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Outline 
• Lecture 1: principles & key tools 

‣ What is AI/ML? How is it useful in physics 
research?  

‣ Basics of neural nets: architecture & development  

• Lecture 2: applications & advanced models
‣ Anomaly detection
‣ Geometrical ML 
‣ Hardware acceleration
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Our Universe

Anomaly Detection 
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Our UniverseAnomaly Detection

A. Kahn

• Identify elements of the data that are inconsistent with a 
background-only model  

• Don’t need to know the features of your signal! Can be 
data-driven
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Our UniverseLess-Than Supervised Learning
• Unsupervised: train over unlabeled events 
• Weakly supervised: noisy labels (“signal-enriched” instead of pure) 
• Semi-supervised: partially labeled (some knowledge of signal 
model)

P. Harris

• Anomaly Strategies at LHC fall into two categories

19

Anomaly Strategies@LHC

I know regions where new 
physics does not exist

I want to leverage those 
regions against other 

parts of the data to find 
differences

I know how to predict all 
collisions 

Are there any collisions 
that I cannot predict?

AutoencodersWeakly-Supervised
• Anomaly Strategies at LHC fall into two categories
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https://indico.tlabs.ac.za/event/100/contributions/1734/attachments/773/932/PCH_anom_23_02.pdf
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Unsupervised ML
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Autoencoders
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Variational Autoencoders
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Our UniverseAnomaly Detection in Real Life



J. Gonski17 July  2024 10

Our UniverseAnomaly Detection in Real Life
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Our UniverseExample: High Energy Physics
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Our UniverseWhat We Understand So Far
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Our UniverseSearching for “New” Physics 
• Hoping to produce particles that can explain the unexplained in our 

universe…. 

?

?

?
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Our UniverseHow to Search
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Our UniverseBut What Are We Looking For?

→Apply anomaly detection 
to LHC datasets 
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Our UniverseAnomaly Detection for Jets
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Our UniverseInput Modeling for Jets
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Our UniverseVAEs for Jet Identification
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Our UniverseLooking for New Physics with VAEs
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Our Universe

Graph ML 
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Our UniverseWhat are Graphs? 
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Our UniverseGraph Neural Networks
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Our UniverseGraph Neural Networks
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Our UniverseGraph Neural Networks



J. Gonski17 July  2024 25

Our UniverseGraph Neural Networks

→ Scales better for larger data than other algorithms 
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Our UniverseGraph Neural Networks

J. Duarte
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Our UniverseGraph Neural Networks

J. Duarte

Lots of uses for jets! 
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Our UniverseGraph Neural Networks

J. Duarte

Lots of uses for jets! 
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Our UniverseGNNs for Jets

J. Duarte
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Our UniverseGNNs for Jets

J. Duarte

Jet-level question: which quark originated the jet? 



J. Gonski17 July  2024 31

Our UniverseExample: GNN for Jet Flavor Tagging
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Our UniverseGNN Flavor Tagging Performance 
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Our UniverseGraphs in Real Life 
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Our Universe

Fast ML & Hardware Accelerators
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Extreme Environments in Physics
• Environments of high energy physics 

experiments are “extreme”
‣ Very high radiation doses 
‣ Extreme temperatures (cryogenic)  
‣ Very high data rates/density  
‣ Spatial constraints (no room for cooling)  
‣ Very low latencies (eg. collisions every 25 

ns…)  

• Acquiring data from experiments requires 
performant inference (classification, 
regression):  
‣ Can benefit from machine learning 

throughout data acquisition systems
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Fast Machine Learning 
• “Fast ML” = hardware acceleration of ML algorithms running in software 

- Lower power, smaller footprint, faster inference time 
- Allows for advanced ML algorithms to run within collider data acquisition/triggering 
scheme 

• Latency = time between starting processing and receiving the result 
- GPUs can only get you down to O(ms) 
- But we need much faster!  

• Ex. LHC: front-end readout has O(ns) latency and hardware trigger O(μs) 

13

The LHC Data Pipeline

❑ Latency - time between starting processing and receiving the result

❑ Measured in clock cycles or seconds 

❑ GPUs can only get you down to ~O(ms) latencies

❑ But we need much faster!
❑ LHC trigger level 1 ~ O(microseconds)

❑ LHC front end ~ O(nanoseconds) 

❑ Hardware triggers implemented on FPGAs and front-ends in ASICS
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Computing Structures 

9

Computing Structures

❑ Software (CPUs): total flexibility, can be reprogrammed as much as you 
want (eg. you can switch from a word processor to a photo editor)

❑ Firmware (FPGA): instruction sets to interface hardware with operating 
system

❑ Hardware (ASIC): physical components (features in silicon) that perform 
logical operations

speed, power
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• Can I run anomaly detection in real-time to trigger on unusual 
events?  

• Evaluate a VAE in < 25 ns?! 

Fast ML for Collider Triggers

Why do AD Online?
A simplified picture

AD here is still very interesting 
but doesn’t need new triggering 

strategy

Existing trigger 
thresholds

Existing

Triggers

BSM Signal?

~Energy
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Fast ML for Collider Triggers
• Can I run anomaly detection in real-time to trigger on unusual 
events?  

- Evaluate a VAE in < 25 ns?! 

2108.03986

• Tactics: 
- Pruning: remove 
unneeded nodes  

- Quantization: 
calculate with fewer 
bits per numbers  

- Minimize 
calculations: truncate 
loss function  

https://arxiv.org/abs/2108.03986
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Our Universe

Recap

C. David
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Our Universe

Recap

• Anomaly detection can leverage NNs to identify 
unusual elements in a dataset without a “signal 
model” 

• “Fast ML” allows you to run ML evaluation faster by 
implementing ML algorithm in computing hardware 

• Geometrical ML with graph neural networks can 
provide an apt input modeling for certain natural 
datasets and scale better to higher complexity 

• These examples are all widely used across 
sciences and industry!
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Conclusions
• AI/ML is rapidly advancing towards new and more complex models 

- Driven by increases in dataset sizes and computational power to accommodate 
large models  

• When designing an AI/ML tool, think carefully about: 
- The best modeling of the input data 
- What kind of tasks (or tasks) you need to do  
- How complex your model needs to be (don’t bring a complex architecture to a 
simple problem!)   

• Fundamental sciences can offer unique datasets and data processing challenges 
- The original “big data”: get valuable experience with the cutting edge of AI/ML, 
microelectronics/high performance computing, etc. 

• AI/ML in science is fun! Think creatively, learn science, gain new transferable skills 
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