || E_{τ}^{miss} μ DPJ channel \rightarrow Reject cosmic ray muons caloDPJ channel $\rightarrow E_{\tau}^{miss}$ caloDPJ channel \rightarrow Reject QCD & BIB jets Lepton veto (orthogonal to WH) *b*-jet veto (targeting *t*-quark decays) **Data-driven** (4) background estimate Further channel-specific cuts: **Reduce background** 0 ABCD method to estimate multijet **Trigger-related** Ο background in signal regions **DPJ** quality cuts Ο

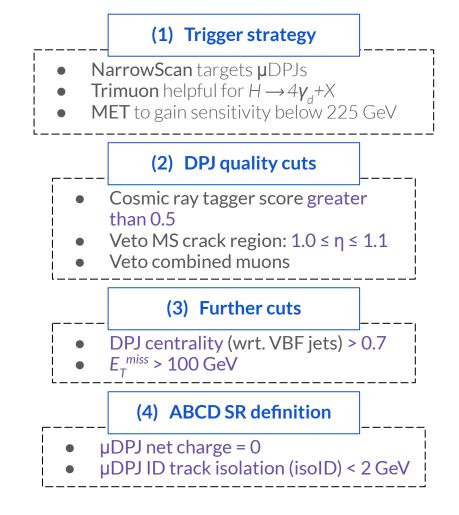
VBF - Trigger strategy

Chain	Triggering on	Final state	Name	Year
Narrow Scan	Long-lived particles	рDРJ	HLT_mu20_msonly_mu6noL1_msonly_nscan05 HLT_mu20_msonly_mu10noL1_msonly_nscan05_noComb HLT_mu20_msonly_mu15noL1_msonly_nscan05_noComb HLT_mu20_msonly_iloosems_mu6noL1_msonly_nscan05_L1MU20_J40 HLT_mu20_msonly_iloosems_mu6noL1_msonly_nscan05_L1MU20_XE30 HLT_mu6_dRI1_mu20_msonly_iloosems_mu6noL1_dRI1_msonly	2015 2016 2016 2017/18 2017/18 2017/18
Trimuon	MS-only muons		HLT_3mu6_msonly	2015 2016 2017 2018
MET	E _T ^{miss}	µDPJ & caloDPJ	HLT_xe70 HLT_xe90_mht_L1XE50 HLT_xe110_mht_L1XE50 HLT_xe110_pufit_L1XE55 HLT_xe110_pufit_xe70_L1XE50	2015 2016 2016 2017 2018

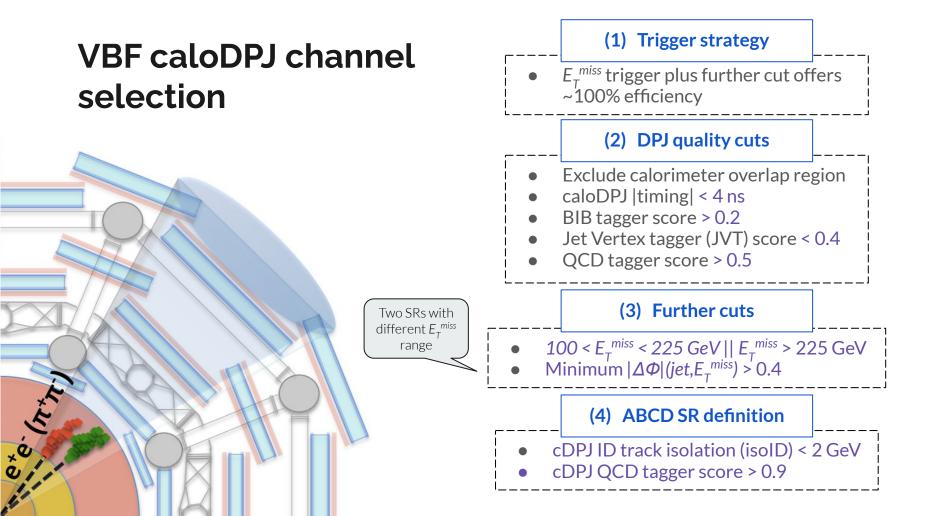
VBF - Scale factors estimation for E_{τ}^{miss} trigger

- In order to trigger on E_T^{miss} below the efficiency plateau, scale factors (SFs) are estimated for each data period by studying the data/MC ratio in $Z \rightarrow \mu\mu$ events
- All events required to pass:
 - VBF selection: $N_{iets}(p_T > 30 \text{ GeV}) > 1, |\Delta \eta_{ii}| > 3, m_{ii} > 1 \text{ TeV}$
 - Standard ATLAS $Z \rightarrow \mu\mu$ selection
 - Lowest unprescaled single lepton trigger
- Events in numerator also required to pass lowest unprescaled E_{τ}^{miss} trigger
- Per data period:
 - Turn-on curves plotted as a function of proxy offline E_{T}^{miss}
 - $= E_T^{miss} + p_T^{\mu\mu}$
 - Data/MC ratio fitted with error function to obtain final

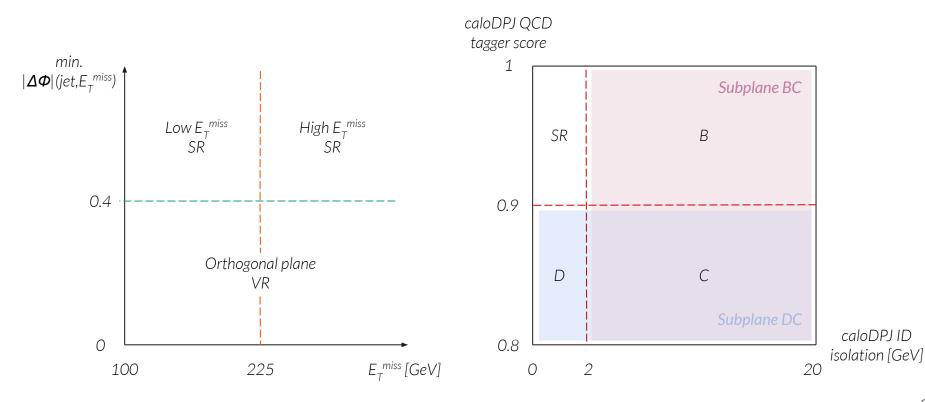

SFs	
-----	--


Trigger type	Lowest Unprescaled Chain	Year
E _T ^{miss}	HLT_xe70 HLT_xe90_mht_L1XE50 HLT_xe110_mht_L1XE50 HLT_xe110_pufit_L1XE55 HLT_xe110_pufit_xe70_L1XE 50	2015 2016 2016 2017 2018
Single Muon	HLT_mu20_iloose_L1MU15 HLT_mu26_ivarmedium	2015 2016-201 8

$Z \rightarrow \mu \mu$ MC vs. Run 2 Data


VBF µDPJ channel

VBF µDPJ channel selection



VBF caloDPJ channel

VBF caloDPJ channel breakdown

VBF caloDPJ channel breakdown

Subplanes VR

VBF jets cuts & $|\Delta \Phi_{ij}| < 2.5$ Lepton & *b*-jet vetos E_T^{miss} trigger $E_T^{miss} > 100 \text{ GeV}$ $\Delta \Phi$ (jet. E_T^{miss}) > 0.4

Leading DPJ is caloDPJ caloDPJ gapRatio >0.9 caloDPJ BIBtagger score >0.2 caloDPJ |timing| <4 ns caloDPJ JVT score <0.4 caloDPJ QCD tagger score >0.5

BC caloDPJ ID isolation \rightarrow [2, 20] GeV caloDPJ OCD tagger score \rightarrow [0.8.1]

DC caloDPJ ID isolation \rightarrow [0, 20] GeV caloDPJ QCD tagger score \rightarrow [0.8,0.9]

Low MET SR

Orthogonal plane VR

Lepton & *b*-jet vetos

 E_{T}^{miss} > 100 GeV $\Delta \Phi$ (jet, E_{T}^{miss}) < 0.4

caloDPJ QCD tagger score >0.5

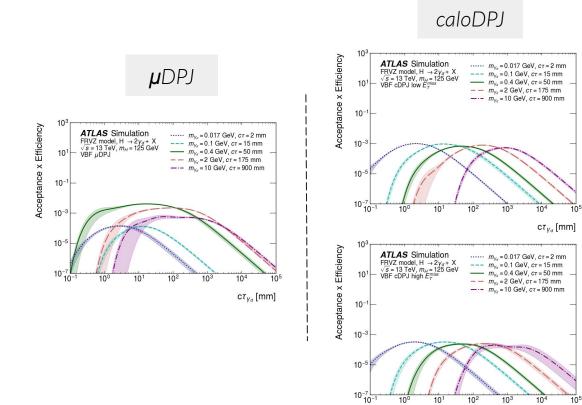
caloDPJ QCD tagger score \rightarrow [0.8,1]

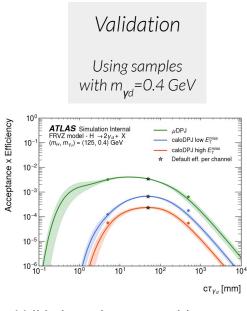
VBF jets cuts & $|\Delta \Phi_{ij}| < 2.5$ Lepton & *b*-jet vetos E_T^{miss} trigger $E_T^{miss} \rightarrow [100, 225] \text{ GeV}$ $\Delta \Phi(\text{jet}, E_T^{miss}) > 0.4$

Leading DPJ is caloDPJ caloDPJ gapRatio >0.9 caloDPJ BIBtagger score >0.2 caloDPJ |timing| <4 ns caloDPJ JVT score <0.4 caloDPJ QCD tagger score >0.5

caloDPJ ID isolation \rightarrow [0, 2] GeV caloDPJ QCD tagger score \rightarrow [0.9,1]

High MET SR

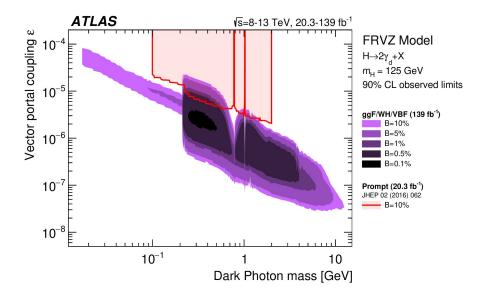

VBF jets cuts & $|\Delta \Phi_{jj}| < 2.5$ Lepton & *b*-jet vetos E_T^{miss} trigger $E_T^{miss} > 225$ GeV $\Delta \Phi$ (jet, E_T^{miss}) > 0.4


Leading DPJ is caloDPJ caloDPJ gapRatio >0.9 caloDPJ BIBtagger score >0.2 caloDPJ |timing| <4 ns caloDPJ JVT score <0.4 caloDPJ QCD tagger score >0.5

caloDPJ ID isolation \rightarrow [0, 2] GeV caloDPJ QCD tagger score \rightarrow [0.9,1]

More on VBF analysis

VBF - Lifetime reweighting


 Validation points agree with extrapolated curve for m_{vd} = 0.4 GeV within uncertainty

 $c\tau_{V_d}$ [mm]

- Disagreement in cDPJ low E_{τ}^{miss}
- Extra syst. uncert. considered in low E_T^{miss} SR for $c\tau > 50 mm$ to take into account non-closure

FRVZ vector portal interpretation: (ϵ , m_{vd}) limits

- 1. For each generated $(m_{\gamma d'} c \tau_{\gamma d})$ pair, the analysis efficiency is extrapolated to the 2D plane:
 - a. Along cT (ϵ) using the lifetime reweighting curves
 - b. Along m_{vd} according to γ_d branching ratio
- 2. 2D limits are obtained doing a simultaneous fit of the available ggF/WH/VBF analysis channels in a 100×100 grid in $(m_{vd}, c\tau_{vd})$
 - a. Contaminations from $\gamma_d \rightarrow e^+e^-$ in the µDPJ channels are not considered here
 - b. This step runs for each generated mass point
- The final limit is obtained by running a linear interpolation between the results that are obtained in step (2)
- "Wobbly" contour due to low resolution used when running the fit framework. This was done with about 13K fits!

