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Fluid Mechanics

Classification of Fluid Motions
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Hydrodynamics

Hydrauli
(incompressible) PR

: Undergo sig.
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Fluid mechanics
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Heat Transfer

Heat Is a transfer of energy from one
object to another due to a difference In
temperature

Temperature Is a measure of the
molecular energy In an object

Heat always flows from an object of higher
temp (T,) to one of lower temp (T,)

We are often interested In the rate at
which this heat transfer takes place



Mechanisms of Heat Transfer

There exist 3 basic mechanisms of heat transfer between
different bodies (or inside a continuous body)

»Conduction in solids or stagnant fluids

»Convection inside moving fluids, but first of all we shall
discuss heat transfer from flowing fluid to a solid wall

»Radiation (electromagnetric waves) the only mechanism
of energy transfer in an empty space

Aim of analysis is to find out relationships between heat
flows (heat fluxes) and driving forces (temperature
differences)







Forced, Free and Mixed Convection

Convection is called forced convection if the fluid is forced to flow in a tube
or over a surface by external means (pressure gradient) such as a fan,
pump, or the wind.

In contrast, convection is called free (or natural) convection if the fluid
motion is caused by buoyancy forces induced by density differences due to
the variation of temperature in the fluid.

Mixed convection occurs when the fluid motion is driven by combined action
of both pressure gradient (forced convection) and buoyancy forces (free
convection).

Forced Natural
convection convection
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Introduction: Thermal Management

Thermal management refers to the tools and technologies used to
maintain a system within its operating temperature range. With

electronic devices, thermal management typically dissipates excess
heat to prevent overheating.

How a Shell and Tube Heat Exchanger Works

Heating / Cooling
uil

Fll fd
T -fgﬁ

Check the engine coolant to seeliffit'sin good condition with a hygrometer
and that it'sitop Lolits maximum level. |
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NanoFluids —An Offspring of Nanotechnology

NanoFluids is the mixture of basefluid (liquid) and
nanoparticles (solid) of size 10~°

water - Al,0, water - Cu

Alumina-water nanofluid Alumina nanoparticles Cu nanoparticles
Nanoparticle Materials Include: Base Fluids include:
e  Metals (Al, Cu, Ag, Au, Fe) « Water
- Oxide ceramics (AlL,0,,CuO,TiO,) »  Oil & other lubricants
. Metal carbides (SiC) «  Ethylene or tri-ethylene glycols &
. : other coolants.
> I A, RN «  Polymer solutions
«  Nonmetals (graphite, carbon nanotubes) . Bio-fluids

«  Layered (Al+ Al,O,, Cu+C) «  Other common fluids




Application of Nanofluids Stellenbosch
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Industrial Cooling

© GIGABYTE

The flow of the coolant is from the lower tank to the engine block, then to - iR 2 s
the cylinder head and finally towards the outlet for the radiator. “YouTube Armed ForfesU pd ate 7
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MODELLING FLUID FLOW & HEAT TRANSFER IN ENGINEERING SYSTEMS

Experimental vs. Theoretical Analysis

Fluid flow with heat transfer in engineering systems can be
studied either experimentally (testing and taking measurements)
or theoretically (by analysis or calculations). O =

N

» The experimental approach has the advantage that we deal
with the actual physical system, and the desired quantity is
determined by measurement, within the limits of experimental
error. However, this approach is expensive, time-consuming,
and often impractical.

» The theoretical approach (including the numerical approach)
has the advantage that it is fast and inexpensive, but the results
obtained are subject to the accuracy of the assumptions,
approximations, and idealizations made in the analysis. 1



Modelling Procedure
Physical problem

Why do we need differential equations?

The descriptions of most scientific problems Identify

iInvolve equations that relate the changes in important

some key variables to each other. variables Make

In the limiting case of infinitesimal or 14;-;{;:13::;?::11d
differential changes in variables, we obtain Apply approximations
differential equations that provide precise relevant

mathematical formulations for the physical physical laws

principles and laws by representing the rates

Y

of change as derivatives.

A differential equation

Therefore, differential equations are used to

investigate a wide variety of problems in Apply
sciences and engineering. applicable Apply

: : : solution
Do we always need differential equations? techniaue boundary

: : q and initial

Many problems encountered in practice can conditions
be solved without resorting to differential Y
equations and the complications associated Solution of the problem

with them. AN

Mathematical modeling of physical problems.

12



PROBLEM-SOLVING TECHNIQUE

Step 1: Problem Statement €y

Step 2: Schematic %
Step 3: Assumptions and Approximations

Step 4: Physical Laws

Step 5: Properties

Step 6: Calculations

Step 7: Reasoning, Verification, and Discussion

The assumptions made SOLUTION
while solving an /
engineering problem q
must be reasonable and N

justifiable. @5{

A step-by-step
approach can greatly
simplify problem
solving.

HARD WAY —»

PROBLEM 13



IMPORTANCE OF DIMENSIONS

AND UNITS The seven fundamental (or primary)
dimensions and their units in S|
Any _physmgl guantity can be characterized Dimension Unit
by dimensions. Length meter (m)
The magnitudes assigned to the dimensions Mass kilogram (kg)
are called units. Time second (s)
_ _ ) Temperature kelvin (K)
Some basic dimensions such as mass m, Electric current ampere (A)
length L, time t, and temperature T are Amount of light candela (cd)
selected as primary or fundamental AU lizier oale L)

dimensions, while others such as velocity V, TABLE 1-2

energy E, and volume V are expressed in —— _
) ) ) Standard prefixes in S| units
terms of the primary dimensions and are

i . : Multiple Prefix
called secondary dimensions, or derived — Yy
dimensions. 1021 ieﬁa’ 7
Metric Sl system: A simple and logical %gii exa, EP
system based on a decimal relationship = f:r?’T
between the various units. 109 giga, G

5 6

English system: It has no apparent o Sk
systematic numerical base, and various units 102 S
in this system are related to each other 10! deka, da
rather arbitrarily. . 10~7 e
&% \ 102 centi, ¢

103 milli, m
108 micro,

10-° nano, n



NEED FOR RELEVANT SOFTWARE
PACKAGES AND COMPUTERS

All the computing power and the software
packages available today are just tools,
and tools have meaning only in the hands
of masters.

Note that availability of sophisticated
software packages and computers cannot
replace adequate training and knowledge
In engineering systems. They will simply
cause a shift in emphasis in the courses
from mathematics to physics. That is,
more time should be spent in the
classroom discussing the physical
aspects of the problems in greater
detail, and less time on the mechanics
of the solution procedures.

An excellent word-processing
program does not make a person
a good writer; it simply makes a
good writer a more efficient wrifer.



Numerical Methods: properties

Finite differences

v

Finite elements

Finite volumes

v

v

- time-dependent PDEs

- seismic wave propagation

- geophysical fluid dynamics

- Maxwell’'s equations

- Ground penetrating radar

-> robust, simple concept, easy to
parallelize, regular grids, explicit method

- static and time-dependent PDEs

- seismic wave propagation

- geophysical fluid dynamics

- all problems

-> implicit approach, matrix inversion, well founded,
irreqular grids, more complex algorithms,
engineering problems

- time-dependent PDEs

- seismic wave propagation

- mainly fluid dynamics

-> robust, simple concept, irreqular grids, explicit
method




Other numerical methods

Particle-based
methods

- lattice gas methods

- molecular dynamics

- granular problems

- fluid flow

- earthquake simulations

-> very heterogeneous problems, nonlinear problems

Boundary element
methods

Pseudospectral
methods

- problems with boundaries (rupture)

- based on analytical solutions

- only discretization of planes

-> good for problems with special boundary conditions
(rupture, cracks, etc)

- orthogonal basis functions, special case of FD

- spectral accuracy of space derivatives

- wave propagation, ground penetrating radar

-> reqular grids, explicit method, problems with
strongly heterogeneous media




Model lllustration |

Nanofluid Heat Transfer Enhancement
in Engineering Systems

Internal Flow Problem
Microchannel Flow with Heat Transfer

Applications of Na.noflixids

(DEMONSTRATION USING MAPLE SOFTWARE) 18
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Nanofluids Composition Properties and Relations

Thermophysical Properties of Basefluid and Nanoparticles

Materials p(kgim3) | C, (I/kgK) | k (W/mK) |B(K™) o (S/m)
Pure water 997.1 4179 0.613 21x105 5.5x106
Copper (Cu) 8933 385 401 1.67x10° | 58x108
Alumina (Al,0;) | 3970 765 40 0.85x10° | 35x10°¢
Structure of Different Nanoparticle Shapes 2500
Nanoparticles Shape Shape Factor ;:E?hg;f;igaycol
Shape Structure (m) 20001 i-x\.llate_-r
Spherical 3 5 Silcon
o
Bricks = 37 oS ipper
S ol ST
Cylindrical )4 4.9 500 |
Platelets 0 e 57 olots o2 oo o [
(\'__.-?._“__'a r 1 2 3 4 5 6 8 9
' Material
Blades r,.}f__ 8.6 Thermal conductivity of typical materials
k?f — —_
o, =—7 | (pe,),, =1=9)pe,), p.,=1=d)p, +dp.
(mp)??f |
. 3r-D¢ . ky ko +(m=k, ~(m-Lplk, —k,)
% =© - Tk el k]
nf N — —
(}/4—2)—(}’—1)1;25 (1 gfv) kf k5+m 1kf-|-¢ ¢ — K,
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CONSERVATION LAWS: FLUID DYNAMICS BASIC EQUATIONS

» Navier-Stokes equations 1)
y+(V-V)V:—in+ﬂV2V+g
81: pnf pnf <

»Continuity V.V =0 (2)
»Energy equation with the Joule heating
oT )
(pcp)nf(E-l_(V'V)Tj:knfv T+ p,; @+ ; (3)
» Ampere’s law
j=47'VxB (vacuum:u, =4z 107" =1.25710° H/m) (4)
>Faraday’s law %—?=—V><E (5)
»0hm’s law* i=oc., (E+VxB) (6)

*Eqgs.(4-6) are usually grouped together as Maxwell Equations



Micro-Channel and Heat Transfer

» A decrease in channel diameter increases the heat transfer coefficient, thus
the small diameter of micro-channel boosts the compactness and
effectiveness of heat removal, since k

h = —
D

where h=heat transfer coefficient, D=diameter, k = thermal conductivity.
»Micro-channels small aspect ratio increased heat dissipation rates and
reduced temperature gradients across electronic components.

Heat rejecter

Shell and Tube Heat Exchanger

b B

1

& L B 3
i | CoCR I
Microchannel Electroosmotic pump . :
heat exchanger — '
= i .
- i\
YMand-id \
» ' T 1 t

-

Outiet

infet Plenuim
Plernuirr

Figure 1: Micro-channels illustration (Heat Exchanger)
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Mathernatical Model - |

£ Assumptions
= =t e Unsteady flow
u I ~+» Mixed Convection
u=0 nanofluid =0 . .
« Two dimensional
X\ \ X « Incompressible
y=0 y=a

Figure 1 : Problem Geometry

DIMENSIONLESS MODEL EQUATIONS

Initial and Boundary Conditions
w(r,0)=0, 6(»,0)=0
w(0,7)=0, 6(0,7)=0

} for >0
w(l,7)=0, 6#@lr7)=1

Thernnal Analysis of Uhsteady Mxed Convection
of Cu-Wiater Nanofluid in a Microchannel

Parameters

Gr = Grashof number

Pr = Prandtl number

Ec = Eckert number

A= Pressure gradient parameters
d¢=Nanoparticles volume fraction

- t T,-T
va, T-T ¥y x W aog AT
Uy T =1 a a ) %

= azpfp kf f U?
! p: ’a :{ ) ’ == EC_
/u$ f pCp nf af Cp(TW_TO)a2
, Azzﬂ’A?,:ka’ A4:('DCP)nf’ Asz(pﬁ)nf
Hi Ky (pC,)s (0B),

(Skin Friction)

n=0,1

00
= Asa_

(Nusselt Number)
n=0,1




Nurnenical Procedure (Method of Lines)

Finite difference technique based of method of lines in which the central differencing
approach is utilized for the spatial derivatives discretization is employed. The initial
boundary value problem (IBVP) is converted to initial value problem (IVP). Fourth
order Runge-Kutta integration method is employed to tackle the resulting I\VP.

Let w. =w(n.,7), 6 =60(n,,r) where n, =iAn, An= i=0..N

£l

N’
Ai'A‘S Prdgi:0i+1_20i+9i AZPrEC( i+1 j
A, dr (An)° A,

ﬁ%: A+ Wi+1_2Wi + Wi, n A1A4 Gro
A, dz (An)* |

with w,=0,6,=0, w, =0, 6, =1 and the initial conditions given as

w,(0) =0, 6,(0)=0, Vi
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! Graphical Results
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Model lllustration I

Nanofluid Heat Transfer Enhancement
in Engineering Systems

External Flow Problem
Thermal Boundary Layer Problem

(DEMONSTRATION USING MAPLE SOFTWARE )
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Momentum & Thermal Boundary Layer Flow

Boundary layer flow is the thin region on the surface of the
body where viscosity effects are important in the development

of momentum and thermal boundary layer

—_— r ) |
- ~ — . S
i » —— —
- . & _'___,.-"_.h [
+ - — — 4
s * . o —— . -—|1|I i vl
— = ---_.- - ] .. {-:;- [ .I
- - S — .
. - ._.-__.-' _FI- LT 9 _-'.-,H
* r F. - —'.- - 1 r -
— 1, —

Blasius* (1908) developed an exact solution for
laminar flow over a flat surface with no
pressure variation. Blasius theoretically predict:
Momentum boundary layer thickness = 6(x)
Velocity profile = u/U vs y/d(x),

Wall shear stress = t,,(x)

*(first graduate student of Prandtl)

Application of BL

Airfoils

«Hull of Ship

«Turbine blades
Industrial cooling of hot
surfaces

y _YyRe, y

77500 X Jox/U
X Ux
o(x) = , Re, =—
00~ :
Similarity variable

2¢



I Heated Surface Cooling Using NanoFluid

Mathernatical Model - 1|

Figure 1 : Schematic diagram of the problem

DIMENSIONLESS MODEL EQUATIONS

y

1'27

2

dn dn

dn 1

2 2 2 2
d—‘9+A2Per—9+A3PrEc(d iJ +A, PrEcM [S—F—j =0

Assumptions

Boundary conditions

F@=0, F)=2+5%F 0, 92 (0)=Bifo(0)-1]
dn dn dn

3—F(oo)=1, 0() =0
U

 Steady flow
* Two dimensional
« Incompressible




Dimensionless Variables & Parameters

Local similarity variables and parameters

B, = Tty U, =ax 7=y b Parameters
o U “alp
J‘T'ﬂ‘ T A4, = Pty ! M = Magnetic field parameter
i P M U
o0 = T,-T, ;CI(;; ) v =xybu, FO) Bi = Biot number
_f £ gy a1
Pr — HC 42 .Fc,ﬂ.ipC’P iJ, A= 3’ Pr = Prandtl number
ks k.1 b A = Stretching /Shrinking parameter
er ‘43 = S = ﬁ —
Ec = c (T = ) -y Uy Ec = Eckert number
A 2
h A, = Tuks T o ;B S = Slip parameter
R ) .k M=
Bi = — . [— £ p b . :
k, Vb U < by | = Nanoparticles volume fraction

Other engineering quantities of interest are defined as:

Q Skin friction (c,vRex--9)* 4%

-1/2 __ knf d@
Q Nusselt number ( NuRe™ =1~

Nu(¢p #0) — Nu(¢p = 0)
J Heat Transfer Enhanceme M= =y % g




Numerical Approach

The set of nonlinear differential equations together with the corresponding
boundary conditions have been solved numerically using shooting iteration
technique together with Runge-Kutta fourth-order integration scheme.

We first transform the nonlinear BVP to IVP by letting: |

X,=F, X% =F X =F"X,=0,% =60
t_he_n_l X = Xy,
X5 = Xg,
X, =BM(x, —1)— Al(xlx3 — X5 +1),
X, = Xs,
X, =—A, Prx,x. — A, PrEc(x;)* — A, PrEcM (x, —1)°.

with the initial conditions |
% (0) =0, x,(0) = 4 +5x;(0), X;(0) =&, X,(0) = a,, x;(0) = Bi(a, —1).




Numerical Results

Heat Transfer
Enhancement %

Heat Transfer
Enhancement %

60
0 35
30

40

m1% Cu 25 ,
30 SEw cu 20 m1% Fe304
20 . 15 m5% Fe304

| u
10 0 10 m 10% Fe304

0 L
[

% Cu Volume fraction in

Cu-H20 Nanofluid % Fe304 Volumﬁ;‘;i(;ltzj(i)g in Fe304- H20
Heat transfer enhancement of different Heat transfer enhancement of different
Cu-water volume fraction Fe,O,-water volume fraction

35 70
X 30
o = . 60
B & 2° 52 50
g E 20 1% Al203 © &
=85 . 255 "
g3, '5/‘; Al203 55 30 = A203
T LICJ 5 m10% AlI203 T Lﬁ 20 B Fe304
0 - 10
% Al203 Volume fraction in Al203-... ° 0% VolumeLr;gti'\(l)Annoc:‘fm?goparticles in
Heat transfer enhancement of different Heat transfer enhancement of different
Al,O5-water volume fraction nanofluids at 10% volume fraction
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Numerical Results
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Numerical Results
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PLASMA AS FLUID
» Definition

» Engineering Applications
» Basic Fundamental Equations

» Analytical lllustrations



Standard Definition of Plasma

“Plasma” named by Irving Langmuir in 1920’s

The standard definition of a plasma is as the 4" state of matter (solid, liquid,
gas, plasma), where the material has become so hot that (at least some)
electrons are no longer bound to individual nuclei. Thus a plasma 1s

electrically conducting, and can exhibit collective dynamics.

[.e.,a plasma 1s an 10nized gas, or a partially-1onized gas.

Implies that the potential energy of a particle with its nearest neighboring
particles 1s weak compared to their kinetic energy (otherwise electrons would

be bound to ions). = Ideal “weakly-coupled plasma” limit. (There are also more-
exotic strongly-coupled plasmas, but we won’t discuss those.)

Even though the interaction between any pair of particles 1s typically weak,
the collective interactions between many particles 1s strong.
2 examples: Debye Shielding & Plasma Oscillations.



Fluid Description of Plasma

Plasma phenomena can be explained by a fluid model, in which the
Identity of the individual particle is neglected, and only the motion of
fluid elements is taken into account

The theoretical study of plasma as a fluid is governed by the concept
of magnetohydrodynamics (MHD) which involved a combination
of conservation equations of conducting fluid mass, charges and
momentum coupled with state equation and Maxwell equations of
electromagnetism

Plasma may involve the dynamics positively charged ion fluid and
negatively charged electron fluid. In a partially ionized gas, the
dynamics of fluid of neutral atoms may also be involved. The
neutral fluid will interact with the ions and electrons only through
collisions. The ion and electron fluids will interact with each other
even in the absence of collisions due to the generation of the electric
and magnetic fields >



Plasma Applications

Applications of Plasma range from energy production by
thermonuclear fusion to laboratory astrophysics, creation of
Intense sources of high-energy particle and radiation beams,
and fundamental studies involving high-field quantum
electrodynamics.

Plasma is being used in many high tech industries.

e Itis used in making many microelectronic or electronic
devices such as semiconductors.

It can help make features on chips for computers.

 Plasma is also used in making transmitters for microwaves
or high temperature films.

Plasma research is leading to profound new insights on the
iInner workings of the Sun and other stars, and fascinating
astrophysical objects such as black holes and neutron stars.
The study of plasma is enabling prediction of space
weather, medical treatments, and even water purificatior



Examples of naturally occurring plasmas:

* (99% of the visible universe is a plasma)

5.

i

Gas Nebula Lightning Flames

Aurora Borealis Solar Corona



Examples of man-made plasmas:

Fluorescent e Flat panel
lamps I
(glow T . o
discharge) — — display

/oo | Plasma etching reactor
o', | (plasmas play important

= | roleinthe manufacturing
' of integrated circuits)

Laser-created
plasmas



Magneto-Fluid Dynamics

» Magneto-fluid dynamics (MFD) is the

study of the flow of electrically conducting Right Hand Rule

fluids in a magnetic field.
> MFD is derived from three words; magneto ihegtiine| FoquxB |EECAGTT

— magnetic field, fluids, and dynamics — s S /]

movement. e

» It covers phenomena where electrically
conducting ionized fluids, with velocity
field V, and the magnetic field B are Ve marecion rooatecions
coupled. -

> Any movement of a conducting material in ~ F19-1: The Right Hand Rule
a magnetic field generates electric currents
J, which in turn induce
= their own magnetic fields, and

= | x B forces on the medium known as
Lorentz force.

Electric

Moving I
m
SEAWRMeT 1o dc electrica \T"," P i

generator

Hannes Alfvén (1908-1995),
winning the Nobel Prize in
Physics for his work on
Magnetohydrodynamics.

magnetic
field



http://en.wikipedia.org/wiki/Image:Hannes-alfven.jpg

Some Plasma Properties
Mass density Pm = NeMg +1N;M;
Charge density o =(q.,n, +q;n,
Mass velocity vV =(nmyv. +nmv.)/p_
Current density J = 0NV, +:nV; =a,n, (v, —V;)

Total pressure P= P, + P,

where the subscripts | and e represent the ions and

electrons, respectively.
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Magnetohydrodynamics (MHD) Equations for Plasma

(1) agt " +V-(nV)=0, (Mass Conservation Equation)
(2) 9o +V-(nj) =0, (Charge Conservation Equation)
ot

(3) pm(%—\:+V-VVj=

rate of change of
total momentum density

Pm(EJFV'VVj - o(E+VxB)-VP+p F, F :_Ujk(vj _Vk)’

&+ jxB - VP, (Momentum Equation)
T, Nadicoe P

Maxwell Equations

1 oE oB

(4) VXB:/JOj-i'C—ZE, VXE:—E,

jxB-Vp,

V-B=0, V-(¢, E)=0, E+VxB=nj+
ne

where B is the magnetic field strength, E is the electric field, n is
the particle density and 7 Is the resistivity.
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Equation of state (EOS)

® An equation of state is a thermodynamic equation describing the state of matter
under a given set of physical conditions.

p=pnT), e=enT)

@ |sothermal EOS for slow time variations, where temperatures are allowed to
equilibrate. In this case, the fluid can exchange energy with its surroundings.

p = nkT, Vp = kTVn ng (em ™) &~ 3.250 x 10" p (Torr)

-> The energy conservation equation needs to be solved to determine p and T.

® Adiabatic EOS for fast time variations, such as in waves, when the fluid does not
exchange energy with its surroundings

=Cn¥ @ — @ = & (specific heat ratio)
p ] p y n y CU p

—-> The energy conservation equation is not required.

z
}t'

® Specific heat ratio vs degree of freedom (f) y=1+



Equation of state

Usually adopt the 1deal gas law | P=nkT

In thermal equilibrium, each internal degree of freedom has energy (kT/2).
Thus, internal energy density for an ideal gas with m internal degrees of
freedom

e = nm(kT/2).

Combining, |P = (y-1)e | wherey = (m+2)/m

For monoatomic gas (H), y=5/3 (m=3)
diatomic gas (H,), y=7/5 (m=5)

Also common to use isothermal EOS |P = C?p | where C=isothermal sound
speed when (radiative cooling time) << (dynamical time)

In some circumstances, an i1deal gas law 1s not appropriate, and must use more
complex (or tabular) EOS (e.g. for degenerate matter)



Flux conservation:

Given by Maxwell’s equations:

0B
E_—CVXE

V-B=0 (constraint rather than evolutionary equation)

From Ohm’s Law, the current and electric field are related by

J=0(E+VXB>
%

For a fully conducting plasma, 0 — OO
So cE =-(v x B).

0B
E—VX(VXB)—O




‘ DEBYE NUMBER I

Consider a sphere of radius the Debye length Ap>.

o A

D

It contains Np = %7?)\%719 electrons: the Debye number.

The Debye number is the number of electrons in the “coat” shielding

any ion in the plasma.

The Debye number is a measure of the importance of collective effects

in the plasma.

If Np < 1 there are no collective effects. The “plasma” is merely a

collection of individual particles.

If Np > 1 itis a true plasma and cooperative effects are important.

Usually N > 1, with N ranging from 10# (laboratory) to 102

(cluster of galaxies).



Motions of a charged particle in uniform electric field
® Equation of motion of a charged particle in fields

dv
ma—q[E(r,t)+va(r,t)], =

® Motion in constant electric field

v' For a constant electric field E = E, with B = 0,

qEy
r(f) =rg+vet +—t
(6) =T + Vol + 5

v' Electrons are easily accelerated by electric field due to their smaller
mass than ions.

v Electrons (lons) move against (along) the electric field direction.

v" The charged particles get kinetic energies.



Motions of a charged particle in uniform magnetic field

® Motion in constant magnetic field

dv

m-—=

dt

qu X B

® For a constant magnetic field B = B,z with E = 0,

dv,

m— =

dt

dvy N

T

dv
m—=10

dt

® Cyclotron (gyration) frequency

d%v,
dt?

- _wézvx

qBovy

—qBovx

1q1B,




Motions of a charged particle in uniform magnetic field

® Particle velocity

vy = v cos(wt + @)
vy = —v, sin(w.t + ¢y)
Uz = Vg0

® Particle position

X = %o + 1. sin(w.t + ¢g)

y =79y + 1, cos(w.t + @)

® Guiding center
(X0, Y0, 20 + V3ot )

® Larmor (gyration) radius

v, mv,
w. |q|Bg

Ol

|qULOBo1




Motions of a charged particle in uniform E and B fields

® Equation of motion

® Parallel motion: B =B,z and E = E z,

- Straightforward acceleration along B



E X B drift

® Transverse motion: B = B,z and E = Ex, @ E meeilite- O
dv ®B
md_tx = qEy + qByvy,
dv,
mE = —qBovx l Vgc
® Differentiating,
d2v, : ION ELECTRON
= —Q@;V
dtz € %X
d*v, E,
— it
ez~ e (Bo +vy) Vg =

® Particle velocity

v, = v, cos(w.t + ¢,) Vgc

E
Vy ==V, sin(w.t + ¢g)\— B—Z




Diffusion and mobility

® The fluid equation of motion including collisions

du du
mn— =mn|—+ (u-V)u| = gnE — Vp — mnv,,u
dt ot
00 O 0000
® |n steady-state, for isothermal plasmas 00°% o :"j’. 0 .°
O 04 Ogeqe
1 1 o O *e8d
u= nE — Vp) = nE — kTVn e .
— (q p) — (q ) o o %, }1’
O °© o o
q kT Vn °
= —f = —= i,uE - D— Diffusion is a random walk process.
mv,, Mmv,, n n
Drift  Diffusion
® In terms of particle flux _lqID . |
U= T Einstein relation
I'=nu = t+tnukE — DVn
lq] o kT .
= ——  Mobility D =—— : Diffusion coefficient
mvy, MV




Ambipolar diffusion

® The flux of electrons and ions out of any region must be equal such that charge
does not build up. Since the electrons are lighter, and would tend to flow out
faster in an unmagnetized plasma, an electric field must spring up to maintain
the local flux balance.

[ = +nw;E — D;Vn [, =—-nu,E—D,Vn

® Ambipolar electric field for I; =T,
E= Di - De Vn
Ui t e T

® The common particle flux
- JueDi + HEDE
Hi + He

® The ambipolar diffusion coefficient for weakly ionized plasmas

| =

Vn=-D,Vn

D; + ;D - T
:#e i T Hi E%Di+ﬁDeﬁDi(l+—e)
Wi + Ue e T

a



Decay of a plasma by diffusion in a slab

® Diffusion equation

Derived from the
continuity equation

¢=

on
——-D,V?’n=0
at
® |n Cartesian coordinates,
on 5 d°n
ot 0x?

nxn,=n

D =D,

® Find n(x,t) under the boundary conditions [H/W]

n(x =+L,t) =0

n(x,t = 0) = ny(1 — (x/L)?)

® In general

= /10<E are """ cos

[

B L
S

1
D

_),._

m

+ Z bye L

. mnx
SN ———
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Decay of a plasma by diffusion in a slab
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Useful Constants and Formulae

Table 1: Commonly used physical constants

Name Symbeol Value (SI) Value (cgs)
Boltzmann constant kg 1.38 x 10723 JK—! 1.38 x 10~ P erg K1
Electron charge e 1.6 x 10719 C 4.8 x 10~ 1Y statcoul
Electron mass Me 9.1 x 1073 kg 9.1 x 1072 g
Proton mass g 1.67 x 10727 kg 1.67 x 1072 g
Planck constant h 6.63 x 10-34 Js 6.63 x 10727 erg-s
Speed of light ¢ 3x10%ms—! 3 x 10" ems—!
Dielectric constant £0 8.85 % 1072 Fm—! —
Permeability constant Ho 4 x 1077 —
Proton/electron mass ratio iy /e 1836 1836
Temperature = leV e/kp 11604 K 11604 K
Avogadro number Na 6.02 > 10%* mol ! 6.02 x 10%* mol !
Atmospheric pressure 1 atm 1.013 < 10° Pa 1.013 < 10° dyne em ™2

Table 2: Formulae in S1 and cgs units

Name Symbol Formula (SI) Formula (cgs)
172 1/2
Debye length AD % ﬂ cm
eZ2n, Amedng
Particles in Debye sphere Np 4_“_ }.% 4_“_ }.%
2 1/2 2 1,/2
2. ame?n, B
Plasma frequency (electrons) Wpe ( e ) st (ﬂ) st
EQTTte e
Z2e2n, 1/2 dw Z2e2n, 1/2
Plasma frequency (ions) Wi ( - ) g1 (—1) g !
=S T
kTl V2 EpTl\ V2
Thermal velocity Vte = WpeAD ( = ms ! ( = cms !
The Tre
Electron gyrofrequency we eB/m.s™! eB/me st
Electron—ion collision frequenc i w/in.ZetlnA___, 4(2m)/Zn.ZellnA s~ 1
<4 Y Vel 21/2(47eg)2m2vd, 3m2v, )
O, 9N
Coulomb logarithm In A In ZD In > ZD
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“ CONCLUSION “

Both theoretical and experimental research are very essential in fluid

and plasma physics.

» Complex fluid flow with heat transfer characteristics and plasma
problems can be easily investigated theoretically using modelling
and computational approach.

»Modelling helps to make things better, faster, safer and
cheaper through simulation of complex phenomena and the
reduction of the flood of data with visualisation
»An important feature of the application of modelling and
computations to fluid and plasma physics problem is that, it
enables us to make scientific predictions that are to draw on the
basis of logic and with the aid of mathematical methods, correct
conclusions whose agreement with reality is then confirmed by
experience, experiment and practice leading to innovation and
national development

i
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