

Page | 1

Linux tutorial
ASP 2024 Pr. M. JEDRA

Table of contents
1. Introduction

2. File system

3. Information commands

4. Directory manipulation commands

5. File manipulation commands

6. Working with file contents

7. Redirections

8. Filters

9. User management

10. File permissions

11. Process control

12. Environment variables

13. Basic Linux tools

Page | 2

Introduction

Operating system:

An operating system (OS) is system software that manages computer
hardware and software resources, and provides common services for
Computer programs.

Operating system placement

Types of operating systems:

 Mobile operating system
 Real-time operating system
 Embedded operating system
 Network operating system

Page | 3

Examples:

Windows, Unix, Linux, Apple iOS, Mac OS, Xenomai, Android.

Linux operating system:

Linux is a powerful and flexible family of operating systems that are
free to use and share. It was created by a person named Linus
Torvalds in 1991.

Linux system advantages:

 A Unix-like Operating System
 Multi-user, Multitasking, Multiprocessor
 Has the X Windows GUI
 Coexists with other Operating Systems
 Runs on multiple platforms
 Open source

Page | 4

 Easy to install applications.
 Secure
 Stability
 Community
 Free

Distributions:

Ubuntu, Fedora, Debian, Arch Linux, CentOS, Kali Linux, Mint,
OpenSUSE, Red Hat, Slackware, AImaLinux,…etc.

Page | 5

File system

Linux structure

Architecture of Linux operating system

Kernel:

Kernel is the core part of Linux. It is responsible for all major activities
of this operating system. It consists of various modules and it interacts
directly with the underlying hardware. . It allocates CPU time and
memory to each program and determines when each program will run.
The kernel also provides an interface to programs whereby they may
access files, the network, and devices.

Page | 6

Shell:

It is an interface among the kernel and user. The shell is a command
line interpreter (CLI). It interprets the commands the user types in and
executes them. The commands are themselves programs.

Hardware layer:

The hardware layer consists of several peripheral devices
like CPU, HDD, and RAM.

Types of shells:

sh Bourne shell (standard) Steve Bourne

csh C-shell Berkley

ksh Korn-shell David Korn

bash Bourne again shell (Linux)

File system

Linux Files:

 Normal files: data files, executables files and text files
 Directory files: are simply containers for files and other directories.
 Special files: represent interfaces with the devices managed by

the system

In the Linux operating system files are stored in a tree-like structure
starting with the root directory as shown in the below diagram. The
Linux file system hierarchy base begins at the root and everything
starts with the root directory.

Page | 7

Linux file system structure

/ - Root directory that forms the base of the file system. All files
and directories are logically contained inside the root directory
regardless of their physical locations.

/bin - Contains the executable programs that are part of the Linux
operating system. Many Linux commands, such as cat, cp, ls,
more, and tar, are locate in /bin

/boot - Contains the Linux kernel and other files needed by LILO
and GRUB boot managers.

/dev - Contains all device files. Linux treats each device as a
special file.

/etc - Contains most system configuration files.

/home - Home directory is the parent to the home directories for
users.

Page | 8

/lib - Contains library files, including loadable driver modules
needed to boot the system.

/media - Directory for mounting files systems on removable media
like DVD-ROM drives, flash drives, …..

/mnt - A directory for temporarily mounted file systems.

/opt - Optional software packages copy/install files here.

/proc - A special directory in a virtual memory file system. It
contains the information about various aspects of a Linux system.

/root - Home directory of the root user.
/run - Gives applications a standard place to store transient files
they require like sockets and process IDs.

/sbin - Contains administrative binary files. (mount, shutdown,
umount, ….).
/srv - Contains data for services (HTTP, FTP, etc.) offered by the
system.

/sys - A special directory that contains information about the
devices, as viewed by the Linux kernel.

/tmp - Temporary directory which can be used as a scratch
directory (storage for temporary files). The contents of this
directory are cleared each time the system boots.

/usr - Contains subdirectories for many programs such as the X
or GUI Window System.

/usr/bin - Contains executable files for many Linux commands. It
is not part of the core Linux operating system.

/usr/include - Contains header files for C programming
languages

/usr/lib - Contains libraries for C programming languages.

Page | 9

/usr/sbin - Contains administrative commands.

/var - Contains various system files such as log, mail directories,
print spool, etc. which tend to change in numbers and size over
time.

Directories can be accessed by their name. Linux uses also the symbols
to represent directories.

Symbols :

. This directory.

~ Home directory.

.. The parent directory.

/ The root directory.

Absolute and relative paths:

Absolute path-name: An absolute path is defined as the specifying
the location of a file or directory from the root directory (/).
To write an absolute path-name:

 Start at the root directory (/) and work down.

 Write a slash (/) after every directory name (last one is optional)

Example:

/user/lib

/etc/network/interfaces

Relative path: relative path is defined as the path related to the
present working directly. It starts at your current directory and never
starts with a /.

Page | 10

User session

login: usernamre<rc>
Password: xxxxxxxxxxxxxxxxx<rc>

If the login or password is not correct the system give you the response:

Login incorrect
Login:username <rc>
Password:xxxxxxxxxxxxxxxx <rc>
username@sysname:~$

If the login is correct the prompt of the user appears in the terminal in a
common format of username@sysname:~$. In this example, the
prompt is displaying the username, the sysname, and if that user is
using the system as a normal user ($) or a super user (#). The user can
now type a program. Once programs terminate, control is returned to
the shell and the user receives another prompt ($), indicating that
another command may be entered.

The super user on a Linux system is called root. Anything that can
be done on system can be done by root.

exit, logout, or Ctrl-d Exits the shell or your current session.

$shutdown –h time “message”

The shutdown command is used for shutting down the system
(poweroff) if you are the super user.

Example:

$shutdown –h now

Page | 11

Login shell startup files:

When you run a login shell it reads and executes a number of
commands from the files on start-up, in the following order:

 /etc/profile

 ~/.bash_profile

 ~/.bash_login

 ~/.profile

When an interactive shell that is not a login shell is started. The shell
in this case reads and executes commands from:

 /etc/bash.bashrc

 ~/.bashrc

When an interactive login shell exits, or a non-interactive login shell
executes the exit built-in command, the shell reads and executes
commands from the file ~/.bash_logout, if it exists.

Page | 12

Information commands
They are commands used by the user to obtain information about the
system.

$date [option] [+format]

The date command displays the current date and time. It can also be
used to set the system date and time. To do this, you need to log in as
the root user. option refers to additional flags that modify the
behavior of the date command, format indicate in which format the
date must be displayed.

Examples:

$ date
Tue Jan 25 14:20:34 EST 2022
$ date +%F
2022-01-25
$ date -u
Tue Jan 25 14:20:34 UTC 2022

$who [option] [filename]

The who command is a simple and effective way to display information
about currently logged-in users.

$cal [option] [[month]year]

The cal command is a calendar command in Linux which is used to
see the calendar of a specific month or a whole year.

Page | 13

Example:
$ cal 4 2010
 April 2010
Su Mo Tu We Th Fr Sa
 1 2 3
 4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
$

$man [option][command]

The man command is used to display the manual pages for other
commands and utilities. It provides detailed documentation about the
usage, options, and functionality of commands. To quit the man page
you must press q.

Manual pages are organized into different sections, each serving a
specific purpose. The primary sections include:

 NAME: Provides the name and a brief description of the command.
 SYNOPSIS: Describes the syntax of the command.
 DESCRIPTION: Offers a detailed explanation of the command’s

functionality.
 OPTIONS: Lists the available command-line options and their

descriptions.
 EXAMPLES: Provides practical examples demonstrating command

usage.
 SEE ALSO: Suggests related commands or resources.

$echo [argument]

echo displays argument to the screen

Page | 14

Example:

$echo Hello World
Hello World
$
$echo "Hello World"
Hello World
$
$echo Hello ; echo World
Hello
World
$

$clear
The clear command clears the screen.

Page | 15

Directory manipulation commands
$mkdir directory

The mkdir command creates a new directory in the working
directory.

$rmdir directory

The command rmdir command removes a directory in the
working directory if it is empty.

$cd directory

The cd command changes the current directory to directory. If you
execute this command without specifying a directory, it changes the
current directory to your home directory.

$pwd

This command displays the path of present working directory.

$ls [option] directory

 ls lists directory contents.

[options]
-a lists all files, including hidden files and directories (their
 name begin with .)
-c lists files in columns
-l lists files with their permissions
-d lists only directories
-l lists files with their i-nodes

Page | 16

The shell has special characters (wildcards) to define search criteria
for file names:

* represents all characters.

? represents a single character.

[...]represents a range of characters.
[!...] Matches any single character that is not in the range of
characters.

To treat *,?,[] as literals in the text and not as wildcards, you can
escape the wildcard by adding ‘\’ before the wildcard.

Examples:

$ls *.cpp
FFT_prog.cpp Spline2.cpp Prog1.cpp
$
$ls *[0-9]
Calendar2024 classe1 classe2 Texte30
$
$ls ??z
Abz
SOz
77z
$

$tree

The tree command-line program is used to recursively list or display
the content of a directory in a tree-like format.

Page | 17

File manipulation commands
$touch file

This command creates a new empty file inside the working directory or
update modification time of the file if it exists.

$cat file1 file2 …

The cat command concatenates and displays files. This is the
command you run to view the contents of a file.

$rm file

rm removes a file.

$rm –rf directory

rm –rf recursively removes the directory and all files and sub
directories in the directory structure.

$mv sourcefile1 destinationfile

mv moves files or directories. If the destinationfile is a directory
sourcefile will be moved into destinationfile. Otherwise
sourcefile will be renamed to destinationfile.

$rename oldname newname

The rename command is used to rename files.

$cp oldfile newfile

The cp command copies oldfile in newfile

$cp file1 file2… directory

In this case cp copies files in the directory.

Page | 18

$ln oldname newname

The ln command is used to create hard or symbolic links to files or
directories. A hard link creates a new name for a file or directory (the
same i-node). A symbolic link (option –s) creates a new file that contains
the path to the original file or directory.

Example:
$ls *.cpp
FFT_prog.cpp Spline2.cpp Prog1.cpp

$ln Spline2.cpp Splinesource.cpp

$ls –i Spline*.cpp
4540031 Spline2.cpp 3540031 Splinesource.cpp
$

$find [directory] [criteria] [command]

The find command is powerful tool used to recursively find files in
directory that match criteria. If no arguments are supplied it find all files
in the current directory.

[criteria]:

-name <filename> searches files with specific name
-user <username> searches files by owner
-group <groupname> searches files by owner
-type <character> searches files by type
-size <n> searches files by size. n represents the number of
blocks (512 bytes)
-inum <n> searches files by inode. n represents the inode number
-mtime <n> Finds files based on modification time. n represents
the number of days ago.
-perm <n> searches files by permissions. n represents permissions
in octal.

Page | 19

[command]:
-print print the pathname of each file found
-exec command {}\; executes a command on each file found.
-ok <command> {}\; execute command on each file with
conversational mode

Examples:

$find . –name *.cpp –print
Displays found files with suffix .cpp

$find . –size 10 –print
Displays found files with the size of 10 block

$find . –size 0 –exec rm {}\;
Removes all empty found files

$find . –type d –ok ls –l {}\;
Displays the contents of all found subdirectories with their permissions in
conversational mode.

$locate pattern
The locate command lists files that match pattern. The locate
command is much faster than find command.

$a2ps -Pprinter textfile

This command prints textfile by named printer.

Page | 20

Working with file contents
$file pathfile

The command file determine the type file of pathfile .

$head file

The head command writes the first ten lines of a file to the screen.

$head –n N file

The head command can also display the first N lines of a file

$tail file

Similar to head, the tail command writes the last ten lines of a file
to the screen

$less file

The command less writes the contents of a file onto the screen a
page at a time.

$more file
Similar to less, the more command is useful for displaying the
contents of the file page by page. To see the next page the user must
use the space bar, or q to quit.

Page | 21

Redirections
Standard input/output

When a user logs into the system three streams are opened and one

number called descriptor is assigned to each of those streams:

standard input : stdin 0 (keyboard where commands are typed)

standard output: stdout 1 (screen were the results of the commands
 are displayed)
standard error : stderr 2 (screen where errors are displayed)

Redirections

In Linux we can redirect the input and the output of commands.

> redirect the standard output to a file, overwriting any existing
 contents of the file. If no file exists, it creates one.

>> redirect the standard output to a file and appends to any existing
 contents. If no file exists, it creates one.

< redirect the standard input from a file to the command preceding
 the less-than sign.

<< redirect the standard input to here-is-document is a way to append
 input until a certain sequence (usually EOF) is encountered.

Page | 22

Examples:

$ls
Student
Professeur
Spline.cpp
$ls > F
$ls
Student
Professeur
Spline.cpp
F
$cat F
Student
Professeur
Spline.cpp
$date >> F
$cat F
Student
Professeur
Spline.cpp
Tue Jan 25 14:20:34 EST 2022
$
$wc –l< F > G wc –l count lines number of F and prints it in file G
$cat G
4
$
$wc << end
a b c d
e f g h
end
2 8 16
$

Page | 23

Pipes

Piping is when you take the output of one command and use it as an
input to another command. The pipe (|) metacharacter is placed
between two commands to achieve this.

$command1 | command2

Pipes are unidirectional and usually used to avoid using temporary files.

Example:

$who|wc –l count the number of users connected to the system

Page | 24

Filters
$sort file

The sort filter sorts the file content in an alphabetical order.

Example:

$cat Fruits
Banana
Apple
Orange
Kiwi
Lemon
Cheery
Avocados
Pear
Peach
$sort Fruits
Apple
Avocados
Banana
Cheery
Kiwi
Lemon
Orange
Peach
Pear
$

$grep ‘string’ textfile

The most common use of grep is to filter lines of text containing (or not
containing) a certain string.

Example:

$cat Fruits
Banana

Page | 25

Apple
Orange
Kiwi
Lemon
Cheery
Avocados
Pear
Peach
$
$grep Pea Fruits
Pear
Peach
$

$wc textfile

wc counts words, lines and characters in the text.

$cut file

The cut filter can select columns from files, depending on a delimiter
or a count of bytes.

Example:

$ls –l |cut –d “ ” –f 1 displays the column of permissions

$tr [option] set1 [set2] < file

tr translate or delete characters in a file. If we don’t pass any options
to tr, it will replace each character in set1 with each character in the
same position in set2.

Page | 26

Example:

$cat Fruits | tr ‘o’ ‘O’
Banana
Apple
Orange
Kiwi
LemOn
Cheery
AvOcadOs
Pear
Peach
$

$uniq file

uniq removes duplicates lines from a file.

Page | 27

User management
In Linux each user is registered in two system files: /etc/passwd and

/etc/group.

The /etc/passwd file

The /etc/passwd file contains basic user attributes. This is an ASCII

file that contains an entry on a single line for each user.

An entry in the /etc/passwd file has the following form:

Name:Password: UserID:GroupID:Gecos: HomeDirectory:Shell

Example:

sara:x:3450:3450: Cadi Ayyad:sara:/bin/bash

$useradd username

The useradd command creates a new user account.

$userdel username

The userdel command deletes a user account.

$usermod username

 The usermod command modifies user account attributes such as
username.

Page | 28

$whoami

The whoami command is used to display the username of the current
user.

$id
The id command will give you your user id, primary group id, and a list
of the groups that you belong to.

$su username
The su command lets you switch to another user's account or execute
commands as a different user.

$sudo command

sudo is a command in Linux that allows users to run commands with
privileges that only root user have.

The /etc/group file

The /etc/group file contains basic group attributes. This is an ASCII file
that contains records for system groups. Each record appears on a
single line and is the following format:

Name:Password:ID:User1,User2,...,Usern

Example:

student:x:3450:sara

$groupadd groupname

The groupadd command creates a new group

Page | 29

$groupdel groupname

The groupdel command removes a group

$groups

The groups command to see a list of groups where the user belongs
to.

The /etc/shadow file

User passwords are encrypted and stored in /etc/shadow. The
/etc/shadow file is read only and can only be read by root.

An entry in the /etc/shadow file has the following form:

Name:Password:Last change:Min age:Max age: warn:inactive:expire:::

Example:

sara:1NAnoMEmP$GgRfy2.YxwJ6Mnb/cDyM3.O/:14564:0:90:7:::

 Username: sara

 Encrypted password: 1NAnoMEmP$GgRfy2.YxwJ6Mnb/cDyM3.O/

 Last password change: 14564 days (since January 1, 1970).

 Minimum password age: 0 days

 Maximum password age: 90 days

 Password warning period: 7 days

 Account Expiration Date: (empty, indicating no expiration)

$passwd username

The passwd command sets and changes passwords for users. For
changing password users will have to provide their old password before
twice entering the new one.

Page | 30

Example:

$passwd
Changing password for sara
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully
$

Page | 31

File permissions

File permissions definition

 Every file or directory within Linux has a set of permissions that control
who may read, write and execute the contents. Each of these
permissions is represented by an abbreviation and has an octal value.

 Abbreviation Octal
value

File Directory

read r 4 The file can be
viewed or
copied.

The contents of
the directory
can be listed

write w 2 Allows the
content of the file
to be modified.

 Files can be
created or
deleted within
the directory.

execute x 1 The file can be
executed (shell
scripts or
executables
only).

 Access to the
directory is
controlled.

The ls –l command lists files and directories of a directory. The
displayed list contains a single detailed information line for each file. It
is organized in nine columns.

Page | 32

Example:

$ls –l
-rwxrwxr-x 1 sara sara 5224 Dec 30 03:22 hello

-rw-rw-r-- 1 sara sara 221 Dec 30 03:59 hello.c

drwxrwxr-x 5 sara sara 1024 Dec 31 14:52 data

$

The first column contains ten characters for each file. The first character
indicates the file type followed by three groups of three characters.

<type><user><group><others>

 - rwx rwx r-x

First
character

File type

- normal file

d directory

l symbolic link

p named pipe

b block device

c character device

s socket

All access restrictions apply to users, only one user is exempt from

access controls: the super user with login: root and UID=0

Page | 33

Changing file permissions

To change the file permissions we use the chmod command. Only the
owner of a file can change the permissions for user (u), group(g), or
others (o), by adding (+)or subtracting(-) the read, write, and execute
permissions.

$chmod [option] permission file

Typically, the chmod command is used in two ways: the symbolic
method and the absolute form.

The first way is the symbolic method, which lets you specify permissions
with combination of abbreviations.

User class Operator Access type

u(user) +(add access) r

g(group) -(remove access) w

o(others) =(set exact access) x

a(all)

Examples:

$chmod u+x F Add the read permission to the user

$chmod u+x F Add the write permission to the group

$chmod o=x F the permissions of others are only set to x

$chmod u+x F Add the x permission to all

Page | 34

The other way to use the chmod command is the absolute form, in
which you specify a set of three numbers that together determine all
the access classes and types. Add the numbers of the permissions
you want to give for each type of users.

Example:

$chmod 664 F 664 = -rw-rw-r--

Default file permissions:

When creating a file or directory, a set of default permissions are
applied. These default permissions are determined by the file creation
mask. The umask command displays or sets the file creation mask
mode.

$umask [-S] [mode]

Sets the file creation mask to mode if specified in octal or symbolic form.
If mode is omitted, the current mode will be displayed. Using the -S
argument allows umask to display or set the mode with symbolic
notation.

An easy way to understand change defaults permissions is to specify
the mask mode in the octal form. The value we pass as an argument
is subtracted from the max/full permission set. There are two full
permission sets:

 File -> The full permission set for a file is 666 (rw-rw-rw-)
 Directory -> The full permission set for a directory is

777(rwxrwxrwx)

Example:

$umask 022 File-> 666-022 = 644 = -rw-r- -r- -

 Directory->777-022=755= drwxr-xr-x

Page | 35

Process control
Process

A process = program in execution + environment

The environment is defined by a set of information provided by the
operating system to the program to be executed correctly. Those
information are:

- the process identifier (PID)
- the parent process identifier (PPID)
- user identifier (UID)
- group identifier (GID)
- working directory
- Priority (NI)
- CPU time taken by the process (TIME)
- process start time (STIME)
- terminal type associated with the process (TTY)

- ……

Process Creation

A new process can be created by the fork mechanism. The new process
consists of a copy of the address space of the original process. Fork
mechanism creates new process from existing process. Existing
process is called the parent process and the process created newly is
called child process. Each process has its own environment, which is
copied from the parent process's environment.

Page | 36

Linux process creation

The system boot process (pseudo-process) has no parent. Its PID is
equal to 0.

The init process is the child of the boot system process. Its PID is
equal to 1. It is responsible directly or indirectly for all process in the
system. It displays login in the screen.

A user connected signifies a process shell is running.

A process can be run in two ways:

Page | 37

Foreground process: Every process when started runs in foreground
by default, receives input from the keyboard, and sends output to the
screen.

Background process: It runs in the background without keyboard
input and waits till keyboard input is required. It is disconnected from
the terminal and cannot communicate with the user.

Adding & along with the command starts it as a background process.

A process in Linux can go through different states after it’s created and
before it’s terminated. These states are:

- Running

- Sleeping

- Stopped

- Zombie

A process in running state means that it is running or it’s ready to run.

The process is in a sleeping state when it is waiting for a resource to
be available.

A process enters a stopped state when it receives a stop signal.

Zombie state is when a process is dead but the entry for the process is
still present in the process table.

Daemon process: daemon process is a process which runs
continuously in background until the system shutdown (for example
kswapd), daemon process usually starts with the system boot up and
unlike other process it does not respond to signals from the keyboard.

Page | 38

Process management commands

$ps [option]

The ps command can be used to list all the running processes.
$ps
 PID TTY TIME CMD
16524 pts/0 00:00:00 bash
17319 pts/0 00:00:00 ps
$

$top

The top command is used to show all the running processes within
the working environment of Linux.

$jobs [option]

The jobs command lists all currently running background jobs.

$kill [-signal number] PID

The kill command terminates a process. The process receives a
signal from the kill command. There are numerous signal types that
you can use.

$sleep <nombre>[suffix]

The sleep command is used to delay the execution of scripts or
commands for a specified amount of time. The default delay time si in
seconds and you can set it in minutes (m), hours (h), and days (d).

$sleep 5;date
Sat Apr 17 13:08:27 CEST 2024
$

Page | 39

$nice –n <–nice value> <command>

The nice command starts a new process and assigns it a priority nice
value at the same time. Nice value ranges from -20 to 19, where -20
is of the highest priority. 0 is the default value.

$nohup command [option] &
The nohup command is used to run a command in such a way that it
continues to run even after you log out or close the terminal.

Once a job is started or executed using the nohup command, stdin will
not be available to the user and nohup.out file is used as the default
file for stdout and stderr. If the output of the nohup command is
redirected to some other file, nohup.out file is not generated.

$time [option] command

The time command can display how long it takes to execute a
command. This command displays real time (the time from start to finish
of the call), user time (amount of CPU time spent in user mode) and
system time (amount of CPU time spent in kernel mode).

Example:

$time date
Sat Apr 17 13:08:27 CEST 2010
real 0m0.014s
user 0m0.008s
sys 0m0.006s
$

$at [option] <runtime> command

The at command is capable of executing a command at a specified
time and date, or at a given time interval. We can use minutes, hours,
days, or weeks.

Page | 40

Examples:

$at 16:00 command
$at 17:15 Fri command
$at noon command
$at noon
>command1
>command2
>command3
…
Ctrl+D
$

$df [option]

The df command shows the amount of disk space available being
used by the file systems.

$free [option]

The free command shows the free space and used space of the
memory RAM in the system.

$du [option] [directory/file]
The du command is a powerful utility that allows users to analyze
and report on disk usage within directories and files.

Page | 41

Environment variables
In Linux environment variables are a set of dynamic named values,
stored within the system that are used by applications launched in shell.
These variables have a name and their respected value. They allow the
user to customize how the system works and the behavior of the
applications on.

Common environment variables:

EDITOR The program to run to perform edits.
HOME The Home directory of the user.
LOGNAME The login name of the user.
MAIL The location of the user's local inbox.
OLDPWD The previous working directory.
PATH A colon separated list of directories to search for
commands.
SHELL The path to the current user shell
PS1 The primary prompt string.
PWD The present working directory.
USER The username of the user.

$echo $VARIABLE_NAME
echo displays the specified environment variable.

Example:
$echo $HOME
/home/sara
$

$printenv [VARIABLE_NAME]
printenv displays all or the specified environment variables.

Page | 42

Example:

$printenv HOME
/home/sara
$echo $HOME
/home/sara
$printenv
TERM=xterm-256color
SHELL=/bin/bash
USER=sara
PATH=/usr/local/bin:/usr/bin:/bin
MAIL=/var/mail/sara
PWD=/home/sara
LANG=en_US.UTF-8
HOME=/home/sar
…
$

$env [option] [Variable= value]….[Command]

The env command displays the current environment or sets the
environment for the execution of a command.

$export Variable=[value]

The export command is used to set or export variables to child processes.
The variables that are not exported are called local variables. The
export command allows variables to be used by subsequently
executed commands.

Example:

$ TUTORIAL=Linux
$echo $TUTORIAL
Linux
$bash
$echo $TUTORIAL
$exit
exit

Page | 43

$export TUTORIAL
$bash
$echo $TUTORIAL
Linux
$exit
exit
$
In the above example TUTORIAL was defined in the current
environment. When you start a child process it inherits all the
environment variables that were exported in your current environment.
Since TUTORIAL was not exported it was not set in the spawned bash
shell. When you have exported TUTORIAL you saw that it was indeed
available in the child process.

$export –p
This command lists all names that are exported in the current shell.

$set [option] [arguments]

The set command displays local and environment variables.

$unset VARIABLE_NAME

The unset command deletes shell and environment variables.

Example:

$echo $TUTORIAL
Linux
$unset TUTORIAL
$echo $TUTORIAL
$

$history
histoy displays a list of commands in the shell history.

$alias [name=[value]]

Page | 44

alias lists or creates aliases. If no arguments are provided the
current list of aliases is displayed.

Example:

$ls -l
total 4
-rw-r--r-- 1 sara sara 221 Nov 13 11:30 file.txt
….

$alias ll='ls -l'
$ll
total 4
-rw-r--r-- 1 sara sara 221 Nov 13 11:30 file.txt
…..
$

Page | 45

Basic Linux tools
$compress [option] Textfilename

This command compress the Textfilename and place it in a file
called Textfilename.Z

$uncompress [option] Textfilename.Z

This command uncompress the file Textfilename.Z .

$gzip [option] Textfilename

This command gzip zip the file Textfilename and place it in a
file called Textfilename.gz.

$gunzip [option] Textfilename.gz Directory

guzip is used to unzip the file Textfilename.gz

$tar -cvf Archivename.tar Directory

The tar program compress a Directory in the file
Archivename.tar
-c create archive
-v verbose i.e display progress while creating archive
-f archive file name
-x extract archive
-z compress archive using gzip program.

Page | 46

$tar -cxf Archivename.tar

The tar program extracts an archive in the current directory.

$gcc [option] source.c

The gcc command is used to compile a source files written mainly
in C or C++ language. The output file obtained after compiling the
source file is named a.out if no name is specified before. The
output file can be executed using ./a.out.

Example:

$gcc –o hello hello.c
$./hello
Hello World
$

$nano hello.c

nano is a command line text editor like vi, vim, et emacs

