

Part II : In-depth discussion on two selected topics (flow dynamics and antimatter)

Topic 1 : Flow Dynamics

Recap : the Reaction Plane

V₂

v₂ describes how well particles converge towards reaction plane

Aihong Tang ASP, Morocco, July 2024

Aihong Tang ASP, Morocco, July 2024

Recap : Flow Driven by Pressure

Reaction plane ψ : Defined by the beam and the line connecting two colliding nuclei

Coordinate space : initial asymmetry $\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$ Momentum space: final asymmetry

$$v_2 = \left| \frac{p_y^2 - p_x^2}{p_y^2 + p_x^2} \right|$$

=
$$\langle \cos^2(\phi - \psi) - \sin^2(\phi - \psi) \rangle$$

= $\langle \cos 2(\phi - \psi) \rangle$

v_n : flow measurements

$$\frac{dN}{d(\phi-\psi)} = \frac{1}{2\pi} \left(1 + \sum_{n=1}^{\infty} 2\nu_n \cos[n(\phi-\psi)] \right)$$

Pressure-driven Expansion

Atomic gas cloud

J. Thomas, Physics Today. 63 34-37 (2010)

Relativistic heavy ion collision (E_T density)

P.F. Kolb, UW.Heinz, in Hua, R.C. (ed.) et al: Quark Gluon Plasma 634-714

In both cases, expansion along the short axis.

Can only be explained if the droplet is a fluid, not a collection of independent particles.

v₂ vs Energy

The March to Hydro

The March to Hydro

The March to Hydro

STAR PRC 66 034904 (2002)

Identified Particle v₂

Mass splitting consistent with collective flow

Viscosity

The lowest viscosity/entropy density possible

Perfect Liquid

The Washington Post Democracy Dies in Darkness

Universe May Have Begun as Liquid, Not Gas

By Associated Press April 18, 2005 at 8:00 p.m. EDT

> A Share Save

New results from a particle collider sugges the fiery gas that was thought to have perv Perfect' Liquid microseconds of existence.

Early Universe was a liquid

Mark Peplow

Nature (2005) Cite this article

707 Accesses 29 Altmetric Metrics

Quark-gluon blob surprises particle physicists.

The Universe consisted of a perfect liquid in its first moments, according to results from an atomsmashing experiment.

More Science :: News :: April 18, 2005 :: 🖂 Email :: 🖨 Print

universe behaved like a liquid in its earlies New State of Matter Is 'Nearly

By Sarah Graham

Physicists working at Brookhaven National Laboratory announced today that they have created what appears to be a new state of matter out of the building blocks of atomic nuclei, quarks and gluons. The researchers unveiled their findings--which could provide new insight into the composition of the universe just moments after the big bang--today in Florida at a meeting of the American Physical Society.

SCIENTIFIC

matter by crashing together the nuclei of gold atoms.

South Asia

Business Health

Science 8

Environment

Entertainment

Also in the news

Technology

UK

Image: BNL

The high-energy collisions prised open the nuclei to reveal their most basic

The impression is of matter that more strongly interacting than predicted

particles, known as quarks and gluons. Video and Audio

Aihong Tang ASP, Morocco, July 2024

Are we saturated ?

Are we saturated ?

Are we saturated ?

Voloshin QM06

Keep Flowing

Aihong Tang ASP, Morocco, July 2024

Keep Flowing

Aihong Tang ASP, Morocco, July 2024

Topic 2 : Discovery of anti-α

b

q

ph

Why Antimatter ?

Nature 451, 159 (2008)

Clue to the matter anti-matter asymmetry

Antimatter matters !

Why Antihelium 4 (anti- α) ?

Fingerprint of anti-star !

Why in High-energy Nuclear Collisions ?

- •Sweet spot between elementary particle collisions and Big Bang for anti-nuclei production.
- Controlled, repeatable "little bangs". Active production instead of "passive" searches.
- Prove the existence (if any), provide a point of reference for future observations in cosmic radiation

Production Mechanisms

Coalescence

Thermal production

- Relativistic Heavy Ion collisions :
 - ✓ High antibaryon density
 - ✓ High temperature
- Favorable environment for both production mechanisms

Production Mechanisms

Idea from Walter Greiner: correlations are present in vacuum, allowing antinucleus like anti- α to be directly excited from the vacuum. Rate could be much larger than low value predicted by statistical coalescence.

Could be exciting but no evidence so far.

The Reduction Factor

High Level Tracking Trigger (HLT)

• Sector tracking (SL3) in DAQ machines (24 in total, each for a TPC sector).

• Information from subsystems (SL3 and others) are sent to Global L3 machines (GL3) where an event is assembled and a trigger decision is made.

Fast physics output with HLT

- 360 million minimum bias (MB) collisions, 270 million central collisions and 170 million high tower calorimeter events at 200 GeV in 2010.
- 70 million MB events at 200 GeV in 2007.
- 170 million MB events at 62 GeV in 2010.

In total one billion AuAu events sampled

dE/dx

HLT has processing power to do rudimentary event reconstruction in real time, allowing events with a |Z| = 2 track to be tagged and fast-tracked via the normal offline calibration & reconstruction chain.

Combined PID (TPC+TOF)

Aihong Tang ASP, Morocco, July 2024

Combined PID (TPC+TOF)

Very clean identification after search of > half-trillion tracks from almost one billion gold-gold collisions.

In total 18 counts observed.

Reduction Factor

• Production rate reduces by a factor of 1.6×10^3 (1.1×10^3) for each additional antinucleon (nucleon) added to the antinucleus

Race for the Heaviest

HIC as Exotic/Antimatter Machine

nature

Science 328, 58 (2010)

Nature 473 353 (2011)

The Search Continues

3-D Chart of the Nuclides

Protons(Z)

						P 100 00%		< 100.00%	< 100.00%	90 48%	0 27%	9 25%	8-100.0094	8-100.00%	8-100.00%	
					- 0-01000	P. 103.0054	x 100.00%	1.103.0034	1.100.0004				p= 100.00%	p=. 100.00%	p-, 1001003	β-m
					14F	15F 1.0 MeV	16F 40 KeV	17F 64.49 S	18F 1.8291 H	19F STABLE	20F 11.07 S	21F 4.158 S	22F 4.23 S	23F 2.23 S	24F 390 MS	5
					P	P: 100.00%	P. 100.00%	€ 100.00%	€ 100.00%	100%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-n < 11.00%	β-: 100.00%	β-: 100.00% β-x < 5.90%	β-: 1 β-π
				120 0.40 MeV	130 8.58 MS	140 70.606 S	150 122.24 S	160 STABLE 99.762%	170 STABLE 0.038%	180 STABLE 0.200%	190 26.88 S	200 13.51 S	210 3.42 S	220 2.25 S	230 82 MS	Ø.,
				P	φ≈ 100.00% € 100.00%	c 100.00%	c 100.00%	201023	0.0004	0 200.4	β-: 100.00%	β-: 100.00%	β-: 100.00%	β-: 100.00% β-π < 22.00%	β-: 100.00% β-h: 31.00%	β-11 β-10
			10N	11N 1.58 MeV	12N 11.000 MS	13N 9.965 M	14N STABLE 99.634%	15N STABLE 0.366%	16N 7.13 S	17N 4.173 S	18N 624 MS	19N 271 MS	20N 130 MS	21N 85 MS	22N 24 MS	14
			P. 100.00%	P: 100.00%	c 100.00%	c 100.00%			β-: 100.00% β-α: 1.2E-3%	β-: 100.00% β-n: 95.1%	β-: 100.00% β-π: 14.30%	β-: 100.00% β-n: 54.60%	β-: 100.00% β-n: 57.00%	$\begin{array}{c} \beta -: 100.00\% \\ \beta -n; 81.00\% \end{array}$	β-: 100.00% β-n: 36.00%	8-: I
		8C 230 KeV		10C 19.290 S	11C 20.334 M	12C STABLE 98.89%	13C STABLE	14C 5700 Y	15C 2.449 S	16C 0.747 S	17C 193 MS	18C 92 MS	19C 49 MS	20C 14 MS	21C <30 NS	6
		P: 100.00% et	€ 100.00% ⊕: 61.60%	< 100.00%	e: 100.00%			β-: 100.00%	β-: 100.00%	β-: 100.00% β-n: 99.00%	β-: 100.00% β-n: 32.00%	β-: 100.00% β-n: 31.50%	β-n: 61.00% β-	β-: 100.00% β-n: 72.00%	N	β-: 1 β-1:
	GB	7B 1.4 MeV	88 770 MS	9B 0.54 KeV	10B STABLE 19.8%	11B STABLE 80.2%	12B 20.20 MS	13B 17.33 MS	14B 12.5 MS	15B 9.93 MS	16B <190 PS	17B 5.00 MS	18B <26 NS	198 2.92 MS	2	
	2P	et P	ea: 100.00% e: 100.00%	2a: 100.00% P: 100.00%			β-: 100.00% B3A: 1.58%	β-: 100.00%	β-: 100.00% β-1: 6.04%	β-: 100.00% β-a: 93.60%	N	β-: 100.00% β-n: 63.00%	N	β-: 100.00% β-n: 72.00%		
	584	6Be 92 KeV	7Be 53 22 D	8Be 5.57 eV	9Be STABLE	10Be 1.51E+6 Y	11Be 13.81 S	12Be 21.49 MS	13Be 2.7E-21 \$	14Be 4.84 MS	15Be <200 NS	16Be <200 NS				
	P	a: 100.00% P: 100.00%	e: 100.00%	a: 100.00%	100 %	β-: 100.00%	β-: 100.00% β-α: 3.1%	β-: 100.00% β-hs 1.00%	N	β-: 100.00% β-n: 94.00%	ท	ZN				
3Li	4Li 6.03 MeV	SLi ≈1.5 MeV	GL: STABLE	7Li STABLE	8L1 8M 9.928	9Li 178.3 MS	1014	11Li 8.59 MS	12Li <10 NS							
٣	P: 100.00%	P: 100.00% a: 100.00%	7.58%	92.41%	β-d: 100.00% β-: 100.00%	β-: 100.00% β-n: 50.80%	N: 100.00%	β-: 100.00% β-1us: 0.027%	N	ļ						
	SHe STABLE	4He STABLE	5He 0.60 MeV	6He 806.7 MS	7He 150 KeV	8He 119-1 MS	ЭHt	10He 300 KeV								
2	0.000137%	29.999003/4	N: 100.00% at 100.00%	β-: 100.00%	N	β-: 100.00% β-n: 16.00%	N: 100.00%	N: 100.00%								
1H STABLE	2H STABLE	3H 12.32 Y	4H 4.6 MeV	5H 5.7 MeV	6H 1.6 MeV	7H 29E-23 Y										
99.965%	0.015%	β-: 100.00%	N: 100.00%	N: 100.00%	N: 100.00%	2N7										
2	Neutron 10.23 M		*		ii - 2	(;	8									
	β-: 100.00%															

Neutrons (N)

Antinuclei \Rightarrow extend chart to negative Z and negative N Hypernuclei \Rightarrow add 3rd axis for strangeness S Antihypernuclei \Rightarrow S axis also flips sign

3-D Chart of the Nuclides

Antinuclei \Rightarrow extend chart to negative Z and negative N Hypernuclei \Rightarrow add 3rd axis for strangeness S Antihypernuclei \Rightarrow S axis also flips sign •**Proved that anti-** α exists.

•Provides the point of reference for various searches for new phenomena in the cosmos.

The production rate of antihelium4 in nuclear collisions is consistent with thermodynamic and coalescent nucleosynthesis models.

If anti- α in the cosmos were from coalescence, the ratio of anti- α/α would be 10⁻¹⁶. With a sensitivity of 10⁻⁹, even a single anti- α count seen by the AMS experiment would be a strong evidence of anti-star.

• Unless accelerator technology has major break through, our record for the heaviest stable antimatter will stand for the foreseeable future.

Backup Slides

ALICE, QM 2023

STAR, arXiv:2310.12674 (2023)