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Synopsis

To provide a general atomic and molecular physics overview to the 
undergraduate and graduate students in physics. 
Great emphasis will be placed on familiarity with quantum mechanical 
description of the simplest atom (hydrogen) and its alike.
Attempt will be made to briefly highlight different current researches in 
the area of atomic and molecular physics, if time permits.
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Outline
History and basic backgrounds

Overview of different area of basic research in this field
Discuss methodology/concept for understanding the subject

Atomic physics and atomic structure
Molecular physics and molecular structure
Modern research in the field of atom and molecules physics

References:
Physics of Atoms and Molecules — B H Bransden & C J Joachain, Pearson International (2011), 
The Physics of Atoms & Quanta: Intro. to experiement and theory — Hakan & Wolf
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Nuclear Physics lecture, Mark Dalton
Material physics lecture, …



History and basic backgrounds
History

The physics of atoms and molecules rely on a long history of discoveries, both experimental and theoretical. 
We shall briefly recognise the key steps which are at the root of modern atomic and molecular physics.

Greek philosophers: 
Anaxagoras (500 - 428 BC), Emedocles (484 - 424 BC)… Democritus (460 -370 BC)  

- argued that the atoms are invisible particles which differ from each other in form, position and 
arrangement.

Aristotle (384 - 322 BC) and almost everybody else 
- rejected the atomic hypothesis and supported the concept of the continuity of matter.

Atom — Greek word “a-tomio” which means “uncuttable'' 

Problem: Neither had any experimental or theoretical evidence.
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History and basic backgrounds contd…
Modern times

Experimental discovery of the gas laws

1662: Robert Boyle (1627 - 1691) —  extended mathematics to chemistry
Emprical law: PV = RT  

Understanding of the rainbow — birth of spectroscopy

1666 - 72: Issac Newton — by refracting white light with a prism, he resolved it into its 
component colours (red, orange, yellow, green, blue and violet)
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Other notable works: 
 Thomas Melvill(e) (1749) — flame emission spectroscopy

He used a prism to observe a flame coloured by various salts.
…



History contd…
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Laws of chemical combinations
1801: J.L. Proust — law of definite proportions which states that when chemical elements combine to form a 

given compound, the proportion by weight of each element is always the same

1807: J. Dalton — law of multiple proportions which state that when two elements combine in different 
ways, to form different compounds, then for a fixed weight of one element, the weights of the other element 

are in the ratio of small integers.

1808: Dalton hypothesis — the elements are composed of discrete atoms. Compounds are formed when 
atoms of different elements combine in a simple ratio. Atoms can neither be created nor destroyed

1811: Avogadro — the first to distinguish between atoms (the discrete particles of the elements) and 
molecules (the discrete particles of compounds). At fixed pressure and temperature, equal volumes of 

different gases contain equal numbers of molecules.

Question: How to determine the Avogadro’s number, 𝑁𝑁𝐴𝐴?



History contds…
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1738: D. Bernoulli — interpretation of the empirical gas laws as kinetic model

Nineteenth century 
R. Clausius, J.C. Maxwell and L. Boltzmann — explain the physical properties of gases

Assumptions:
1. A gas consists of a large number of particles called molecules which make elastic 

collisions with each other  and with the walls of the container
2. The molecules of a particular substance are all identical and are small compared with the 

distances that separate them.
3. The temperature of a gas is proportional to the average kinetic energy of the molecules.

Kinetic theory of gases

Despite none fully acceptance of the chemistry explanation until late nineteenth century due to 
chemists Ignored the kinetic theory, many experimental advancement were made in the field.
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Other notable works of
William Herschel — discovery of the infrared light
Thomas Young (1801) — the wave theory of light

Joseph von Fraunhofer (1814) — invented spectroscope
…

Sir David Brewster (1827) — produces absorption spectra in a laboratory.

Electron
1833: M. Faraday — laws of electrolysis

1897: J.J. Thompson — studies with cathode rays led to electron discovery
1897: J.S. Townsend — direct measurements of the smallest possible charge, 𝒆𝒆

Late nineteenth century — Newton’s law of motion and Maxwell’s electromagnetic equations 
 is inadequate to describe atomic phenomena.

1885: J. Balmar — Experimental observed discrete lines in the visible spectrum of hydrogen. 
He showed that the wavelength could be fit by  𝜆𝜆 = 𝐵𝐵 𝑛𝑛2

𝑛𝑛2−4
, where an integer 𝑛𝑛 ≥ 3 & 𝐵𝐵 = 4/𝑅𝑅𝐻𝐻 (Rydberg const)

History contds…
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What way forward?

1879: J. Stefan empirical law — the power emitted per unit area, 𝑹𝑹, from a body at the absolute 
temperature 𝑻𝑻 (K), could be represented by: 𝑹𝑹 = 𝒆𝒆𝒆𝒆𝑻𝑻𝟒𝟒

where 𝒆𝒆 is the emissivity which varies with the nature of the surface and 𝒆𝒆 is the Stefan’s constant.

Black body radiation — a study of the properties of radiation from hot bodies provide the first 
evidence of the quantisation of energy.
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For a number of standing electromagnetic waves (modes) per unit volume within a cavity, the 
energy density reads

𝝆𝝆(𝝀𝝀) = 𝟖𝟖𝟖𝟖
𝝀𝝀𝟒𝟒
𝜺𝜺,      𝜺𝜺 - the avg. energy in the mode with wavelength 𝝀𝝀  

Lord Rayleigh and J. Jeans approach: 𝒇𝒇(𝝀𝝀𝑻𝑻) = 𝟖𝟖𝟖𝟖𝟖𝟖(𝝀𝝀𝑻𝑻); 𝜺𝜺 = 𝟖𝟖𝑻𝑻  ——- Ultra-violet catastrophe!
Rayleigh-Jeans distribution law: 𝝆𝝆(𝝀𝝀) = 𝟖𝟖𝟖𝟖

𝝀𝝀𝟒𝟒
(𝟖𝟖𝑻𝑻)

1899: O. Lummer & E. Pringsheim — experimentally measured the spectral distribution as a 
function of temperature 

Blackbody radiation…

1893: W. Wein — based on general thermodynamics arguments, show that the spectral distribution function 
for energy density a cavity is  𝝆𝝆(𝝀𝝀) = 𝝀𝝀𝟓𝟓𝒇𝒇(𝝀𝝀𝑻𝑻),

𝝀𝝀 is wavelength of the radiation and 𝒇𝒇(𝝀𝝀𝑻𝑻) is a function to be determined beyond thermodynamical 
reasoning.

Wien’s displacement law: the wavelength of the peak of each curves corresponds to a different temperature.
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1900: Planck’s quantum theory
Postulate: 
The energy of an oscillator of a given frequency 𝝂𝝂 cannot take arbitrary values between zero and infinity, 
but can only take on the discrete values 𝒏𝒏𝜺𝜺𝟎𝟎, where 𝒏𝒏 is a positive integer or zero, and 𝜺𝜺𝟎𝟎 is a finite 
“quantum” of energy, which may depend on the frequency.

Average energy of an ensemble of oscillators, each of frequency 𝝂𝝂, in thermal equilibrium is;
𝜺𝜺 = 𝜺𝜺𝟎𝟎

𝒆𝒆𝜷𝜷𝜺𝜺𝟎𝟎−𝟏𝟏
 

Then, 
𝜌𝜌(𝜆𝜆) =

8𝜋𝜋
𝜆𝜆4

𝜀𝜀0
𝑒𝑒𝜀𝜀0/𝑘𝑘𝑘𝑘 − 1

To satisfy Wein’s law: 𝜀𝜀0 = ℎ𝜈𝜈
ℎ is Planck’s constant (ℎ = 6.6262 × 10−34𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝑒𝑒 − 𝑠𝑠𝑒𝑒𝑠𝑠).

Planck’s distribution law: 𝜌𝜌(𝜆𝜆) = 8𝜋𝜋𝜋𝜋𝜋
𝜆𝜆5

1
𝑒𝑒ℎ𝑐𝑐/𝜆𝜆𝜆𝜆𝜆𝜆−1
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Subsequently N. Bohr, in 1913, was able to invoke the idea of quantisation of 
atomic energy levels to explain the existence of line spectra.

Geiger, Marsden and Rutherford (1906 - 1913):  Based on the scattering of  𝜶𝜶 particles by metallic foils 
of various thickness, Rutherford found that 𝜶𝜶 particles had charge to mass ratio ⁄𝒒𝒒 𝑴𝑴 equals the doubly 
ionised helium atom.

Atom is mostly empty space with a small positively charged nucleus (protons) containing most of the mass 
and low mass negatively charged particles (Thompson’s electrons) orbiting this nucleus.

Is Planck’s quantum theory acceptable?
Planck's theory was not accepted readily. However, it was not long before the quantum concept 
was used to explain other phenomena. 

In 1905, A. Einstein was able to interpret the photoelectric effect by introducing the idea of  
photons, or light quanta, and in 1907 he used the Planck formula for the average energy of an 

oscillator to derive the law of Dulong and Petit concerning the specific heat of solids. 



Early quantum formulation and Bohr’s idea - I

14

1913: Neils Bohr’s — based on Rutherford’s 𝛼𝛼-scattering experiment and the 
observation of discrete spectra, Bohr introduced the energy level quantisation of atom

The postulates were:
1. Electron moves in circular orbit about proton under Coulomb attraction.

Electrostatic attractive force = 𝟏𝟏
𝟒𝟒𝟖𝟖𝜺𝜺𝟎𝟎

𝒁𝒁𝒆𝒆𝟐𝟐

𝒓𝒓𝟐𝟐
          Centrifugal force = 𝒎𝒎𝒗𝒗

𝟐𝟐

𝒓𝒓
𝒁𝒁𝒆𝒆 - Charge of nucleus, 𝒗𝒗 - velocity of electron, 𝒓𝒓 - radius

2. Electron can revolve only in those orbits whose angular momentum is an integral multiple of ℏ = 𝒉𝒉/𝟐𝟐𝟖𝟖. 
That is; 𝑳𝑳 = 𝒎𝒎𝒗𝒗𝒓𝒓 = 𝒏𝒏ℏ      𝒏𝒏 = 𝟏𝟏,𝟐𝟐,𝟑𝟑, . . .

Radius of the orbit, 𝒓𝒓 = 𝟒𝟒𝟖𝟖𝜺𝜺𝟎𝟎
𝒏𝒏𝟐𝟐ℏ𝟐𝟐

𝒎𝒎𝒁𝒁𝒆𝒆𝟐𝟐
  and velocity, 𝒗𝒗 = 𝒏𝒏ℏ

𝒎𝒎𝒓𝒓

3. Total energy of the electron in orbit remains constant. 𝑬𝑬 = 𝑬𝑬𝟖𝟖𝒌𝒌𝒏𝒏 + 𝑬𝑬𝒑𝒑𝒑𝒑𝒑𝒑

𝑬𝑬𝒏𝒏 = −
𝒎𝒎𝒁𝒁𝟐𝟐𝒆𝒆𝟒𝟒

(𝟒𝟒𝟖𝟖𝜺𝜺𝟎𝟎)𝟐𝟐𝟐𝟐ℏ𝟐𝟐
𝟏𝟏
𝒏𝒏𝟐𝟐

4. Radiation is emitted only when the electron jumps from one discrete orbit to another orbit of a lower 
energy. When electrons absorb radiation, the reverse transition occurs. 𝜟𝜟𝑬𝑬 = 𝑬𝑬𝒇𝒇 − 𝑬𝑬𝒌𝒌 = 𝒉𝒉𝒗𝒗 = 𝒉𝒉𝒉𝒉/𝝀𝝀
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n=
1 n=

2 n=
3 n=4

n=4 —— 
n=3 —— -1.5 eV

n=2 —— -3.4 eV

n=1 —— -13.6 eV

𝑬𝑬𝒏𝒏 =
−𝟏𝟏𝟑𝟑.𝟔𝟔𝒆𝒆𝟔𝟔

𝒏𝒏𝟐𝟐

Electron energy, 𝐸𝐸𝑛𝑛 = −13.6𝑍𝑍2

𝑛𝑛2
 eV Orbit radius, 𝑟𝑟 = 𝑛𝑛2𝑎𝑎0

𝑍𝑍

𝒁𝒁 — atomic number and 𝒂𝒂𝟎𝟎 — Bohr radius

For 𝑍𝑍 = 1 (Hydrogen)

Questions:
•How does the velocity of ground state 

hydrogen electron compare to velocity of 
light?

•Is the non-relativistic model justified?
Hint: 𝒓𝒓𝟏𝟏 = 𝟓𝟓.𝟐𝟐𝟐𝟐 × 𝟏𝟏𝟎𝟎−𝟏𝟏𝟏𝟏meter

Niels Bohr, 1922 Nobel prize in physics — investigation of atomic structure and radiation

Early quantum formulation and Bohr’s idea - II 
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Failures of Bohr model

Some of the shortcomings of the model are:
1. Fails to describe why certain spectral lines are brighter than others. That is, no mechanism for 
calculating transition probabilities.

2. It violates the uncertainty principle which states that position and momentum cannot be 
simultaneously measured.

From Bohr model, the linear momentum 𝒑𝒑 = 𝒎𝒎𝒗𝒗 = 𝒏𝒏ℏ/𝒓𝒓

From Hiesenberg uncertainty principle, 𝜟𝜟𝒑𝒑 ∼ ℏ/𝜟𝜟𝜟𝜟 ∼ ℏ/𝒓𝒓 
Bohrs model only valid at the classical limit, ie. large 𝒏𝒏 limit

Thus, full quantum mechanical treatment is needed to model electron in hydrogen atom

Bohr model is not in fact a correct description of the nature of electron orbits.
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Quantum mechanically, we have four quantum numbers:
Principal quantum number - 𝒏𝒏
Azimuthal quantum number - 𝒍𝒍

Magnetic quantum number - 𝒎𝒎𝒍𝒍
Spin quantum number - 𝒔𝒔

Selection rule must be modified

A single quantum number 𝒏𝒏 cannot actually explain the transitions in an atom.

Hydrogen spectrum
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Schro
··dinger equation for the Atom -I

Hydrogen is one electron atom and perhaps the simplest system in nature, 𝒁𝒁 = 𝟏𝟏.
The potential associated with the attractive Coloumbic force between the positive charge proton 

and the negative charge electron is 𝟔𝟔(𝒓𝒓
⃗
) = − 𝒁𝒁𝒆𝒆𝟐𝟐

𝟒𝟒𝟖𝟖𝜺𝜺𝟎𝟎𝒓𝒓
.

Since it is a two-body problem, we introduced a reduced mass (to treat it as one body problem) 𝝁𝝁
= 𝒎𝒎𝑴𝑴

𝒎𝒎+𝑴𝑴
,        where 𝒎𝒎 and 𝑴𝑴 are the masses of the electron and proton respectively.

kinetic energy + potential energy = Total energy 
𝟏𝟏
𝟐𝟐𝝁𝝁

(𝒑𝒑𝜟𝜟𝟐𝟐 + 𝒑𝒑𝒚𝒚𝟐𝟐 + 𝒑𝒑𝒛𝒛𝟐𝟐) + 𝟔𝟔(𝜟𝜟,𝒚𝒚, 𝒛𝒛) = 𝑬𝑬

For quantum mechanical treatment, the classical dynamical quantities would be replaced with their 
corresponding quantum mechanical operators.

𝒑𝒑𝜟𝜟 → −𝒌𝒌ℏ𝒊𝒊/𝒊𝒊𝜟𝜟,𝒑𝒑𝒚𝒚 → −𝒌𝒌ℏ𝒊𝒊/𝒊𝒊𝒚𝒚,𝒑𝒑𝒛𝒛 → −𝒌𝒌ℏ𝒊𝒊/𝒊𝒊𝒛𝒛,𝑬𝑬 → −𝒌𝒌ℏ𝒊𝒊/𝒊𝒊𝒑𝒑,

Let introduce a wave function describing the electron as; 𝝍𝝍 = 𝝍𝝍(𝜟𝜟,𝒚𝒚, 𝒛𝒛, 𝒑𝒑)
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Since the potential 𝟔𝟔 is independent of the time and angle, we simplify the equation in two ways. 
First, the time dependent part (RHS) of the equation is replaced by the energy eigenvalue. 
Secondly, writing the Hamiltonian in spherical coordinates, we can separate the wave function 
𝝍𝝍(𝒓𝒓

⃗
) into a product of radial-only and angular-only parts. 

Schro
··dinger equation for the Atom - II

Then,
− ℏ𝟐𝟐

𝟐𝟐𝒎𝒎𝒆𝒆
𝜵𝜵𝟐𝟐 + 𝟔𝟔(𝒓𝒓) 𝝍𝝍 = −𝒌𝒌ℏ 𝒊𝒊𝝍𝝍

𝒊𝒊𝒑𝒑
,  where 𝝍𝝍 ≡ 𝝍𝝍(𝒓𝒓

⃗
, 𝒑𝒑) and 𝟔𝟔(𝒓𝒓

⃗
) = − 𝒁𝒁𝒆𝒆𝟐𝟐

𝟒𝟒𝟖𝟖𝜺𝜺𝟎𝟎𝒓𝒓

                                                                  𝜵𝜵 is Laplacian operator

Time-dependent SE equation

In spherical polar,    − ℏ2

2𝜇𝜇
𝛻𝛻2𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙) + 𝑉𝑉(𝑟𝑟)𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙) = 𝐸𝐸𝜓𝜓(𝑟𝑟,𝜃𝜃,𝜙𝜙)

where,  

𝛻𝛻2 =
1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟

(𝑟𝑟2
𝜕𝜕
𝜕𝜕𝑟𝑟

) +
1

𝑟𝑟2sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

(sin𝜃𝜃
𝜕𝜕
𝜕𝜕𝜃𝜃

) +
1

𝑟𝑟2sin2𝜃𝜃
𝜕𝜕2

𝜕𝜕𝜙𝜙2



20

Schro
··dinger equation for the Atom - III: Separation of variables

We can separate the resulting partial differential eqn. into a set of three ordinary differential eqns.:
𝒅𝒅𝟐𝟐𝜱𝜱
𝒅𝒅𝝓𝝓𝟐𝟐 = −𝒎𝒎𝒍𝒍

𝟐𝟐𝜱𝜱

−
𝟏𝟏

𝒔𝒔𝒌𝒌𝒏𝒏𝒔𝒔
𝒅𝒅
𝒅𝒅𝒔𝒔

𝒔𝒔𝒌𝒌𝒏𝒏𝒔𝒔
𝒅𝒅𝜱𝜱
𝒅𝒅𝒔𝒔

+
𝒎𝒎𝒍𝒍

𝟐𝟐𝜣𝜣
𝒔𝒔𝒌𝒌𝒏𝒏𝟐𝟐𝒔𝒔

= 𝒍𝒍(𝒍𝒍 + 𝟏𝟏)𝜣𝜣

𝟏𝟏
𝒓𝒓𝟐𝟐

𝒅𝒅
𝒅𝒅𝒓𝒓

𝒓𝒓𝟐𝟐
𝒅𝒅𝑹𝑹
𝒅𝒅𝒓𝒓

+
𝟐𝟐𝝁𝝁𝒓𝒓𝟐𝟐

ℏ𝟐𝟐
[𝑬𝑬 − 𝟔𝟔(𝒓𝒓)]𝑹𝑹 = 𝒍𝒍(𝒍𝒍 + 𝟏𝟏)

𝑹𝑹
𝒓𝒓𝟐𝟐

Schro
··dinger equation produces three quantum numbers

Assuming the eigenfunction is separable: 𝝍𝝍(𝒓𝒓,𝒔𝒔,𝝓𝝓) = 𝑹𝑹(𝒓𝒓)𝜣𝜣(𝒔𝒔)𝜱𝜱(𝝓𝝓)
Substituting 𝝍𝝍(𝒓𝒓,𝒔𝒔,𝝓𝝓) into the SE, carrying out the differentiations and rearranging
𝟏𝟏
𝜱𝜱
𝒅𝒅𝟐𝟐𝜱𝜱
𝒅𝒅𝝓𝝓

= −
𝒔𝒔𝒌𝒌𝒏𝒏𝟐𝟐𝒔𝒔
𝑹𝑹

𝒅𝒅
𝒅𝒅𝒓𝒓

𝒓𝒓𝟐𝟐
𝒅𝒅𝑹𝑹
𝒅𝒅𝒓𝒓

−
𝒔𝒔𝒌𝒌𝒏𝒏𝒔𝒔
𝜣𝜣

𝒅𝒅
𝒅𝒅𝒔𝒔

𝒔𝒔𝒌𝒌𝒏𝒏𝒔𝒔
𝒅𝒅𝜣𝜣
𝒅𝒅𝒔𝒔

−
𝟐𝟐𝝁𝝁
ℏ𝟐𝟐

𝒓𝒓𝟐𝟐𝒔𝒔𝒌𝒌𝒏𝒏𝟐𝟐𝒔𝒔[𝑬𝑬 − 𝟔𝟔(𝒓𝒓)]
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Schro
··dinger equation for the Atom - IV: Solutions

Azimuthal part 
A particular solution of the first ODE is 𝜱𝜱(𝝓𝝓) = 𝒆𝒆𝒌𝒌𝒎𝒎𝒍𝒍𝝓𝝓.

   The eigenfunctions must be single valued, ie., 𝜱𝜱(𝟎𝟎) = 𝜱𝜱(𝟐𝟐𝟖𝟖) and using Euler’s 
formula, 𝟏𝟏 = 𝒉𝒉𝒑𝒑𝒔𝒔𝒎𝒎𝒍𝒍𝟐𝟐𝟖𝟖 + 𝒌𝒌𝒔𝒔𝒌𝒌𝒏𝒏𝒎𝒎𝒍𝒍𝟐𝟐𝟖𝟖 .

    This is satisfied if and only if; 𝒎𝒎𝒍𝒍 = 𝟎𝟎, ±𝟏𝟏, ±𝟐𝟐, . . .
Thus, solutions only exist when 𝒎𝒎𝒍𝒍 have a certain integer values. It is called a quantum number. It 
plays role when atom interacts with magnetic fields, known as the magnetic quantum number in 
spectroscopy.

Polar part, 𝜣𝜣(𝒔𝒔)
Making change of variable, 𝒛𝒛 = 𝒓𝒓𝒉𝒉𝒑𝒑𝒔𝒔𝒔𝒔, the 2nd ODE is transformed into an associated 

Legendre equation: 𝒅𝒅
𝒅𝒅𝒛𝒛

(𝟏𝟏 − 𝒛𝒛𝟐𝟐) 𝒅𝒅𝜣𝜣
𝒅𝒅𝒛𝒛

+ 𝒍𝒍(𝒍𝒍 + 𝟏𝟏) − 𝒎𝒎𝒍𝒍
𝟐𝟐

𝟏𝟏−𝒛𝒛𝟐𝟐
𝜣𝜣 = 𝟎𝟎.

Solutions: 𝜣𝜣𝒍𝒍𝒎𝒎𝒍𝒍(𝒔𝒔) = 𝒔𝒔𝒌𝒌𝒏𝒏|𝒎𝒎𝒍𝒍|𝒔𝒔𝑭𝑭𝒍𝒍|𝒎𝒎−𝒍𝒍|(𝒉𝒉𝒑𝒑𝒔𝒔𝒔𝒔) , where 𝑭𝑭𝒍𝒍|𝒎𝒎−𝒍𝒍|(𝒉𝒉𝒑𝒑𝒔𝒔𝒔𝒔)  are associated Legendre 
polynomial functions.

For finite 𝜣𝜣;  𝒍𝒍 = 𝟎𝟎,𝟏𝟏,𝟐𝟐,𝟑𝟑,𝟒𝟒. . .; 𝒎𝒎𝒍𝒍 = −𝒍𝒍,−𝒍𝒍 + 𝟏𝟏, . . . ,𝟎𝟎, . . , 𝒍𝒍 − 𝟏𝟏, 𝒍𝒍
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Schro
··dinger equation for the Atom - IV: Solutions representation

Spherical harmonic solutions: 𝒀𝒀𝒍𝒍
𝒎𝒎𝒍𝒍(𝒔𝒔,𝝓𝝓) = 𝜣𝜣𝒍𝒍𝒎𝒎𝒍𝒍(𝒔𝒔)𝜱𝜱𝒎𝒎𝒍𝒍(𝝓𝝓)

It is product of trigonometric and polynomial functions

Taken from: Wolfram MathWorks

Few spherical harmonics are:
𝑌𝑌00 = 1

𝑌𝑌10 = cos𝜃𝜃𝑌𝑌1
±1 = (1 − cos2𝜃𝜃) ⁄1 2𝑒𝑒±𝑖𝑖𝑖𝑖

…
…..
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Schro
··dinger equation for the Atom - V: Radial part

To satisfy this equation for any value of r, both expressions in brackets must equal zero. We have
𝑎𝑎0 = 4𝜋𝜋𝜀𝜀0ℏ2

𝜇𝜇𝑒𝑒2
;            𝐸𝐸 = − ℏ2

2𝜇𝜇𝑎𝑎02

What are their values numerically?

For each positive integer of 𝒏𝒏, the radial wave equation has many solutions. Bound-state solutions are only 
possible if, 𝐸𝐸𝑛𝑛 = − 𝑍𝑍2𝜇𝜇𝑒𝑒4

(4𝜋𝜋𝜀𝜀0)22ℏ2𝑛𝑛2
= −13.6 𝑍𝑍2

𝑛𝑛2
 eV.     The principal q. no. 𝑛𝑛 = 𝐽𝐽 + 1, 𝐽𝐽 + 2, . . .

For hydrogen atom, 𝑍𝑍 = 1. Assuming the ground state 𝒏𝒏 = 𝟏𝟏, 𝒍𝒍 = 𝟎𝟎; the third ODE can be written as
1
𝑟𝑟2

𝑑𝑑
𝑑𝑑𝑟𝑟

𝑟𝑟2
𝑑𝑑𝑅𝑅
𝑑𝑑𝑟𝑟

+
2𝜇𝜇
ℏ2

𝐸𝐸 +
𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
𝑅𝑅 = 0

Taking the derivative and assume solution 𝑹𝑹 = 𝑨𝑨𝒆𝒆−𝒓𝒓/𝒂𝒂𝟎𝟎 , where 𝑨𝑨 and 𝒂𝒂𝟎𝟎 are constants. The eq. becomes;
1
𝑎𝑎02

+ 2𝜇𝜇
ℏ2
𝐸𝐸 + 2𝜇𝜇𝑒𝑒2

4𝜋𝜋𝜀𝜀0ℏ2
− 2

𝑎𝑎0

1
𝑟𝑟

= 0.
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Molecules
What is a molecule?

Many atoms can combine to form a particular molecules,  E.g. hydrogen (H) and Oxygen (O) atoms form 
water (H2O); Chlorine (Cl) and Sodium (Na) atoms form NaCl molecules.  Bonding between 
oppositely charged bodies could be understood in the light of Coulomb interaction (attraction) but atoms 
of the same type can still form bonds, a typical example is hydrogen molecule 𝑯𝑯𝟐𝟐.

A molecule is an electrically neutral group of two or more atoms held together by chemical bonds. 
—-Wikipedia

Our goal
To understand the formation of molecule from 

atom in the quantum mechanical framework.

In contrast to atoms, molecules have 
two more degrees of freedom: 

rotational and vibrational

https://en.wikipedia.org/wiki/Electrically
https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Chemical_bond


25

Molecules contd…
In molecules, the potential seen by the electrons lacks a central character. For the simplest of 
molecules, the homonuclear diatomic molecule, the potential is two-centred. The increase in the 
number of nuclei, increases the complexity nature of the attractive potential.

How can the problem be simplified?
Take into account the large difference in the masses of the nuclei and the electrons.

This is important in the analysis of molecular structure and spectra

First, let us compare the energies and masses of the electrons and the nuclei in a molecule
𝑚𝑚𝑒𝑒 = 9.1095 × 10−31kg                  𝑚𝑚𝑁𝑁 = 1.6750 × 10−27kg

Let us consider electrons in a potential well of size 𝑹𝑹 (bond-length or molecule size), the electrons 
energy estimate, 𝐸𝐸𝑒𝑒 ≈ 𝑝𝑝2

2𝑚𝑚
≈ ℏ2

2𝑚𝑚𝑅𝑅2
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Molecules contd…

Now consider a diatomic molecule, the energy of the nucleus can be estimated by treating the 
molecule (specifically a diatomic molecule) as a linear harmonic oscillator. That is, the molecule is 
bound due to the electronic attraction but would fall apart due to nuclear repulsion in the absence 
of electrons. The oscillator energy  would be 𝑬𝑬𝒗𝒗𝒌𝒌𝒗𝒗 = 𝑴𝑴𝝎𝝎𝒗𝒗𝒌𝒌𝒗𝒗

𝟐𝟐 𝜹𝜹𝟐𝟐/𝟐𝟐 where 𝝎𝝎 𝜹𝜹 are the frequency of 
oscillation and the displacement respectively.

Analysing the amount of energy that will results in dissociation show that the energy of nuclear 
oscillations (vibrational energy) is considerably smaller than the electronic energy. 

Bound state estimate: ℏ𝝎𝝎𝒗𝒗𝒌𝒌𝒗𝒗 ∼ (𝒎𝒎/𝑴𝑴) ⁄𝟏𝟏 𝟐𝟐𝑬𝑬𝒆𝒆

The nucleus pair can be approximated as a rigid rotator with the quantised energy levels given by 
𝒍𝒍(𝒍𝒍 + 𝟏𝟏)ℏ𝟐𝟐/𝟐𝟐𝟐𝟐, where the moment of inertia 𝟐𝟐 = 𝑴𝑴𝑹𝑹𝟐𝟐/𝟐𝟐.
Thus, rotational energy 𝑬𝑬𝒓𝒓𝒑𝒑𝒑𝒑 ≈

ℏ𝟐𝟐

𝟐𝟐
≈ 𝒎𝒎

𝑴𝑴
𝑬𝑬𝒆𝒆
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Molecules: Energy scales 

Thus;                             𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 < 𝐸𝐸𝑣𝑣𝑖𝑖𝑣𝑣 < 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝜋𝜋

The difference in the energies allows us to separate the three kinds of motion and corresponds 
to a difference in the characteristic time of the three motions.

From: www.yokogawa.com

http://www.yokogawa.com
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Molecules: Born-Oppenheimer approximation
This is finding the solution of the Schrodinger equation of a molecule by the assumption that 
the electronic motion and the nuclear motion can be well separated. That is, based on the energy 
and time scale difference that we discussed in previous slide.

Then, molecular wave functions

𝜓𝜓𝑚𝑚𝑟𝑟𝑒𝑒𝑒𝑒𝜋𝜋𝑚𝑚𝑒𝑒𝑒𝑒(𝑟𝑟
⃗
𝑖𝑖 ,𝑅𝑅
⃗
𝑗𝑗) = 𝜓𝜓𝑒𝑒𝑒𝑒𝑒𝑒𝜋𝜋𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛𝑒𝑒(𝑟𝑟

⃗
𝑖𝑖 ,𝑅𝑅
⃗
𝑗𝑗)𝜓𝜓𝑛𝑛𝑚𝑚𝜋𝜋𝑒𝑒𝑒𝑒𝑖𝑖(𝑅𝑅

⃗
𝑗𝑗)

•Electronic wave function depends on nuclear positions but not their velocities. That is, nuclear 
motion is much slower than the electron motion that they can be seen to be fixed.

•Nuclear motion (rotation, vibration)sees a smeared out potential from the fast-moving electrons.
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Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.

• Now introduce the Born-Oppenheimer or the adiabatic approximation; the nuclear motion is 
slow compared to the electronic motion. This will eliminate the nuclear kinetic energy term.

• The total molecular wave function can be written as combination of the electron wave function 
and the nuclear wave function.

• After substituting into the Schrodinger equation (SE) and separation of variables

• …
• …….
• We have SE of nuclear motion of diatomic molecule and another SE of electrons motion
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Schrodinger equation of diatomic molecules: Born-oppenheimer approx.

Consider a diatomic molecule with nuclei located at 𝑹𝑹𝑨𝑨 and 𝑹𝑹𝑩𝑩 having masses 𝑴𝑴𝑨𝑨 and 𝑴𝑴𝑩𝑩, 
charges 𝒁𝒁𝑨𝑨 and 𝒁𝒁𝑩𝑩. Assuming that the molecules have 𝒏𝒏 electrons, the Schrodinger equation 
can be written as

−
ℏ2

2𝜇𝜇
𝛻𝛻2 −

ℏ2

2𝑚𝑚𝑒𝑒
∑
𝑖𝑖=1

𝑛𝑛
𝛻𝛻𝑖𝑖2 + 𝑉𝑉 Ψ = 𝐸𝐸Ψ

Where, 𝜳𝜳 is the total electronic and nuclear wave function; 𝑬𝑬 is the total energy
1st term: Kinetic energy of the nuclei with reduced mass 𝝁𝝁 = 𝒎𝒎𝑨𝑨𝒎𝒎𝑩𝑩/(𝒎𝒎𝑨𝑨 + 𝒎𝒎𝑩𝑩)

2nd term: KE of the electrons
The potential, 𝑉𝑉 = ∑

𝑖𝑖>𝑗𝑗=1

𝑛𝑛 𝑒𝑒2

𝑟𝑟𝑖𝑖𝑖𝑖
− ∑

𝑖𝑖=1

𝑛𝑛 𝑍𝑍𝐴𝐴𝑒𝑒2

𝑟𝑟𝑖𝑖𝐴𝐴
− ∑

𝑖𝑖=1

𝑛𝑛 𝑍𝑍𝐵𝐵𝑒𝑒2

𝑟𝑟𝑖𝑖𝐵𝐵
+ 𝑍𝑍𝐴𝐴𝑍𝑍𝐵𝐵𝑒𝑒2

𝑅𝑅

𝑅𝑅𝐴𝐴 𝐵𝐵

𝑟𝑟𝐴𝐴 𝑟𝑟𝐵𝐵
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Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.

Solve the resulting SE of nuclear motion (spherical coordinate) in analogue to the hydrogen atom

Rotational energy, 𝑬𝑬𝑱𝑱 = ℏ𝟐𝟐

𝟐𝟐𝝁𝝁𝑹𝑹𝟐𝟐
𝑱𝑱(𝑱𝑱 + 𝟏𝟏)

𝑱𝑱 — rotational quantum number (angular momentum) of the molecule

In classical mechanics, energy of a rotating body 𝑬𝑬𝒂𝒂 = 𝟏𝟏/(𝟐𝟐𝟐𝟐𝒂𝒂𝝎𝝎𝒂𝒂
𝟐𝟐)

𝝎𝝎𝒂𝒂 — the angular velocity (rad/sec)
The magnitude of the angular momentum |𝑱𝑱| = 𝟐𝟐𝒂𝒂𝝎𝝎𝒂𝒂

𝟐𝟐

Therefore,  𝑬𝑬𝑱𝑱 = 𝑱𝑱(𝑱𝑱+𝟏𝟏)ℏ
𝟐𝟐𝟐𝟐

, 𝑱𝑱 = 𝟎𝟎,𝟏𝟏,𝟐𝟐, . . . 
In terms of a rotational term, 𝑭𝑭(𝑱𝑱) = 𝑬𝑬𝑱𝑱/𝒉𝒉𝒉𝒉 = 𝑩𝑩𝑱𝑱(𝑱𝑱 + 𝟏𝟏)𝒉𝒉𝒎𝒎−𝟏𝟏,    where the rotational constant 𝑩𝑩 = ℏ

𝟒𝟒𝟖𝟖𝒉𝒉𝟐𝟐
It means large molecules have closely spaced energy levels.
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𝐹𝐹(𝐽𝐽) − 𝐹𝐹(𝐽𝐽 − 1) = 2𝐵𝐵𝐽𝐽

Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.

Rotational spectra selection rules
Transitions are only allowed according to selection rule 
for angular momentum;

𝜟𝜟𝑱𝑱 = ±𝟏𝟏

Schematic energy level diagram of molecular rotations (see figures)
From: Lu et al, Two-Dimensional Spectroscopy at Terahertz Frequencies, 
Topic in current chem 376 (2018)
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Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.
Molecular vibrational motion H

O

Lennard-Jones

𝑟𝑟𝐴𝐴 𝐵𝐵

𝑉𝑉LJ(𝑟𝑟) = 𝜀𝜀
𝑅𝑅𝑒𝑒
𝑟𝑟

12

− 2
𝑅𝑅𝑒𝑒
𝑟𝑟

6

𝑉𝑉ion(𝑟𝑟)

Lennard-Jones
potential

𝑟𝑟

Then, expanding 𝟔𝟔ion(𝒓𝒓) around the equilibrium molecular separation 𝑹𝑹𝒆𝒆; 

𝑉𝑉ion(𝑟𝑟) = 𝑉𝑉ion(𝑅𝑅𝑒𝑒) +
𝑑𝑑𝑉𝑉𝑖𝑖𝑟𝑟𝑛𝑛
𝑑𝑑𝑟𝑟

|𝑅𝑅𝑒𝑒(𝑟𝑟 − 𝑅𝑅𝑒𝑒) +
1
2
𝑑𝑑2𝑉𝑉𝑖𝑖𝑟𝑟𝑛𝑛
𝑑𝑑𝑟𝑟2

|𝑅𝑅𝑒𝑒(𝑟𝑟 − 𝑅𝑅𝑒𝑒)+. . . .

Equilibrium
= No force Harmonic Anharmonicity 
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Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.

Solutions: Hermite polynomial + Gaussian wave function . 
The vibrational energy levels; 𝑬𝑬𝒏𝒏 = 𝒏𝒏 + 𝟏𝟏

𝟐𝟐
ℏ𝝎𝝎,𝝎𝝎 = 𝟖𝟖/𝝁𝝁, and 𝒏𝒏 = 𝟎𝟎,𝟏𝟏,𝟐𝟐, . . . is vibrational quanta

Expanding the ionic potential between the diatomic molecule up to second order

𝑉𝑉ion =
1
2
𝑑𝑑2𝑉𝑉
𝑑𝑑𝑥𝑥2

𝑥𝑥2 =
1
2
𝑘𝑘𝑥𝑥2

Large (small) 𝟖𝟖 means stiff (weak) bond between the atom A & B.

Harmonic approximation

The Schrodinger equation for relative motion of diatomic molecule A-B with a quadratic 
potential energy (harmonic oscillator) reads:

−
ℏ2

2𝜇𝜇
𝑑𝑑2𝜓𝜓𝑛𝑛
𝑑𝑑𝑥𝑥2

+
1
2
𝑘𝑘𝑥𝑥2𝜓𝜓𝑛𝑛 = 𝐸𝐸𝑛𝑛𝜓𝜓
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𝐸𝐸𝑛𝑛 = 𝑛𝑛 +
1
2

ℏ𝜔𝜔,𝑛𝑛 = 0,1,2, . . . Vibrational terms of molecule in terms of 
wavenumber

𝐺𝐺(𝑛𝑛) = 𝑛𝑛 +
1
2

𝑛𝑛
˜

𝑛𝑛
˜
≡

1
2𝜋𝜋𝑠𝑠

𝑘𝑘
𝜇𝜇

Downsides
• The harmonic/parabolic potential approx. 

Is poor at high excitation energies

• Harmonic potential does not describe 
molecular dissociation

Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.
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Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.
Anharmonicity

In reality, the failure of the interatomic potential from a 
parabola (harmonic oscillations) results into effects like second 
order nonlinear oscillations, thermal expansion, finite phonon 
lifetime among others. Thus, the use of a asymmetric potential 
is required, e.g Morse potential.

Morse potential
A closed-form solution and resembles the true potentials.

𝑉𝑉M(𝑟𝑟) = ℎ𝑠𝑠𝐷𝐷𝑒𝑒 1 − 𝑒𝑒−𝑎𝑎(𝑟𝑟−𝑅𝑅0 2

where, 𝑎𝑎 = 𝜇𝜇𝜔𝜔2

2𝜋𝜋𝜋𝐷𝐷𝑒𝑒
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Schrodinger equation of diatomic molecules: Born-Oppenheimer approx.

The Schrodinger equation can be solved for the Morse potential, resulting permitted energy levels reads;
       𝐺𝐺(𝜈𝜈) = 𝜈𝜈 + 1

2
𝜈𝜈
˜
− 𝜈𝜈 + 1

2

2
𝔛𝔛𝑒𝑒𝜈𝜈

˜ ,   where 𝔛𝔛𝑒𝑒 = 𝜈𝜈
4𝐷𝐷𝑒𝑒

.

The number of vibrational levels for a Morse oscillator is finite: 𝜈𝜈 = 0, 1, 2, 3, . . . , 𝜈𝜈𝑚𝑚𝑎𝑎𝑚𝑚

Coupling of rotational and vibrational motion

Rotational motion: 𝐸𝐸(𝑅𝑅) = 𝐽𝐽(𝐽𝐽+1)ℏ2

2𝜇𝜇𝑅𝑅02

Vibrational motion: 𝐸𝐸(𝑅𝑅) = 𝑛𝑛 + 1
2
ℏ𝜔𝜔0, where 𝜔𝜔0

2 = 1
𝜇𝜇
𝜕𝜕2𝐸𝐸𝑎𝑎/𝜕𝜕𝑅𝑅2 𝑅𝑅=𝑅𝑅0  

Neglecting constants;

The two are not strictly independent. For instance, the torque 𝟐𝟐 = 𝝁𝝁𝑹𝑹𝟎𝟎 should be replaced by 𝟐𝟐 = 𝝁𝝁𝑹𝑹𝟐𝟐, 
where 𝑹𝑹 is now given by the instantaneous value owing to vibrational motion.
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Schrodinger equation of diatomic molecules
The energy should take the form

𝐸𝐸(𝑅𝑅) = 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒(𝑅𝑅0) + 𝑛𝑛 +
1
2

ℏ𝜔𝜔0 +
1

2𝜇𝜇𝑅𝑅2
𝐽𝐽(𝐽𝐽 + 1)ℏ2

Electronic energy Vibrational Centrifugal distortion, 𝑹𝑹 → 𝑹𝑹𝟎𝟎

𝐸𝐸rot =
𝐽𝐽2

2𝜇𝜇𝑅𝑅02
−

𝐽𝐽4

2𝜇𝜇3𝑅𝑅0𝜔𝜔2

𝐹𝐹centri = 𝜇𝜇𝜔𝜔2𝑅𝑅0 = 𝐽𝐽/𝜇𝜇𝑅𝑅03 ≡ 𝐽𝐽/𝜇𝜇𝑅𝑅3
𝐹𝐹harmonic = −𝜇𝜇𝜔𝜔2(𝑅𝑅 − 𝑅𝑅0)

𝑑𝑑𝐸𝐸 = −∫ 𝐹𝐹centri𝑑𝑑𝑅𝑅



Atomic & molecular physics at diff. Temperature

Temperature 
scale

∼ 104 − 10 K ∼ 10−1 K

∼ 10−6 K
∼ 10−9 K

Fusion Plasma and stellar 
environment, Understanding the 

Molecular interactions in 
astrophysics, Formation of complex 
molecules in interstellar environment

Atomic and Molecular beams, Clusters

Laser cooled atoms, Atomic clocks, 
Nanotechnology using cold atoms

Bose-Einstein Condensation, Fermi Sea, 
Quantum many body physics, Matter 
wave optics, Atom interferometry, 

 — Atomic Physics is bedrock of 
condensed matter physics

39



40

Modeling Molecular Polaritons

T.S. Haugland, Phys. Rev. X 10, 041043  (2020)

Hybrid system

Can we study/infer atoms and molecular behaviour from thermodynamics?

Computational physics
Some current researches

On personal note:

Thanks to ASP
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