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Quantum superposition
While a classical system can only be in a specific state at any time, a
quantum system can exist in a superposition of several possible
quantum states.
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Quantum entanglement
When a system, formed by at least two particles is prepared in a
non-separable state, and then it is split as each part moves away, the
parts continue to be linked whatever the distance is and the
measurment of the state of one part, instantaneously defines the state
of the second part.
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Hadamard Gate H : superposition

The Hadamard gate H is fundamental in quantum computation.
It is represented by the matrix:

H =
1√
2

[
1 1
1 −1

]

It generates state superpositions by acting on the state |0⟩ or |1⟩:

H|0⟩ = 1√
2
(|0⟩+ |1⟩) = |+⟩

H|1⟩ = 1√
2
(|0⟩ − |1⟩) = |−⟩

Exercice 1: calculate H |+⟩ and H |−⟩.
Exercice 2: check the identity H2 = I
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Other single-qubit gates

X and Z gates :

X =

[
0 1
1 0

]
Z =

[
1 0
0 −1

]

Exercice : check the identity X = HZH
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CNOT gate

The CNOT gate is a 2-qubits gate

Its matrix representation is given by the
tensor product of I and X matrices:

(CNOT ) =

[
I 0
0 X

]
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


It is a conditional gate which causes a gate
X to act on the second qubit |q1⟩ (target), if
the first qubit |q0⟩ (control) is in state |1⟩.
In this case, the CNOT gate reverses the
amplitudes of the target qubit. Otherwise,
she does not change her condition.
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CNOT gate
the two qubits (q0, q1) constitute a quantum register.

a quantum state of the register can be obtained by a tensor
product of independent single-qubit states |q0⟩ ⊗ |q1⟩ = |q0q1⟩.
if the two qubits (q0, q1) are in "pure" states (|0⟩) or (|1⟩) each,
the register can be in one of the four states {|00⟩ , |01⟩ , |10⟩ , |11⟩}
These four states are separable. However, the linearity of
quantum mechanics, reflected in the linearity of the algebra,
allows for any linear combination of these states to describe a
physical state of the register.
In particular, states that can not be factorized as a tensor
product like |q0⟩ ⊗ |q1⟩ = |q0q1⟩
These states are called non-separable, or entangled states. For
example, the Bell state :

|Ψ⟩ = 1√
2
(|00⟩+ |11⟩)
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How to create entanglement ?
The major interest of the CNOT gate is to
create an entangled state.

In the first step, to create a superimposed
state, we make a gate of H act on |q0⟩,
which produces the state |+⟩ from the
initial state |0⟩. This is done by applying a
(H ⊗ I) gate to the system.
The action of this circuit on the 2 qubit
system initially in the state |00⟩ is:

(CNOT.(H ⊗ I))|00⟩ = CNOT
[ 1√

2
(|0⟩+ |1⟩)⊗ |0⟩

]
= CNOT

[
| 1√

2
(|00⟩+ |10⟩)

]
=

1√
2
(|00⟩+ |11⟩)

which is an entangled Bell state.
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Quantum algorithms

Several quantum algorithms have been proposed and
implemented. Here is a list of the main ones:

Deutsch’s and Deutsch-Jozsa Algorithms
Bernstein-Vazirani Algorithm
Simon’s Algorithm
Quantum counting
Quantum Teleportation
Shor’s Algorithm
Grover’s Algorithm
Quantum Key Distribution (Quantum Cryptography)
Quantum Fourier Transform (QFT)
Super-dense Coding
Quantum Phase Estimation (QPE)
Variational Quantum Eigensolver (VQE)
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Example 1: Half-adder circuit
Here again is a half-adder quantum circuit:

4-qubits register + 2 classical registers (for the measurements).
qubits |q0⟩ and |q1⟩ are the entry qubits, while qubits |q2⟩ and
|q3⟩ represent the sum and the carry, respectively.
the four qubits are initialized to the state |0⟩. So the the initial
state of the register is |0000⟩
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Example 1: Half-adder circuit

Here again is a half-adder quantum circuit:

if the circuit works correctly, it should reproduce the table of
classical half-adder table of truth :

bit 1 bit 2 sum carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
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Example 1: Half-adder circuit

Case 1: 0+0

initial state of the register : |Ψ0⟩ = |0000⟩
after first CNOT gate : |Ψ1⟩ = |0000⟩
after second CNOT gate : |Ψ2⟩ = |0000⟩
after CCNOT gate : |Ψ3⟩ = |0000⟩
Measurements: |q2⟩ = |0⟩ (c2 = 0) and |q3⟩ = |0⟩ (c3 = 0)

Outcome : sum=0 and carry=0
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Example 2: Teleportation circuit
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Quantum Satellite (2017)

The Chinese satellite Micius has helped break the quantum teleportation distance
record, transmitting entangled photons across a distance of 1,200 kms.
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Implementation of teleportation algorithm

Anton Zeilinger, Nobel Prize
winner 2022

Canary islands experiment :
Quantum teleportation over 143

kms
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Quantum Teleportation

Alice wants to send a qubit q0 to Bob (more precisely the
quantum state of the qubit q0). However, the quantum
non-cloning theorem prohibits this operation if the only parties
involved are the sender (Alice) and the receiver (Bob).
If |χ⟩ is any state of system A (for example a qubit), it is not
possible to clone it, i.e. to copy it to a system B ( for example
another qubit).

This result is known as "Quantum non-cloning theorem".
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Quantum non-cloning theorem
This theorem addresses the following question: Is it possible to
duplicate (copy / clone) the quantum state of a system?

To answer this question, we suppose the system A in the state
|χA⟩ and we want to copy this state in a system B, previously in
a state |ϕB⟩.
For this, we consider the system AB including the two parts A
and B. If the cloning operation is possible, then there exists a
unit transformation (quantum gate) which transforms the state
|χA ⊗ ϕB⟩ into the state |χA ⊗ χB⟩.

U : |χA ⊗ ϕB⟩ −→ |χA ⊗ χB⟩

If such a gate exists, then it must be able to copy any state from
A to B, i.e. for 2 states χ1A and χ2A :

U |χ1A ⊗ ϕB⟩ = |χ1A ⊗ χ1B⟩
U |χ2A ⊗ ϕB⟩ = |χ2A ⊗ χ2B⟩
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Quantum non-cloning theorem
Let us calculate the quantity X scalar product of the left (then
right) members of the previous equality:

On the one hand we have

X = ⟨χ1A ⊗ ϕB |U†U |χ2A ⊗ ϕB⟩
= ⟨χ1A ⊗ ϕB |χ2A ⊗ ϕB⟩
= ⟨χ1A|χ2A⟩⟨ϕB |ϕB⟩
= ⟨χ1A|χ2A⟩

because U is unitary and ⟨ϕB |ϕB⟩ = 1.
On the other hand :

X = ⟨χ1A ⊗ χ1B |χ2A ⊗ χ2B⟩
= ⟨χ1A|χ2A⟩⟨χ1B |χ2B⟩

Since ⟨χ1A|χ2A⟩ = ⟨χ1B |χ2B⟩, on déduit que X = X2. There are
therefore 2 cases:

X = 1 ⇒ |χ1⟩ = |χ2⟩.
X = 0 ⇒ |χ1⟩ ⊥ |χ2⟩.
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Let us calculate the quantity X scalar product of the left (then
right) members of the previous equality:

On the one hand we have

X = ⟨χ1A ⊗ ϕB |U†U |χ2A ⊗ ϕB⟩
= ⟨χ1A ⊗ ϕB |χ2A ⊗ ϕB⟩
= ⟨χ1A|χ2A⟩⟨ϕB |ϕB⟩
= ⟨χ1A|χ2A⟩

because U is unitary and ⟨ϕB |ϕB⟩ = 1.
On the other hand :

X = ⟨χ1A ⊗ χ1B |χ2A ⊗ χ2B⟩
= ⟨χ1A|χ2A⟩⟨χ1B |χ2B⟩

Since ⟨χ1A|χ2A⟩ = ⟨χ1B |χ2B⟩, on déduit que X = X2. There are
therefore 2 cases:

X = 1 ⇒ |χ1⟩ = |χ2⟩.
X = 0 ⇒ |χ1⟩ ⊥ |χ2⟩.
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Teleportation protocol

Alice and Bob call on a third
partner (Telamon) who sends
each a qubit that is part of a
pair of entangled qubits (q1
for Alice and q2 for Bob).

Telamon uses a special pair
which is a Bell pair, in which
both qubits are in a Bell
entangled state.
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Teleportation protocol

The translation in terms of quantum
circuit of this preparation step is the
first piece :
The qubit q1 passes a Hadamard gate
which creates a |+⟩ state. Then
apply a CNOT gate on the other
qubit q2 controlled by q1.

Alice applies a CNOT gate to q1
controlled by q0. Next, a Hadamard
gate on q0 that she wants to send to
Bob.
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Teleportation protocol

Then, Alice
measures the 2
qubits q1 and q0 and
records the results in
two standard bits.
Then she sends these
2 classic bits to Bob
through a classic
channel.
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Teleportation protocol
Bob, who had already received the qubit q2 from Telamon,
applies one of the following gates to it depending on the state of
the classic bit sent by Alice:

00 −→ Nothing to do

01 −→ Apply X gate

10 −→ Apply Z gate

11 −→ Apply ZX gate

Note here that this information transfer is purely classical.
That’s it ! At the end of the protocol, Alice’s qubit q0 was
teleported to Bob. Let us insist on the fact that it is not the
qubit itself which has been teleported, but a state of the qubit.
Specifically, Bob reconstructed the quantum state that Alice sent
him, thanks to the invaluable help of Telamon and his entangled
qubits.
So: No entanglement, no Quantum Teleportation!
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Follow up

Topical sessions on Quantum computing : 20 July 2024 by
Nicholas Bornman
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