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* Lecture 1: principles & key tools

» What is Al/ML"” How is it useful in physics
research?

» Basics of neural nets: architecture & development

- Lecture 2: applications & advanced models
- Anomaly detection
- Geometrical ML
- Hardware acceleration
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Anomaly Detection
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Anomaly Detection
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* |dentify elements of the data that are inconsistent with a

background-only model
* Don’t need to know the features of your signal! Can be

data-driven
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Less-Than Supervised Learning

- Unsupervised: train over unlabeled events
- Weakly supervised: noisy labels (“signal-enriched” instead of pure)

- Semi-supervised: partially labeled (some knowledge of signal
model)

Autoencoders
| know how to predict all | know regions where new
collisions physics does not exist

13

P. Harris
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https://indico.tlabs.ac.za/event/100/contributions/1734/attachments/773/932/PCH_anom_23_02.pdf

Unsupervised ML

J Train an ML architecture to reconstruct its
input
- Train over data = fully unsupervised

J Rarer events with unusual features will be
poorly reconstructed — reconstruction
accuracy is a good discriminant
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Anomaly Score

0 1 A. Kahn
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Autoencoders

(J Autoencoder: deep neural net with encoder and decoder stages
- Lossy compression into latent space forces NN to encode most salient features

(J Loss = mean squared reconstruction error between generated output and truth input

Input Hidden Latent Hidden Output
layer layer 1 layer layer 2 layer
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Variational Autoencoders

) Variational autoencoder: autoencoder that can perform Bayesian inference
- Latent space is continuous distributions, not single points

 Loss includes Kullback-Leibler divergence term: keeps the approximating distribution q
close to that of the truth p

Input Hidden Latent Hidden Output
layer layer 1 layer layer 2 layer

>

L=y -x|*+Dkr(q(z|x)||p(z))
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Anomaly Detection in Real Life
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(d Finance: can detect “pump and dump” trading patterns in stock
prices
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Anomaly Detection in Real Life
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Example: High Energy Physics
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What We Understand So Far
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Electron Electron
neutrino
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Searching for “New” Physics
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* Hoping to produce particles that can explain the unexplained in our
universe....

Composition of the Universe

Dark matter Dark ?
27% matter ‘P Ordinary

matter
5% Ordinary matter

4% H and He
<< 1% Stars
<<1% Other

(2\

27%

Dark
energy
68%
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How to Search
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(J From a data science perspective, LHC analysis is a signal-to-noise problem

[ Higgs bosons are produced in 1 out of 10 billion proton collisions
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But What Are We Looking For?

(1 New physics could be an “unknown unknown”: how do we design a
way to enrich signal-to-noise if we don’t know what our signal looks like?
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K' —Apply anomaly detection
to LHC datasets
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Anomaly Detection for Jets

(J Jet: spray of hadronic particles emerging from proton
collision

- Multiple kinds of correlated inputs (tracks + calorimeter energy
clusters)

- High-dimensional: O(100s) particles in each jet, clustered

outgoing particles

Ry
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"L \V // g
S w ?
collision point / %\\3

7

proton beams
. i ?

By = e

C collision event Hjet reconstruction)—»( jet tagging )
15
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Input Modeling for Jets

. Made of constituent
particles (each of which
can be described by their
four-vectors)

L If a jet is produced with
considerable energy, its
decay is collimated,
meaning the constituent
particles overlap

- Within the jet cone you can
detect substructure

17 July 2024

Low top pr

boost

Single q/g H—bb t—-W(qq)b
No 5 3
substructure “prong “prong

J. Gonski 17



VAEs for Jet Identification

d Train over jets from LHC data Single qlg Hobb  t-W(qq)b
modeled by constituent 4-vectors

(J VAE learns background
distribution, and so can identify

’ = No

any event that doesn’t look like substructure| 2-Prong  3-prong
the Standard Model high reco error
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Looking for New Physics with VAEs
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« Anomaly detection tool trained without labels over
full Run 2 dataset of high momentum large-R jets ——%?
- Per-jet anomaly score provides signal-model- B
independent selection of anomalous X candidate jets b

=First application of fully unsupervised machine .
learning to an ATLAS analysis

Jet Anomaly Score
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Graph ML
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What are Graphs?

ey An

1 Structure of data with
multidimensional relationality &
permutation invariance

. Nodes/vertices connected by
edges

. Graphs can be used to model data

that is:

17 July 2024

Distributed unevenly in space
Sparse

Variable size

No defined order of inputs
Interconnected

J. Gonski
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Graph Neural Networks
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1. Each node/edge have features and are given an embedding in the graph

Initial Representation
of each node
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Output Representations
of each Node
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Task Specific

Stuff + Loss
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Graph Neural Networks
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1. Each node/edge have features and are given an embedding in the graph
2. Training: “message-passing” to update node/edge embeddings using neighboring information

a. Must preserve graph symmetry (eg. permutation invariance)

(R
(N

(NN

Ginii i B
(NI

Task Specific

(R

s i E (N Stuff + Loss

G EiniT S

(EEw

Output Representations

Initial Representation of each Node

of each node
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Graph Neural Networks
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1. Each node/edge have features and are given an embedding in the graph
2. Training: “message-passing” to update node/edge embeddings using neighboring information
a. Must preserve graph symmetry (eg. permutation invariance)

3. Evaluation: can ask questions about a node (what role does this node have?), an edge (what
is the nature of the relationship?), or the global graph (what is the nature of this event?)
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(NN
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(N

Task Specific
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s i E (N Stuff + Loss

G EiniT S

(EEw

F Eross s

Output Representations

Initial Representation of each Node

of each node
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Graph Neural Networks
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1. Each node/edge have features and are given an embedding in the graph
2. Training: “message-passing” to update node/edge embeddings using neighboring information
a. Must preserve graph symmetry (eg. permutation invariance)

3. Evaluation: can ask questions about a node (what role does this node have?), an edge (what
is the nature of the relationship?), or the global graph (what is the nature of this event?)

— Scales better for larger data than other algorithms
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Task Specific
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Output Representations

Initial Representation of each Node

of each node
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Graph Neural Networks

» Forall neighbors j of node i compute a “message” via a NN: ¢(x;, x;)

» Update the node features by summing all messages:

h; = z (/)(_x',-,-,\‘j-)

|

|

: " M I
: message passing

I

|

B R e R A Bl S RS ME 1 R B Sl A S 2

Latents

(H, A)

J. Duarte
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Graph Neural Networks

Node classification

z; = f(h;)

Graph classification

2 = f (@iev h‘i)

Inputs Latents

(X,A) (H, A)

.| Link prediction
zi; = f(hi, hy,ei5)

J. Duarte
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Graph Neural Networks
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Lots of uses for jets!
» Node-level tasks » Graph-level tasks

» Identify "pileup" particles » Jettagging

Node classification

Z .
‘|z = f(hy)
: Graph classification
7}
26 = [ (Dicy hi)
~ Latents
(H,A)
7. Link prediction
» Edge-level tasks L] z;; = f(hi, h;, e;;)

» ldentify good track segments

J. Duarte
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GNNSs for Jets

» Node features v.: particle 4-momentum p = |E,py.py Pl

» Edge features e,: pseudoangular distance
between particles

J. Duarte
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GNNSs for Jets

Jet-level question: which quark originated the jet?
ORNORNO “
up Charm top parameter

285 secondary

Y, vertex
ORNORNO,
down strange bottom

J. Duarte
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Example: GNN for Jet Flavor Tagging

J  How to build an algorithm that can identify jets from
b-quarks from other (boring) “light” quarks?

(d  Use graph trained over constituent tracks in the jet Track inputs Combined Inputs

- Very low-level inputs, high-dimensional (21 features per —
track, 40 tracks) C__ ) —
d  Graph usage: i

Classification: predict whether jet came from b-quark or

Ntracks X Ntf Ntracks X (Njf + Nyf)
not
- Reconstruction: groups tracks into vertices (shared origin
points)
Pooled graph
GNN representation - .g
Jet flavour
_ g E D prediction
g x
é @ .§ <] Track origin
= ;g 2 5 predictions
(=]
Combined Intial track Conditional track
Inputs representation representation
=
20 Vertex
§§ - predictions
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GNN Flavor Tagging Performance
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(J  Factor of 2-6 improvement in signal efficiency over simple high-level DNN
- Just from a good choice of input modeling!
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Graphs in Real Life

J  Self-driving car company
Waymo uses a
hierarchical graph ML
model to model object
trajectories as a function of
time and predict
interactions between them
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Fast ML & Hardware Accelerators
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Extreme Environments in Physics

» Environments of high energy physics
experiments are “extreme”
» Very high radiation doses
» Extreme temperatures (cryogenic)
» Very high data rates/density
» Spatial constraints (no room for cooling)

» Very low latencies (eg. collisions every 25
ns...)

« Acquiring data from experiments requires
performant inference (classification,
regression):

» Can benefit from machine learning
throughout data acquisition systems
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Fast Machine Learning

SLAC
*“Fast ML” = hardware acceleration of ML algorithms running in software
- Lower power, smaller footprint, faster inference time
- Allows for advanced ML algorithms to run within collider data acquisition/triggering
scheme
- Latency = time between starting processing and receiving the result
- GPUs can only get you down to O(ms)
- But we need much faster!
e Ex. LHC: front-end readout has O(ns) latency and hardware trigger O(us)
1 kHz
. 1 MB/evt E
&774 40 MHz Offline
Front-End N (00 ' Analysis
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Computing Structures

ASICs

FLEXIBILITY EFFICIENCY
speed, powe

] Software (CPUs): total flexibility, can be reprogrammed as much as you
want (eg. you can switch from a word processor to a photo editor)

. Firmware (FPGA): instruction sets to interface hardware with operating
system

J Hardware (ASIC): physical components (features in silicon) that perform
logical operations
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Fast ML for Collider Triggers

1 A

PN
- Can | run anomaly detection in real-time to trigger on unusual
events?

- Evaluate a VAE in < 25 ns”?!

AD here is still very interesting
but doesn’t need new triggering

/ strategy

~Energy

Existing
Triggers

Existing trigger
thresholds
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Fast ML for Collider Triggers
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- Can | run anomaly detection in real-time to trigger on unusual
events?

- Evaluate a VAE in < 25 ns?!

“Truncated” VAE Cell

 Tactics:

- Pruning: remove
unneeded nodes Input

- Quantization:
calculate with fewer

bits per numbers m' Pty
- Minimize
calculations: truncate “Clipped” KL divergence

loss function 2 KL = p +?/}1><@

2108.03986
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https://arxiv.org/abs/2108.03986

Recap

17 July 2024

J. Gonski

N
5..
(

C. David

>
)

40



Recap

17 July 2024

* Anomaly detection can leverage NNs to identify
unusual elements in a dataset without a “signal
model”

« Geometrical ML with graph neural networks can

provide an apt input modeling for certain natural
datasets and scale better to higher complexity

 “Fast ML” allows you to run ML evaluation faster by
implementing ML algorithm in computing hardware

* These examples are all widely used across
sciences and industry!
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Conclusions
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- Al/ML is rapidly advancing towards new and more complex models

- Driven by increases in dataset sizes and computational power to accommodate
large models

- When designing an Al/ML tool, think carefully about:
- The best modeling of the input data
- What kind of tasks (or tasks) you need to do
- How complex your model needs to be (don't bring a complex architecture to a
simple problem!)
- Fundamental sciences can offer unique datasets and data processing challenges

- The original “big data”: get valuable experience with the cutting edge of Al/ML,
microelectronics/high performance computing, etc.

- AI/ML in science is fun! Think creatively, learn science, gain new transferable skills
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