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Outline

❖ Basic concepts in Accelerator Physic & Beam Dynamics (BD) in the frame of HBB machines:

o Relativity – beam Rigidity 

o Main beam optics: Dipoles, Quadrupoles, Sextupoles, Solenoids

o The transverse phase-space, emittance & brightness. The longitudinal phase-space

o Accelerators cavities basic concepts

o Sketch of a High Brightness Linear Accelerator (LINAC) for Thomson/Compton sources

o STAR-II upgrade, a real LINAC; some BD and machine images

❖ Useful codes for space charge dominated beam simulations

o The Astra code & examples of its use

o Examples of the Astra Use

o Cain, a Montecarlo quantum code to simulate electron-photon interactions & examples

o Simulation of Three different scattering cases, what will be done this coffee-break in the laboratory



Mostly we use the I.S., with few exceptions:

- The  Beam energy: eV (keV, MeV, …)------[1eV =1.6 x 10-19 J ]
- Mass: eV/c2 --------------------------------------[Proton= 1.67x10-27 kg → 938 MeV/c2]

--------------------------------------[Electron  =  9.11x10-31 kg →0.511 MeV/c2]
- Momentum: eV/c ------------------------------[Proton @ β=0.9 → 1.94 GeV/c]

𝛽 ≡
𝑣

𝑐
=
𝑝𝑐

𝐸

𝛾 ≡
1

1 − 𝛽2
→ 𝜷𝜸 = 𝜸𝟐 − 𝟏

momentum 𝑝 = 𝛾𝑚𝑣
total energy 𝐸 = 𝛾𝑚𝑐2

kinetic energy 𝑲 = 𝐸 −𝑚𝑐2 = 𝒎𝒄𝟐 𝜸 − 𝟏

𝐸 = 𝑚𝑐2 2 + 𝑝𝑐 2

From an ATP Tennis player like Matteo 
Berrettini its service is about 90 J i.e. 
(5.6x1020 eV)

Extreme-energy cosmic ray (EECR) are 
typically protons with energy ≥ 1018 (0.8 J)
(LHC beams: 7 x 1012)

Important:
When we speak of beam particle energy in an 
accelerator,
we refer to Kinetic Energy! (unless specified)

Relativity basic concepts
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It’s a relation between: 
radius - magnetic field - momentum - charge

HOW HARD (or EASY) is it to defect PARTICLES?

𝐵𝜌 =
𝑝

𝑞

𝐵𝜌 𝑇𝑚 ≈ 3.33
𝑝

𝐺𝑒𝑉

𝑐

𝑞 𝐶

Beam Rigidity 

Centrifugal force

𝑭𝐶𝐹 = −𝑚𝒂𝑪𝑭 = −𝑚 𝝎× 𝝎 × 𝒓 = −𝑚𝜔 𝜔2𝑟 ො𝒓 = −𝑚
𝑣𝑡
2

𝑟
Ƹ𝑟

Centripetal force (or generally Lorentz Force)
𝑭𝐶𝑃 = 𝑞(𝑣 × 𝐵) Ƹ𝑟

𝟖 𝑻 ≃ 0.11 𝑇 ⋅
𝑃0 LHC

𝑃0 LEP
Linear scaling from LEP
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Electrons are ultra-relativistic @ few MeV
Protons @ few GeV (mass 2000 times electron mass)

1== 
c

v
Particle at light velocity c

βγ = γ2 − 1

𝜷 = 1 −
1

γ2

γ = 1 +
𝒌

𝒎𝒄𝟐

Particle velocity as function of kinetic energy 1/2
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𝐸𝑜 = 0.511 𝑀𝑒𝑉 𝑜𝑟 938.27 𝑀𝑒𝑉

𝐸𝑡𝑜𝑡 = 𝐸𝑘𝑖𝑛 + 𝐸𝑜

𝛾 =
𝐸𝑡𝑜𝑡

𝐸𝑜
, 𝛽 = 1 −

1

𝛾2
, 𝑝 = 𝛽𝐸𝑡𝑜𝑡

𝐵𝜌 = 3.33 10−3𝑝

𝟏 𝐆𝐞𝐕

𝟏 𝐓𝐞𝐕

@ Ultra High energy m0 becomes negligible

Med. applications

FCC= 50 TeV 
ρ=10km,ΔU=5 MeV

LHC= 7 TeV 
ρ=5km,ΔU=0.7 keV

Particle velocity as function of kinetic energy 2/2
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The gradient is: 

𝐺
𝑇

𝑚
=

𝑑𝐵𝑥

𝑑𝑥
=

𝑑𝐵𝑦

𝑑𝑦

𝐺
𝑇

𝑚
=

𝐵𝑡𝑖𝑝

𝑅

Linear Force with displacement (x):
𝐹𝑥 = 𝑞𝑣𝐺𝑥 , 𝐹𝑦 = 𝑞𝑣𝐺𝑦

Bending Strength of a dipole

From rididity 𝐵𝜌[𝑇𝑚] ≈ 3.33
𝑝[

𝐺𝑒𝑉

𝑐
]

𝑞[𝐶]

1

𝜌

1

𝑚
=
0.2998 ∙ 𝐵 [𝑇]

𝑝[
𝐺𝑒𝑉
𝑐
]

Dipole fields to change beam direction

Quadrupole fields to focus or defocus the beam

Basic optics for accelerators – 1/3 
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Basic optics for accelerators – 2/3 

Sextuples

for chromatic aberration 

Fast recap: fields behaviour
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Basic optics for accelerators – 3/3 
Solenoid VS Quads, Same solution  

Solenoid

Quads Triplet

Quads Triplet

prstab

Important differences to remember:
- solenoids work well only at low beam energy: few MeV for electrons.
- solenoids give larger beam quality degradation if the beam is large (sig_x) into the optic (chromatism effects)

optimal only up 
to a few MeV. 
very compact @ 
low energy

breaks the symmetry but 
much more versatile: 
very wide energy range 
and less chromatism 
compared to solenoids
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x

x’

s

x

1           2            3 41

Reference particle
Other particles

Paraxial approximation

𝑥′ =
𝑃𝑥
𝑃𝑧
≪ 1 →

𝑃𝑥
𝑃𝑧
= 𝑇𝑎𝑛 𝜃 ≅ 𝜃

Phase space

No external fields – Drift propagation

Bunch transverse Phase-space & emittance – 1/5 
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𝑥′ =
𝑃𝑥
𝑃𝑧
≪ 1 →

𝑃𝑥
𝑃𝑧
= 𝑇𝑎𝑛 𝜃 ≅ 𝜃

Phase space

Bunch transverse Phase-space & emittance – 2/5 

No external fields – Drift propagation
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Paraxial approximation

𝑥′ =
𝑃𝑥
𝑃𝑧
≪ 1 →

𝑃𝑥
𝑃𝑧
= 𝑇𝑎𝑛 𝜃 ≅ 𝜃

Phase space

Bunch transverse Phase-space & emittance – 3/5 

No external fields – Drift propagation
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x

x’

Reference particle
Other particles

4

Phase space

s

x

1           2            3 4

Paraxial approximation

𝑥′ =
𝑃𝑥
𝑃𝑧
≪ 1 →

𝑃𝑥
𝑃𝑧
= 𝑇𝑎𝑛 𝜃 ≅ 𝜃

Bunch transverse Phase-space & emittance – 4/5 

No external fields – Drift propagation
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x

x’

Reference particle
Other particles

4

➢ Emittance = Area of phase space

➢ Horizontal phase space (x, x’) 
➢ Vertical phase space (y, y’)
➢ Longitudinal phase space (Time-Energy) 

Phase space

For linear fields (   ) the emittance will be constant

z

Free space propagation

Free space propagation

Quad.

Bunch transverse Phase-space & emittance – 5/6 

beam
direction



𝜀𝑛,𝑥 = 𝛽𝛾 𝑥2 𝑥′2 − 𝑥 ⋅ 𝑥′ 2 Ellipse equation (The Area is επ)

can be normalized
𝑥𝑗
′ =

𝑝𝑥,𝑗

𝑝𝑧,𝑗
, 𝑦𝑗

′ =
𝑝𝑦,𝑗

𝑝𝑦,𝑗

rms-geometrical emittance

Martin Reiser – Theory and Design of Charged Particle Beams

Twiss parameters

➢ Beam brightness definition:
Current density x unit solid angle

Bunch transverse Phase-space & emittance – 6/6 

𝐵 =
𝐽

𝑑Ω
=

𝑑𝐼

𝑑𝑆 𝑑Ω
𝐵𝑛 =

𝐼

 𝑑𝑆 𝑑Ω
=

2𝐼

𝜋2𝜀𝑛,𝑥𝜀𝑛,𝑦

𝐴

𝑚2
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Brightness or Emittance Degradation

A focusing channel

x’

x

x’

x

𝒙′ = 𝑪𝒙𝒏
Considering that for any position x the

divergece of the particle is

𝜀𝑥
2 = 𝑥2𝑥′2 − 𝑥𝑥′

2
= 𝐶2 𝑥2𝑥2𝑛 − 𝑥𝑥𝑛+1

2

with n=1 the staight line gives rms emittance

equal 0. For n≠1 the emittance is not 0, also if

the two distribution area are 0



❖ The Brightness

𝐵 =
2𝐼

𝜋2𝜀𝑥,𝑛𝜀𝑦,𝑛

𝜀𝑛,𝑥 = 𝛽𝛾 𝑥2 𝑥′2 − 𝑥 ⋅ 𝑥′ 2

Brightness Emittance

𝐼[𝐴] =
𝑄[𝐶]𝑐[

𝑚
𝑠
]

𝜎𝑧[𝑚] 12

Current
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Accelerators cavities basic 
concepts:

Resonant Modes, Phase velocity, 
Standing & Traveling, low β cavities



Ԧ𝐹 = 𝑞 𝐸 + Ԧ𝑣 × 𝐵 => Ԧ𝐹 = 𝑞𝐸The Acceleration Force

Acceleration

𝑬 = 𝒆𝒍𝒆𝒄𝒕𝒓𝒊𝒄 𝒇𝒊𝒆𝒍𝒅

Beam

Electric field TRF = 1/υRF = λRF/c
Lbunch << λRF

@ LHC   υRF=   400 MHz, λRF= 0.75  m;    Lbunch = 0.3 m
@ SPARC υRF= 2.856 GHz, λRF= 0.105 m;    Lbunch < 0.003 m
@ STAR  υRF= 2.856 GHz & υRF= 5.712 GHz; Lbunch < 0.005 m 

Acceleration cavities – 1/6 
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acceleration

x

y

z

Ramo, John R. Whinnery - Fields and Waves in Communication Electronics – Circular pipe guides
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Dispersion curve and Phase Velocity vp

to accelerate 𝑣𝑝 = c𝛽

From Lapostolle (1970) – Linear Accelerators

Into a cylindrical guide:

𝝎𝟐 = 𝒌𝒄 ⋅ 𝒄
𝟐 + 𝜷 ⋅ 𝒄 𝟐

𝒗𝒑 =
𝝎

𝜷
=

𝒄

𝟏− 𝒌𝒄⋅𝒄/𝝎 𝟐
> 𝒄

TM01
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Disk loaded cavities

22



Low Beta cavities 𝛽 < 1

DTL – Drift Tube Linear Accelerator

Sergey V. Kutsaev (RadiaBeam Tech) – Electron bunchers for 
industrial RF linear accelerators: Theory and design guide23



TW & SW cavities – 1/4
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TW & SW cavities – 2/4

Standing Wave case; e.g. of an
Energy Recovery Linac (ERL) case

TW = SW1 + SW2

25



TW & SW cavities – 3/4 Traveling Wave case =
two SW’s dephased
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TW & SW cavities – 4/4

Low Beta cavities 𝛽 < 1
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Parameters of the SLAC constant-gradient Travelling-
Wave (TW) structure. 
From G. A. Loew, R. B. Neal, “Accelerating Structures 
in Linear Accelerators” (1970)

G
MV

m
= 𝑟𝑙[

𝑀Ω

𝑚
] ⋅

𝑃[𝑀𝑊]

𝑙𝑐𝑎𝑣

𝒓𝒍 ∝ 𝒇

𝑮𝒓𝒂𝒅 𝟑 𝑮𝑯𝒛 ∼ 𝟑𝟓𝑴𝒆𝑽/𝒎
𝑮𝒓𝒂𝒅 𝟏𝟎𝟎 𝑮𝑯𝒛 ∼ 𝟐𝟎𝟎𝑴𝒆𝑽/𝒎
𝑮𝒓𝒂𝒅 𝟑𝟎 𝑻𝑯𝒛 ∼ 𝟑. 𝟓 𝑮𝒆𝑽/𝒎

e.g.: 3 meters long SLAC type S-band module 
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Sketch of a typical High Brigthness
electron LINAC 



A typical ideal High Brigthness electron BeamLine

The Gun:

-Laser Longitudinal profile

-Laser transverse dimension

(relative uniformity)

-Inj. phase in RF Acc.Field

-RF Epeak

Gun Solenoid:

-Position

-Intensity

First Acc. Cavity

-Position

-Inj.phase

-RF Epeak

First Solen. array

-Position

-Intesity

Second Acc. Cavity

-Position

-Inj.phase

-RF Epeak

Second Solen. array

-Position

-Intesity

Third Acc. Cavity

-Position

-Inj.phase

-RF Epeak

19 parameters, some strongly coupled  (non linearly) to each other

In-blue harder parameters to be set (12/19)

In-black easier parameters to be set (7/19)



GIOTTO – Genetic Interface for OpTimising Tracking with Optics

fitness function freely defined by the user, by using all the tracking code’s outputs (Astra)
or by a dedicated post processor for the Lcomb configuration:
En, Den, SigZ, Xemit, sigX, Yemit, SigY, emitY ….

switches from Genetic Optimizations to Statistical Analysis. Each variable can be analyzed.
The sampling interval can be sampled in uniform or Gaussion way – very fast stat. analysis.

NameList (nml) can be imported into a DB and each nml variables can be used as a Giotto
variable to be optimized (genes) (ex. Phi(1)…Phi(50),maxe(1),maxb(1), sig_x,sig_clock ---
No limit in the number)

Constraints  freely defined by the user

Nowadays “quasi-classic” optimization techniques   >> elitism; advanced mutation 
operators;  hill climbing; regeneration from best solutions; parallelization  (Open-MPI, MS-mpi)

What makes the difference:

From 2007 up to day, the code is grew in power and versatility

GIOTTO soon on the ASTRA reposity -- https://www.desy.de/~mpyflo/  
or write to alberto.bacci@mi.infn.it or marcello.rosseti@mi.infn.it

mailto:alberto.bacci@mi.infn.it
mailto:marcello.rosseti@mi.infn.it


Radio-Frequency Photo-Injectors

hn

UCLA/SLAC/BNL

S-band  next gen. RF Gun

Photo-Cathode Emissivity J < 10 kA/cm2

(t)Prompt emission on a ps time scale

 

Qeff = Nelectrons Nlaser−photons

Qeff Cu  photo− cathode( ) 5 10−5

WCu = 4.2eV , hn = 4.6eV

Q =1 nC  needs  Ulas =
hn Qbunch

Qeff

= 92  J

Thermoionic Injectors

Cathode Emissivity J < 20 A/cm2



Beam Dinamycs in Photo-Injectors

themperature emittance @ photo-cathode

(real emittance)

z

r

 
R0

r

r’

R0

n
th

=


2
r

2
 r 
2

− r  r 
2

    2Te mec
2

= 2 10
−3

Te eV  n
th

=
  R0

4 6

n
th

 mm  mrad = 0.64 R0 mm  Te eV 

𝜎𝑥 =
𝑅0
2

𝑇𝑒 (or r’ is relative to the difference between 
[Photo Energy - Photo-Electric working function] 



Optimize High Brigthness BeamLines is challenging – 1

The electron beam is an ‘reactive’ distribution:

External 

Forces 

Internal

Force (active 

reaction)

γ (ralativistic factor) is fondamental! and

the bunch reaction is strictly linked to the

bunch energy up to the bunch frozen

𝐶𝑜𝑢𝑙𝑜𝑚𝑏 𝑟𝑒𝑝. 𝐹

𝑀𝑎𝑔. 𝑎𝑡𝑡𝑟𝑎𝑐. 𝐹
=

𝑐

𝑣

2

= 𝛽2

A Traveling

Electron

beam

e
-b

ea
m

 v
el

o
ci

ty

charged particle

by Gauss-Amper Fs

SC dominated = Laminar

emit. dominated = neutral gas or 

betatron incoherent osc. dominated

HB Bunches (250/500 pC) are still laminar at 120/150 MeV (or quasi laminar !) 

𝑺𝑪𝒕𝒓𝒂𝒔. ∝
𝟏

𝜸𝟑

𝑺𝑪𝒍𝒐𝒏𝒈. ∝
𝟏

𝜸𝟒

on sc and laminar beam

Space-Charge dominated bunches are hard to be tamed

From M. Ferrario sketch



CODES Model (2D cylindrical symmetry)

Space charge computation recipe:
Lorentz-transforming the particles position and field maps into the average rest frame of the beam.

It then applies static forces to the various rings of the cylindrical map assuming a constant charge density inside a ring.
This algorithm requires to have some particles in each of the cell of the cylindrical grid.

d

r
R

sample particle
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After seeing:
- relativity and acceleration
- optics in accelerators
- Cavities basic comcepts

Let’s see a real accelerator 

- Then come back to bem parameters



Linear Accelerator LINAC
STAR-II upgrade in UNICAL – 1/4

1.6 Cell RF photoinjector 

3 m s-banc (~ 3 GHz) 
SLAC type

1.8 m C-banc (~ 6 GHz) 
acc. cavities
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acc. field

Typical beam parameters for a LINAC (30 MeV – STAR case) – 2/4 
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Typical beam parameters for a LINAC (150 MeV – STAR case) – 3/4 
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STAR – focusing channel – 30 MeV case 150 MeV case 
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Figurative affect of High Brightness in ICS

In Thomson/compton source – To drammatically improve the Spectral Density 



An Italian project 
that is coming to 
the commissioning 
after the last 
upgrade

Poster @ Channeling 2023 (Riccione – Italy)
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The hangar

The Laser



Some of the more used Codes for LINAC in space-charge regime

A consistent simulatin of the SC must be done by using PIC or P-P codes

Parmela (Los Alamos National Lab. , L. Youg and J. Billen, PIC/P-P(?))

Tstep (Parmela Son, from a Private Company, PIC)

Astra (Desy, Klaus Floettmann, Free Code, PIC/P-P)

GPT (Private company Pulsar Physics, Netherlands)

IMPACT-T and 

IMPACT-Z (Berkeley Lab., Ji Qiang, Free Code) 

Usually the Space-Charge is a main issue for Linac injectors up to 100 MeV. Typical applications: FEL,

Thomson/Compton sources or ultra short bunches for Plasma Wave Accelerators)



Let’s introduce:



Astra input files and free parameters

Let see the STAR-project input files

All 3D (or 2D) pic tracking code have two main algorithms: 

1) Bunch extraction from cathode or particles generation,  2) bunch tracker into the beam-line.

Input for e-bunch extraction: 

main parameters 

to work on

Laser pulse shaping



Astra input files and free parameters



Astra main in/out files format



Space Charge ON



Space Charge OFF



On the cathode



Gun Exit



Linac entrance

Long. phase space



3
1

31 71 
cm

zoom-box 

Focusing
channel



@
Interaction

Point



A Quantum Code, To simulate the Electron-Phothon Bunches 
schattering



The Inverse Scattering Compton (ICS) 

Number of x-ray photons

Cross section

Lasere electron I-spot



Cain input file



Cain input file: to define the bunch virtually



STAR Linac, 
X-ray source @ 60 MeV – recoil << of the energy spread Δγ/γ

Let consider an electron-bunch with an Δγ/γ of 0.003 , λLASER=1um (0.4 J), W0=20 um

𝐸𝑚𝑎𝑥 =
4𝛾2ℎ𝜐

1+𝑋
, 𝑋=

4𝛾ℎ𝜐
511 𝑘𝑒𝑉

𝐸𝑝ℎ 𝜆𝑙𝑎𝑠𝑒𝑟 = 1 𝑢𝑚 = 1.24 𝑒𝑉

𝐸𝑚𝑎𝑥 = 71.340𝑘𝑒𝑉, 𝑋=0.00116 (recoil)



STAR Linac, 
X-ray source @ 60 MeV – recoil as before but > Δγ/γ

Let consider an electron-bunch with ultra low Δγ/γ of 0.00003  and same condition as before

𝐸𝑚𝑎𝑥 = 71.340𝑘𝑒𝑉, 𝑋=0.00116



STAR Linac, 
X-ray source @ 1 GeV –not negligible recoil

Let consider an electron-bunch with an Δγ/γ of 0.0005, scattering λ=1um, 1 J, W0=20um laser

𝐸𝑚𝑎𝑥 =
4𝛾2ℎ𝜐

1+𝑋
, 𝑋=

4𝛾ℎ𝜐
511𝑘𝑒𝑉

𝐸𝑝ℎ 𝜆𝑙𝑎𝑠𝑒𝑟 = 1 𝑢𝑚 = 1.24 𝑒𝑉

𝐸𝑚𝑎𝑥 = 19.46𝑀𝑒𝑉, 𝑋=0.019

𝐸𝑚𝑎𝑥 =
4𝛾2ℎ𝜐

1
~20 𝑀𝑒𝑉

𝑁𝑝ℎ𝑜𝑡 =
8.4⋅108 ∙𝐿𝑎𝑠𝑒𝑟𝐸𝑛[𝐽]∙𝑄𝑏 𝑝𝐶

𝑃ℎ𝑜𝑡𝐸𝑛 𝑒𝑉 ∙(𝜎𝑥
2 𝜇𝑚 + 0.25∙𝑊0 𝜇𝑚 )

𝑊0 = 𝑅𝐿 ∙ 𝜆𝐿/𝜋
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