Particle Detectors

Lecture at the African School for Fundamental Physics and Applications, July 2024 Marrakesh, Morocco

A Makes and annu mark had

Advanced detectors and some new developments

Lecture IV

Université

de Strashourg

Particle Detectors

Lecture at the African School for Fundamental Physics Marrakesh, Morocco, July 2024

Goal this lecture:

to discuss some examples

Looking at recent technological developments

infinite number of ideas for new detectors

Lecture IV

- LHC detectors
- Recent developments of CMOS pixel detectors
- Fast detectors for time of flight measurements
- High granularity calorimeters
- High purity segmented Ge-detectors for Nuclear physics
 - A glimpse at cryogenic detectors for particle and astrophysics

Don't forget the Exercises!!!!!

The LHC Large Hadron Collider 7 TeV protons # 7 TeV protons

Large Hadron Coll

Proton beams circulate 11,245 times/sec

100's of millions of proton-proton collisions/second

65 pp collisions every 25 ns

new particles are created (E = mc

ucas Taylor, 2012

The LHC Large Hadron Collider TeV protons + 7 TeV protons

rculate 11,245

Large HadronCollic

times/sec

100's of millions of proton-proton collisions/second

65 pp collisions every 25 ns

1 E (0 a

new particles are created (E = m

CMS Centre @

CMS

proid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Centre

ATLAS superimposed to

How huge are ATLAS and CMS?

	<u>ATLAS</u>	<u>CMS</u>
Overall weight (tons)	7000	12500
Diameter	22 m	15 m
Length	46 m	22 m
Solenoid field	2 T	4 T

Magnetic field configurations:

- Large homogenous field inside coil
- weak opposite field in return yoke
- Size limited (cost)
- rel. high material budget

Examples:

- DELPHI (SC, 1.2T)
- L3 (NC, 0.5T)
- CMS (SC, 4T)

- + Rel. large fields over large volume
- + Rel. low material budget
- non-uniform field
- complex structure

Example:

 ATLAS (Barrel air toroid, SC, 0.6T)

Université

Compact Muon Solenoid

Ulrich.Goerlach@iphc.cnrs.fr, ASP Particle detectors

Université

Transverse slice through CMS detector

Energy / momentum resolution

CMOS Pixel detectors

- Powerful vertex detectors
- For high resolution tracking
- Industrial processes
- Very small material budget (thin detectors)
 - Remember multiple scattering !
 - Photon conversion to e⁺ e⁻
 - Bremsstrahlung of electrons

MAPS = Monolithic Active Pixel Sensors

Classical Hybrid Pixel detector

DELPHI-LEP-CERN

Pixels : 330x330 μm 152 modules, 1.22 M channels

Université

de Strasbourg

CMS Pixels

Université de Strasbourg

CMOS (Complementary metal-oxide-semiconductor) Detectors

Avantages of CMOS VLSI technology:

- µ-circuits integrated but still
- 100% fill factor
- Small sensitive volume (\approx épitaxial layer) $\approx 10~\mu m$ thick detectors can be very thin
- Industrial production standards \Rightarrow « modestes » costs,

Short coming:

Circuitry of the electronic circuit is limited to only NMOS transistors.

Signal is created in p-epitaxial layer (lower doping):

 $\textbf{Q} \approx \textbf{80 e-h} \ / \ \mu m \Rightarrow \textbf{signal} < \textbf{1000 e^-}$

e⁻ diffusent (thermiquement) to the jonction helped by reflexions at the boundaries formed by the p-well and the substrat (higher doping)

Diffusion time < 100ns

Charge is collected by the diode formed by the jonction n-well/p-epitaxial layer

Université de Strasbourg

.

Characteristics:

- Pixel detector could be made very thin, low material budget!
- . Thin epitaxial layer → Small signals
- Small pixel size possible (10x10µm²) to obtain very good spatial resolution, but then limited space for electronic circuit available
- (Only n-well Transistors)
- Simple on pixel-cell electronics \rightarrow slow Read Out (next slide)

Rolling shutter readout concept where the integrated signal is read out and reset row by row:

- In this case all pixel outputs in the column are connected.
- Only one row of pixels is selected at a time for readout and/or reset.
- The column outputs can be multiplexed at the periphery in case of limited analog outputs.
- The recorded values can be digitized by external or internal components

Tomasz Hemperek, PhD thesis

Université

de Strasbourg

Université

de Strasbourg

courtesy of Ch. Hu-Guo / TWEPP-2010

•

•

•

•

•

•

Developments to improve performance for different experiments

- Several labs develop CMOS pixel sensors : Italy (INFN, Univ.), UK (RAL), CERN, France (IPHC, Saclay), USA, ...
- Increase and speed up collected charge by drift in depleted silicon
- Use of high resistivity silicon wafers
- Use of different (more complicated) CMOS processes
- Change layout to use the complete design potential (use of p-MOS transistors)
- Speed up Read Out architecture
- Large area (wafer size) devices (stitching)
 - Curved thin detector layers without additional support material

Depleted Monolithic Active Pixels (HV-MAPS or D-MAPS)

Figure 1-4 Cross section of a depleted MAPS detector with fully depleted bulk with backside contact where charge is collected by drift.

Goals:

- large signals
- fast charge collection by drift in a 50µm – 200µm thick depleted layer
- the use of PMOS and NMOS transistors in the pixel cell (full CMOS),
- The entire CMOS pixel electronics is placed inside the deep n-well.
- This way, the pixel contains only one deep n-well without any inactive
 secondary wells that could attract the signal charge and cause detection inefficiency.
- it is reversely biased with respect to with the substrate from the front side.
- By applying high voltage reverse bias (>60V) it is possible to create a depletion depth of a few to tens of microns
- implementation in a commercial technology

Very Deep Nwell (VDN) P-substrate

Depleted MAPS, logic inside collecting node Many different designs are being Many different and tested explored and tested

Depleted MAPS, HV-SOI

(BOX = buried layer of silicon oxide)

Depleted MAPS,

Logic located outside collecting node

Building Vertex detectors with MAPS STAR experiment at RHIC, BNL

First large scale application of MAPS in an experiement

2 layers of MAPS for pixel vertex detector

(a) chip layout

(b) functional diagram of the chip

M. A. Szelezniak PhD thesis 2008

Figure 6.3: MIMOSTAR chip - layout, (a), and a functional schematic diagram, (b).

STAR experiment at RHIC, BNL

First large scale application of MAPS in an experiement

- 2 layers of MAPS for pixel vertex detector

356 M pixels in 2 layers ~0.16 m² R=28mm, 80mm Pixels size 20.7x20.7 μ m² X/X₀ = 0.39% for layer 1 Integration time 185.6 μ s

carbon fiber sector tubes (~ 200 µm thick)

tonnes.

ALICE

Université ||| |

Building Vertex detectors with MAPS ALICE (LHC-CERN)

A Large Ion Collider Experiment

ITS2 layout

- 7 layers (inner/middle/outer): 3/2/2 from R = 23 mm to R = 400 mm
- 192 staves (IL/ML/OL): 48/54/90
- Ultra-lightweight support structure and cooling

10 m² active silicon area, 12.5×10⁹ pixels

CMOS MAPS:

Spatial resolution $\approx 5 \ \mu m$

Integration time < 10 µs

high-resistivity silicon epitaxial layer

Université

UNIVERSITY OF

ALICE: MAPS OXFORD

- Improve impact parameter resolution by a factor of ~3 in $(r-\phi)$ and ~5 in (z)
 - -Closer to IP: 39 mm \rightarrow 21 mm (layer 0)
 - -Reduce beampipe radius: 29 mm \rightarrow 18.2 mm
 - -Reduce pixel size: (50 μ m x 425 μ m) \rightarrow $O(30 \ \mu m \ x \ 30 \ \mu m)$
 - -Reduce material budget: 1.14 % $X_0 \rightarrow$ 0.3 % X₀ (inner layers)

- High tracking efficiency and p_T resolution
 - Increase granularity and radial extension \rightarrow 7 pixel layers
- Fast readout of Pb-Pb interactions at 50 kHz (now 1kHz) and 400 kHz in p-p interactions
- Rad hard to TID: 2.7 Mrad, NIEL: 1.7 x 10¹³ 1 MeV n_{eq} cm⁻² (safety factor 10)
- Fast insertion/removal for maintenance

Technology now used in other applications

Université

de Strasbourg

Building Vertex detectors with MAPS ALICE (LHC-CERN)

A Large Ion Collider Experiment

ALPIDE — the Monolithic Active Pixel Sensor (MAPS) for ITS2

~30 um collection electrode

2 x 2 pixel volume

Artistic view of a SEM picture of ALPIDE cross section

Developed within the ITS2 project

Technology

- TowerJazz 180 nm CMOS Imaging Process
- High-resistivity (> $1k\Omega$ cm) p-type epitaxial layer (25 μ m) on p-type substrate
- Small n-well diode (2 μm diameter), ~100 times smaller than pixel (~30 μm) \rightarrow low capacitance (~fF)
- Reverse bias voltage (-6 V < V_{BB} < 0 V) to substrate to increase depletion zone around NWELL collection diode
- Deep PWELL shields NWELL of PMOS transistors → full CMOS circuitry within active area

Key features

- · In-pixel amplification and shaping, discrimination and Multiple-Event Buffers (MEB)
- In-matrix data sparsification
- On-chip high-speed link (1.2 Gbps)
- Low total power consumption < 40 mW/cm²

ESE Electronics seminar by T. Kugathasan

Capture d'écran

ALICE ITS2 | CERN Detector Seminar | October 21st, 2022 | Felix Reidt (CERN)

ALICE (LHC-CERN) ITS 2

A Large Ion Collider Experiment

ITS3

de Strasbourg

Université

Magnus Mager (CERN) | ALICE ITS3 | CERN detector seminar | 24.09.2021 | 9

Layer assembly

3-layer integration successful!

Magnus Mager (CERN) | ALICE ITS3 | CERN detector seminar | 24.09.2021 | 26

ALICE

Development of Interconnects

Bonding on curved chips and circuits

Procedures, jigs, mandrels, integration

with bonding machine

ALICE

ITS3

Université

de Strasbourg

Stitching – MOnolithic Stitched Sensor prototype

our target: \sim 280 x 94 mm \rightarrow wafer scale sensor \rightarrow stitching needed: a true single piece of silicon

25

CMS Experiment at the LHC, CERN Data recorded: 2016-Oct-14 09:56:16.733952 GMT Run / Event / LS: 283171 / 142530805 / 254

First Tracker layer R~3cm ~0.7 hits/BX/mm2 = 2.8 GHz/cm2

3D sensors

- Advantages
 - Decouple thickness from electrode distance
 - Lower depletion voltage, less power dissipation
 - Smaller drift distance, less trapping
- Disadvantage
 - More complex production process
 - Lower yield, higher costs
 - Higher capacitance (more noise)

- 3D is the most radiation hard technology to-day
- Similar performance than planar sensors, but less demanding in terms of bias voltage and cooling.
- For the HL-LHC we need :
 - More radiation hard (innermost layer(s), 1-2E16 n_{eq}/cm²)
 - Smaller pixels (compatible with new readout chip, $50 \mu m 25 \mu m$)
 - Thinner (reduce cluster size/merging, 200 μm 100 μm)

3D Silicon

4 Mauro Dinardo, Università degli Studi di Mila Capture d'écran

Pixel sensors

CMS Pixel upgrade for HL-LHC

- 150 μm bulk thickness, 25x100 μm² pixels cells everywhere
- Planar n-in-p sensors:

Université

de Strasbourg

- Bias up to 600V and spark protection between ROC and sensors
- Three vendors qualified in the Market Survey, Tender being closed in these days
- Bump bonding pattern is 50x50 μm²
 - Cross-talk issues studied and minimized (i.e. bitten implant on planar)
- 3D sensors for barrel L1
- Short drift distance ~50 μm (3D) vs 150 μm (Planar)
- Slim edges (150 μm) vs planar (~450 μm) \rightarrow smaller dead zone
- Sensors produced at FBK on 6" wafers and CNM on 4" wafers

No n⁺ implant under metal to reduce x-talk

4D Detectors (x,y,z and time)

Tracking z-resolution can be larger than vertex-separation: Ambiguous Track-to-vertex association

N. Cartiglia, INFN, Hiroshima Conference 2017

Timing at each point along the track:

- Massive simplification of patter recognition
- Faster tracking algorithm
- Even in very dense environments by using only "time compatible points »

41

The Time Structure of Crossing Bunches

- In addition to extent in z, there is an extent of the bunch crossing in time
- For nominal HL-LHC optics the core of the bunches pass through each other in ~300 ps
- When bunches overlap entirely, achieve maximum spread in z and maximum pileup density
- Normally an experiment only sees the integral of this distribution over time

🗲 Fermilab

resolution significantly smaller than beamspot spread so that tracks cluster in time.

U	n	i	versité						
			de Stra	s	Ŀ	00	u	rg	

Figure 1.2: Left: Simulated and reconstructed vertices in a 200 pileup event assuming a MIP timing detector covering the barrel and endcaps. The vertical lines indicate 3D-reconstructed vertices, with instances of vertex merging visible throughout the event display. Right: Rate of tracks from pileup vertices incorrectly associated with the primary vertex of the hard interaction normalized to the total number of tracks in the vertex.

Using the Time-at-vertex in Reconstruction

- With the track-time at distance of closest approach
 it becomes possible to cluster tracks in 2D into vertices
- This significantly increases the distance between vertices and hence makes them harder to confuse
- CMS Simulation <u> = 200 Simulated Vertices **3D Reconstructed Vertices** 0.6 4D Reconstructed Vertices 4D Tracks 0.4 0.2 0 -0.2-0.4-10 -5 5 10 z (cm)

CMS Simulation

<µ>	4D Merged Vertex Fraction	3D Merged Vertex Fraction	Ratio of 3D/4D
50	0.5%	3.3%	6.6
200	1.5%	13.4%	8.9

🛟 Fermilab

- Expect 5-10x improvement in vertex merging rate (achieved 9x)
- Expect 3-5x reduction in track-vertex association false positives (achieve ~3x)

lutetium-yttrium orthosilicate crystals activated with cerium (LYSO:Ce) read out with SiPMs. The

The barrel timing layer will cover the pseudorapidity region up to lhl = 1.48 with a total active surface of about 40 m2.

The fundamental detecting cell will consist of a thin LYSO:Ce crystal with about 12→12 mm2 cross-section coupled to a 4x4 mm2 SiPM.

The crystal thickness will vary between about 3.7 mm (lhl < 0.7) and 2.4 mm (lhl > 1.1),

Figure 2.4: Top left: Set of $11 \times 11 \times 3 \text{ mm}^3$ LYSO:Ce crystals with depolished lateral faces, before and after Teflon wrapping. Bottom left: $6 \times 6 \text{ mm}^2$ HPK SiPMs glued on LYSO crystals. Right: Crystal+SiPM sensors plugged on the NINO board used for test beam studies.

LGADs

Nicolo Cartiglia

 Achieve ≈10 ps timing resolution with Si detectors using charge amplification with Low-Gain Avalanche Detectors

Lots of R&D, DC and AC coupled, chip design, test beams Both ATLAS and CMS but also for Higgs factories etc

HL-LHC necessitates upgrades to the CMS detector

3

Thorben Quast | Pisa Meeting 2022, 25 May 2022

Université

de Strasbourg

Université

Technology Choices

Dissipated power ~250 kW

Removed with two-phase CO2 cooling operated at -35 C

Geometry slightly adjusted since the <u>TDR release</u>

Idea: HGCAL will be 3D imaging calorimeter with timing capabilities 8

Lateral Structure, Cassettes

- Silicon and scintillator modules assembled into
- cassettes
- Supported and cooled by copper cooling plate
- Data from modules collected by motherboards
- Cassettes house all services and DC2DC converters

Silicon Modules

- Glued stack of baseplate, sensor and readout hexaboard
- baseplates are made of CuW in CE-E, PCB in CE-H
- Relative alignment within
 ~50um achieved with gantry based automated assembly
- Electrical connections are done with wire-bonds

Automated module assembly with gantry

HGCAL for the High Luminosity-LHC is a very complex instrument

High purity segmented Ge-detectors for Nuclear physics

PHOTO-ELECTRIC EFFECT

Université

de Strasbourg

Figure 1.3: Effect of interaction processes on the predicted detector response function for mono-energetic γ -rays with $h\nu_0 >> 1.022 MeV$.

COMPTON SCATTERING

PAIR CREATION
(e)

 $h\nu_0$

Large volume semiconductor detector

Semi-conductor detectors

			Mobility (velocity/ <i>E</i>)					Z [a.m.u]
Material	E _g [eV]	w [eV]			$\tau_{e}[s]$	τ _h [s]	density	
			μ_{e}	μ_h			g/cm ³	
			[cm²/Vs]	[cm²/Vs]				
С	5.5	13	1800	1200	2 10 ⁻⁹	2 10 ⁻⁹	3.515	6
(diamond)								
Si	1.12	3.61	1350	480	5 10 ⁻³	5 10 ⁻³	2.33	14
Ge	0.67	2.98	3900	1900	2 10 ⁻⁵	2 10 ⁻⁵	5.32	32
GaAs	1.42	4.70	8500	450	5 10 ⁻⁸	5 10 ⁻⁸	5.32	31,33
CdTe	1.56	4.43	1050	100	1 10 ⁻⁶	1 10 ⁻⁶		48,52
HgI ₂	2.13	4.20	100	_	1 10 ⁻⁶	2 10 ⁻⁶		53,80

$$\frac{dN}{N} = \frac{1}{\sqrt{N}} ; E \sim N; \quad N = \text{numb. of (e,h)}$$

Parameters Values for Materials Used in Fabricating Semiconductor Radiation Sensors

[3]

Ulrich.Goerlach@iphc.cnrs.fr, ASP Particle detectors

Université

D

Large volume detectors

epletion zone

$$d|_{V_{bias}} = x_n + x_p = \sqrt{\frac{2\varepsilon(\phi_0 + V_{bias})(N_A + N_D)}{e}} \frac{(N_A + N_D)}{N_A N_D}$$

$$N = N_A \ll N_D; \ \phi_0 \ll V_{bias}$$

$$d|_{V_{bias}} = \sqrt{\frac{2\varepsilon V_{bias}}{eN}}; \ N = N_A \text{ ou } N_D = \text{net impurity of material}$$

$$N = 10^{+13} atoms / cm^3; \ V_{bias} = 3000 Volt;$$

$$d|_{V_{bias}=3000 Volt} = 2.2 mm$$

High purity :

$$N_{A} ou \ N_{D} = 10^{+10} atoms / cm^{3}; \ V_{bias} = 1000Volt; \ \varepsilon = 16 \cdot \varepsilon_{0};$$

$$\varepsilon_{0} = 8.85 \cdot 10^{-12} \ F / m; \ F = Coulomb / Volt; \ e = 1.6 \cdot 10^{-19} \ Coulomb$$

$$d\Big|_{V_{bias} = 1000Volt} = 1.8 \ cm$$

$$d\Big|_{V_{bias} = 2000Volt} = 2.5 \ cm$$

$$d\Big|_{V_{bias} = 3000Volt} = 3.1 \ cm$$

.

High Purity Germanium

Energy measurement of gammas $(|N_A-N_D| \cong 10^{10} \text{ cm}^{-3}):$ $E_{gap} = 0.74 \text{ eV} \Rightarrow$ operation temperature : T = 77K

w_{eh}=2.98 eV

⇒excellent resolution

- $E_{\gamma} = 1$ MeV, $dE \cong 1$ keV
- "High" photo peak efficiency

62

Germanium detectors

Operation temperature: T= 77K (Liquid Nitrogen)

Configuration : co-axial

Electronics is mounted very close to the Crystal

Université

Ulrich.Goerlach@iphc.cnrs.fr, ASP Particle detectors

incidence : système anti-Compton

The idea of γ-ray tracking

Figure 1.12: Doppler broadening

Previously scattered gammas were wasted. Technology is available now to track them.

Ge Tracking Array

Combination of:

segmented detectors
digital electronics
pulse processing
tracking the γ-rays

What is AGATA?

definition: NIM de8 (2012) 26		t nals • So ma • So ma • So ma • So • So ma • So • So	 13 Countries, 14 Countries, 15 Countries, 16 Countries, 17 Countries, 18 Countries, 19 Countries, 19 Countries, 10 Countries,	> 40 Institutions
Rates	3 MHz (Mγ= 1)	300 kHz (Mγ= 30)	180 hexagonal crystals:	3 shapes
Efficiency	43% (Mγ= 1)	28% (Mγ = 30)	3 fold clusters (cold FET)	: 60 all equal
Peak/Total	58% (Mγ= 1)	49% (Mγ = 30)	Inner radius (Ge):	23.5 cm 🚺

Pea	ak/T	otal	
_	_	_	

PHC

furidisciplinaire Hubert CUREN

Angular Resolution

Dr Helen Boston

~1° ~6keV

FWHM (1MeV), v/c = 50%

36-fold segmentation

Amount of germanium:

67

AGÂTA

WANCED GAMM

362 kg

6480 segments

Segmentation of High Purity Ge crystal

Divide the electrodes on the surface of the detector

Weighting field shows how the segmentation works

Figure 2.2: Weighting-potential distributions of the Core (a) and of segment A (b). Calculation conditions are the following: readout electrode at unit potential, all other electrode at zero potential, no space charge inside the material.

$$\begin{split} Q(t) &= -q \cdot \left[\phi_w\left(x_h(t)\right) - \phi_w(x_e(t))\right] \\ i(t) &= q \cdot \left[E_w(x_h(t)) \cdot v_h(t) - E_w(x_e(t)) \cdot v_e(t)\right] \end{split}$$

 $\phi_{\rm w}$ and $E_{\rm w}$ are the weighting potential and the weighting field.

Michaël Ginsz, PhD thesis 2017

Université

de Strasbourg

Dr Helen Boston

Pulse Shape Analysis Concept

Dr Helen Boston

AGÂTA

Pulse Shape Analysis Concept

Dr Helen Boston

Dr Helen Boston

Dr Helen Boston

Dr Helen Boston

Dr Helen Boston

Dr Helen Boston

Evolution of AGATA

They had about 60 detectors for AGATA by end 2023

Evolution of AGATA

Conclusions (nuclear detectors)

- High Z Scintillators are used for gamma spectroscopy, particular for anti Compton spectrometers
- Low Z (organic)-Scintillators used for particle detection/stopping
- Semiconductors: Si used for charged particle spectroscopy (alpha, protons, ... Fission fragments)
- Semiconductors: HP-Ge for high resolution and high efficient Gamma spectroscopy

Dark Matter ?

Dark Matter Evidence

... non-atomic (if not PBH) - non-luminous - stable - neutral - massive - non-relativistic ...

22.08.2023 - LUTZ ALTHÜSER - EPS-HEP 2023 - First results on Nuclear Recoil events

Université

de Strasbourg

3

Université

nundert? ah

Université de Strasbourg

A double phase liquid xenon TPC

Dark Matter and Axion Searches - Belina von Krosigk

Most recent results >1 GeV: LZ, XENONnT

LZ: 5.5 t fiducial mass, LXe

XENONnT:

4.2 t fiducial mass, LXe

A double phase liquid xenon TPC

Latest results from XENONnT

Working principle of dual-phase liquid noble gas time projection chambers (TPCs)

- Prompt light signal (S1)
- Secondary light in GXe from drifted charges (S2)
- Energy reconstruction using the combined S1 and S2 signal
- Position reconstruction
 - z from S1-S2-delay time
 - x-y from S2 hit pattern

Background discrimination

Identification of recoil species by S2/S1 ratio

> from ⁶⁰Co γ -ray source and ²⁴¹AmBe neutron source

selecting single scattered events

E. Aprile et al. (XENON100), Phys. Rev. Lett. 105, 131302 (2010)

Université

de Strasbourg

Ulrich.Goerlach@inhc.cnrs.fr. ASP Particle detectors

Phys. Rev. Lett. 131, 041003 (2023) [2303.14729] 23

Operation temperatur of 10 milli-Kelvin

Ge ionization – phonon detectors I

bolometer mass: 320 g

> 100nm sputtered AI layer as electrode (center + guard ring)

> 60nm Ge(Si) amorphous layer below electrode

NTD temperature sensor glued on sputtered gold pad on guard ring electrode

> electrical contacts/heat links via gold wire bonding ($Ø=25\mu m$)

operating temperature T=17.00±0.01mK

Ulrich.Goerlach@iphc.cnrs.fr, ASP Particle detectors

Université

Université

de Strasbourg

Université

Ex. of instrument : EDELWEISS-III

36 * FID-800

+ Ge 820 g

- High impedance Ge-NTD thermometer (neutron doped Ge crystals)
- 4 sets of AI electrodes for charge collection
 - Simultaneous measurement of ionization & heat
 - Background active rejection

Running 2013-2023

- + 10mK Cryostat + 40 tons of shielding (PE + Pb) @ LSM
- + 3000 coax. cables (6 km)
- + 350 Si-JFET transistors@ 120K
- ★ 36*2 « Bolometers Boxes » @ 300K

The CRESST experiment

Protected from backgrounds by layers of shielding (PE, Pb, Cu) and an active muon veto

CRESST-III detectors

- Cryogenic scintillating detectors
- Measure phonon and light
- CaWO₄ traditionally used as target material
- Capable of using range of target materials (~ 2 × 2 × 1 cm³): CaWO₄ (24 g), Al₂O₃ (16 g), LiAlO₂ (10 g), Si (9 g)
- Thin light detector (2×2×0.04 cm³): Si or silicon-on-sapphire (SOS)
- Sensors: W-TES directly evaporated on the crystals
- Particle interaction→energy deposition→temperature rise→resistance change read out by SQUID

Université

de Strasbourg

Samir Banik | TU Wien, HEPHY, EPS 2023

CRESST-III detectors

- Cryogenic scintillating detectors
- Measure phonon and light
- CaWO₄ traditionally used as target material
- Capable of using range of target materials (~ 2 × 2 × 1 cm³): CaWO₄ (24 g), Al₂O₃ (16 g), LiAlO₂ (10 g), Si (9 g)
- Thin light detector (2×2×0.04 cm³): Si or silicon-on-sapphire (SOS)
- Particle interaction → energy deposition → temperature rise → resistance change read out by SQUID
- Seperation between e/
 packground and nuclear recoil from two channel measurements

6/15

Université

de Strasbourg

Université de Strasbourg

Dark matter searches

Dark Matter and Axion Searches - Belina von Krosigk

Mass ranges of <u>some</u> beyond SM particles

UNIVERSITÄT HEIDELBERG

ZUKUNFT SEIT 1386

Université de Strasbourg

Axions and Axion-like particles (ALPs)

- Proposed as solution to strong CP problem
- Motivated by astrophysical observations:
 - Stellar evolution
 - TeV transparency
- Very weak interaction, good candidate for dark matter
- The main mechanism for detection of light weight axions is through its coupling to photons

DESY. | A TES for ALPS II - Status and Prospects | José A. Rubiera Gimeno, 21.08.2023

Light Shining through a Wall (LSW)

Model independent approach, independent of dark matter paradigm

Axions and Axion-like particles (ALPs)

Any Light Particle Search II

The axion factory

DESY. EPS 2023 | Axion and ALP search with the Any Light Particle Search II experiment at DESY | 24th Aug. 023 | Isabella Oceano

6

Any Light Particle Search II (ALPS II)

Initial Science Run started on 23.05.2023

AL PS II might produce a rate in the order of 1 reconverted photon per day

de Strasbourg

Université

TES Single Photon Detection

- Cryogenic microcalorimeters
- Operated at superconducting transition temperature
- Read-out using Superconducting Quantum Interference Devices (SQUIDs)

1064 nm Pulse, Free Fit dof = 4.83E + 03/1894 χ_r^2 : 2.55E+00 Amplitude: 1.74E-02 +- 1.09E-04 V Decay Time: 5.93E-06+- 6.85E-08 s _2 Rise Time: 2.39E-07+- 7.95E-09 s Constant: 8.08E-04 +- 5.75E-05 V Data Pulse height: -2.94E-02 +- 1.44E-03 V Fit 0.5 1.0 1.5 0.0 2.0 2.53.0 3.5 $\times 10^{-5}$ Time in s

Courtesy of Rikhav Shah

- K. Irwin, G. Hilton, Transition-edge sensors, in: Cryogenic Particle Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 63–150, http://dx.doi.org/10.1007/10933596_3.
 - Incident photon leads to temperature increase
 - Small temperature increase leads to large variation in resistance
- Change in resistance is measured in changing current
- Signal is proportional to photon energy
- Energy resolution $\leq 10\%$
- DM signal expected to look like photon

Drawings courtesy of Katharina-Sofie Isleif

Page 15

DESY. | Direct dark matter searches using ALPS II's TES detector | Christina Schwemmbauer | EPS-HEP Hamburg 2023 | 24/08/2023

60

Requirements for ALPS II:

- Sensitivity to very low rates (1-2 photons a day)
- Low energy photon detection (1064nm equivalent to 1.16eV)
- Long term stability (~20 days)

- Low background rate: < 7.7 10-6 cps
- ~ 1 photon (1064nm–like) every 2 days
- High detection efficiency

TES as Dark Matter Detector Current Challenges

TES chips and module

Résumé

- This was a very short and limited snapshot of some of the many ideas and developments on detectors.
- There are many more ideas for sensors and experiments
- Just to mention a few:
 - Kinematic Inductance Detector (KID)
 - Superconductor QUantum Interference Device (SQUID)
 - Nano-dots, nano wires, graphene.....

Ulrich.Goerlach@iphc.cnrs.fr, ASP Particle detectors

Université

de Strasbourg

Ulrich.Goerlach@iphc.cnrs.fr, ASP Particle detectors

Université

de Strasbourg