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• Emittance

• Phase space

• Acceleration

– Cyclotrons

– RF cavities

• Phase stability

Overview
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Last Time
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𝑥

𝑠

𝜃

𝑥 𝑠 = 𝑥0𝑐𝑜𝑠 𝐾𝑠 +
𝑥′0

𝐾
𝑠𝑖𝑛( 𝐾𝑠)

𝑥′ 𝑠 = −𝑥0 𝐾𝑠𝑖𝑛 𝐾𝑠 + 𝑥′0𝑐𝑜𝑠( 𝐾𝑠)

𝑀 =
𝑐𝑜𝑠 𝐾𝑠

𝑠𝑖𝑛( 𝐾𝑠)

𝐾

− 𝐾𝑠𝑖𝑛 𝐾𝑠 𝑐𝑜𝑠( 𝐾𝑠)

𝑥
𝑥′ 𝑠

= 𝑀
𝑥
𝑥′ 𝑠0

𝑥(𝑠) = 𝐴 𝛽(𝑠)𝑐𝑜𝑠 ψ 𝑠 + 𝛿
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𝑥
𝑥′ 𝑠0+𝐶

=
𝑐𝑜𝑠∆ψ + 𝛼𝑠𝑖𝑛∆ψ 𝛽𝑠𝑖𝑛∆ψ

−𝛾𝑠𝑖𝑛∆ψ 𝑐𝑜𝑠∆ψ − 𝛼𝑠𝑖𝑛∆ψ
𝑥
𝑥′ 𝑠0

𝑥(𝑠) = 𝐴 𝛽(𝑠)𝑐𝑜𝑠 ψ 𝑠 + 𝛿

𝛼, 𝛽, 𝛾 are the Twiss parameters



We can write the constant 𝐴 as 𝜖 and find this constant, emittance, 

is a useful value in describing the beam 

Emittance
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𝑥(𝑠) = 𝐴 𝛽(𝑠)𝑐𝑜𝑠 ψ 𝑠 + 𝛿

Constants of integration

𝑒𝑚𝑖𝑡𝑡𝑎𝑛𝑐𝑒 = 𝜖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

From the amplitude of the orbit equation, we can find the maximum 

and minimum particle displacement 

𝑐𝑜𝑠 ψ 𝑠 + 𝛿 = ±1 𝑀𝑎𝑥 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑥𝑚𝑎𝑥 = ± 𝜖𝛽(𝑠)

This sets a limit on the minimum beam aperture a machine can have 

to prevent particle loss

-We haven’t included other effects which influence the beam such  

as resonance, space-charge, … 



We can also express emittance in terms of the Twiss parameters by 

eliminating the trigonometric terms in the betatron oscillation   

Emittance
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𝑥(𝑠) = 𝜖𝛽(𝑠)𝑐𝑜𝑠 ψ 𝑠 + 𝛿

If we multiply 𝑥 and 𝑥′ by 𝛼𝑥 and β𝑥′:

𝛼 𝑠 𝑥 𝑠 + 𝛽 𝑠 𝑥′ 𝑠 = − 𝜖𝛽(𝑠)𝑠𝑖𝑛 ψ 𝑠 + 𝛿

Squaring and summing the above equations 

yields:

𝜖 = 𝛾(𝑠)𝑥(𝑠)2 + 2𝛼 𝑠 𝑥 𝑠 𝑥′(𝑠) + 𝛽 𝑠 𝑥′ 𝑠 2

This Courant-Snyder invariant will be constant*

for all locations through the lattice. Represents 

the area in phase space, measure of accelerator 

performance
Shape and orientation of the ellipse will change

𝒙

𝒙′



Phase Space
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𝑥

𝑠

𝑑𝑥

𝑑𝑠
= 𝑥′~𝜃

𝜃

𝒙

𝒙′

𝒙

𝒙′

Initial s(0) Final s



Slide by C. Biscari

Single Particle to Beam Ellipse
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Single Particle to Beam Ellipse
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Single Particle to Beam Ellipse
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Single Particle to Beam Ellipse
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Single Particle to Beam Ellipse
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Slide by C. Biscari
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4

Emittance ~ Area of phase space
Beam will have emittance in each plane
• Horizontal (x, x’) 
• Vertical (y,y’)
• Longitudinal (Time-Energy) 

s

For unaccelerated particles, the area of the 

ellipse will remain constant, but the ellipse 

orientation and shape will change along s

Particles will not be evenly distributed in 

phase space



If you know the emittance and the Twiss parameters at a point in the 

accelerator, the beam dimensions 𝜎𝑥 and 𝜎′𝑥 can be obtained

Beam Size
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According to Liouville’s theorem, the phase space area is constant 

if there are only conservative forces acting on the beam

– Magnetic fields of dipoles and quadrupoles are conservative

Adiabatic Damping
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When there is acceleration, the emittance decreases 

proportional to increase in momentum

𝑥′ =
𝑑𝑥

𝑑𝑠
=
𝑑𝑝𝑥
𝑑𝑝

We can also define a normalized emittance 

With acceleration, the area in the 𝑥 − 𝑥′ plane is no longer 

constant, but in the 𝑥 − 𝑝𝑥 plane will remain constant

휀𝑛 = 휀𝛽𝛾 𝛽 𝛾 are relativistic, not Twiss! 

𝑥

𝑠

𝜃



If the beam doesn’t have an elliptical or gaussian distribution, a 

more general form of the emittance can be defined

RMS Emittance
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𝜖𝑅𝑀𝑆 = 𝑥2 𝑥′2 − 𝑥 ∙ 𝑥′ 2

Here is the variance

𝑥 =
1

𝑛


𝑖=1

𝑛

𝑥𝑖 − 𝜇 2

average



An important performance measure of a collider is the luminosity, 

number of particles passing through a cross section per second

Luminosity
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𝑑𝑁𝑒𝑣𝑒𝑛𝑡𝑠
𝑑𝑡

= 𝐿𝜎

events per second

production cross section

For colliding beams[cm-2s-1]:

For head on collisions of a bunch of N particles:

For round beams:

𝐿 =
𝑁2𝑛𝑓𝑟𝑒𝑣
4𝜋𝜖𝛽

𝐿 =
𝑁2𝑛𝑓𝑟𝑒𝑣
4𝜋𝜎𝑥𝜎𝑦 beam size

revolution frequency
number of bunches

particles per bunch

emittance and betatron function  



Space Charge
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Ԧ𝐹 = 𝑞(𝐸 + Ԧ𝑣 × 𝐵)

I
q

BƟ

F

v

q
F

Er

𝑙

𝐹𝑟 = 𝑞(𝐸𝑟 − 𝑣𝐵𝜃)

Gaussian distribution:

𝑛 𝑟 =
𝑁

2𝜋𝑙𝜎2
𝑒
−
𝑟2

2𝜎2
𝐹𝑟 =

𝑁𝑞2

2𝜋𝜖0𝑙
(1 − 𝛽2)

1 − 𝑒
−
𝑟2

2𝜎2

𝑟

Larger issue for lower energy 



Longitudinal Motion
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Ԧ𝐹 = 𝑞(𝐸 + Ԧ𝑣 × 𝐵)



• Bend angle depends on momentum

• Similar to optics where index of refraction 

depends on frequency  

Dipole Bend
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𝜌𝜃

𝑠0

𝑠0 = 𝜌𝜃

𝜃 =
𝑠0
𝜌
=
𝑞𝐵𝑠0
𝑝

𝑞𝐵 =
𝑝

𝜌



• If particle is off from design momentum (which it will be), it will 

have a slightly different orbit

• Radius off by x, path length: 

• Relative difference in path length:

• 𝐷𝑥 is dispersion

– Change in closed orbit (position) as function of momentum

Off-momentum particle 
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Rob Williamson

𝑑𝑠0 = 𝜌𝑑𝜃 𝑑𝑠0 = (𝜌 + 𝑥)𝑑𝜃

𝑑𝑙

𝑑𝑠0
=
𝑑𝑠 − 𝑑𝑠0
𝑑𝑠0

=
𝑥

𝜌
=
𝐷𝑥
𝜌

𝑑𝑝

𝑝

0

)()(
p

p
sDsx x


=



• Integrate to get total path length change

• Momentum compaction, 𝛼𝑐 , is the change in closed orbit 

length as a function of momentum

Momentum Compaction
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∆𝐿

𝐿
= 𝛼𝑐

∆𝑝

𝑝



• Our equations of motion now have an extra term:

• We can use a sum of solutions to the previous homogenous 

equations with an additional term:

Updating equations of motion
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𝑥′′ + 𝐾(𝑠)𝑥 = 0 𝑥′′ + 𝐾 𝑠 𝑥 =
1

𝜌

∆𝑝

𝑝0
=
𝛿

𝜌

𝑥 = 𝑥𝐻𝑜𝑚 + 𝐷 𝑠 𝛿

𝑥 𝑠 = 𝑥0 C 𝑠 + 𝑥′0 S 𝑠 + 𝛿𝐷(𝑠)

𝑥′ 𝑠 = 𝑥0 C
′ 𝑠 + 𝑥′0 S

′ 𝑠 + 𝛿𝐷′(𝑠)

Previous solutions had this form New term



• We can add this to our matrix 

Matrix Form
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𝑥(𝑠)

𝑥′(𝑠)
𝛿

=
𝑚11 𝑚12 𝑑(𝑠)

𝑚21 𝑚22 𝑑′(𝑠)
0 0 1

𝑥0
𝑥′0
𝛿

Previous transfer matrix

∆𝑝

𝑝0
= 𝛿



Velocity and Kinetic Energy
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Particle Rest mass, eV/c2

Electron, 𝑒− 0.511 × 106

Proton, 𝑒+ 938 × 106𝛽 =
𝑣

𝑐

𝛾 =
1

1 − 𝛽2

𝑈 = 𝛾𝑚𝑐2

𝐾 = 𝑈 −𝑚𝑐2

Electrons are relativistic at few MeV, protons at GeV



• If we set B=0, we can only get static electric fields

– Limited energy gain ~60 MeV/q

Electrostatic Fields-DC
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Ԧ𝐹 = 𝑞(𝐸 + Ԧ𝑣 × 𝐵)

• 1929 Robert Van de Graaff

– Up to ~ 5MV

• 1932 Cockroft-Walton

– For N number of stages, able to get 

N*supply voltage

0

A two-stage Cockcroft–Walton multiplier
Wikipedia.org

//upload.wikimedia.org/wikipedia/en/4/4c/Cockcroft_Walton_Voltage_multiplier.png


From Faraday’s law, a changing magnetic 

flux will produce a tangentially directed 

electric field

The Need for AC
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ර𝑬 ∙ 𝑑𝒍 = −ඵ
𝜕𝑩

𝜕𝑡
∙ 𝑑𝑨

If there were a cylindrical region of changing 

magnetic flux, it would produce an E field around 

the cylinder

If now there is a B field perpendicular to this E 

field, we could have a particle travel around the 

circle at radius 𝜌

ሶΦ

E

ሶΦ

E

𝜌

𝜌

B

This is the idea behind the Betatron, the first 

circular accelerator to operate at a constant orbit 

radius



Acceleration occurs in the gaps between the drift tubes, length of 

tubes grows with velocity 

Synchronism condition:

First practical linac (200 MHz, 32 MeV) built by L. Alvarez at Berkeley 

in 1946 

Alvarez Linac - Drift Tube
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E. Jensen CERN

𝐿 =
𝑣

2𝑓𝑅𝐹

P. Lebrun CERN 



Cyclotron
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𝐹 = 𝑞 𝑣 × 𝐵 =
𝑀𝑣2

𝑟

Cyclotron frequency:

B

r
vq

~

Particles must be isochronous “same time” and 

arrive at the gap at the same time to be 

accelerated-constant 𝜔

Now add relativity:

B must increase as 𝛾𝐵0 to maintain isochronicity

𝛽 =
𝑣

𝑐
𝛾 =

1

1 − 𝛽2
M = 𝛾𝑀0

𝜔 =
𝑞𝐵

𝑀

Another method is to accelerate particles in a circular 

path between two D shaped pole pieces and apply an 

alternating voltage across the gap



• If we radially increase B to maintain 

isochronicity, we destroy the weak 

focusing, limited for protons to about 

~12 MeV 

Cyclotrons
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• L.H. Thomas proposed a separated 

sector cyclotron which allowed the 

radial field to increase, and gained 

focusing between the sectors



• Another issue arises if you don’t have 

enough energy gain per turn, the turns 

can overlap 

Cyclotrons
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• To overcome this, in 1963 F.M. 

Russell proposed a “beehive” 

separated orbit cyclotron (never built) 

PSI



Another setup would be to have an oscillating field in 

a region(or multiple regions) only when the particles 

are passing through

Resonant Cavity-Pillbox
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1

𝑟

𝜕

𝜕𝑟
𝑟𝐵𝜃 =

1

𝑐2
𝜕𝐸𝑧
𝜕𝑡

𝜕𝐸𝑧
𝜕𝑟

=
𝜕𝐵𝜃
𝜕𝑡

~

𝐸𝑧

We also only want to produce an electric field in 𝐸𝑧, 
the direction of particle motion, and a magnetic field 

𝐵𝜃

Maxwells’ equations reduce to:

𝜕2𝐸𝑧
𝜕𝑟2

+
1

𝑟

𝜕𝐸𝑧
𝜕𝑟

=
1

𝑐2
𝜕2𝐸𝑧
𝜕𝑡2

Take the derivative w.r.t r

plug in to eliminate 𝐵𝜃

𝑩𝜽

+

𝑅



A solution with frequency 𝜔 will have the form:

Resonant Cavity
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𝜕2𝐸𝑧
𝜕𝑟2

+
1

𝑟

𝜕𝐸𝑧
𝜕𝑟

=
1

𝑐2
𝜕2𝐸𝑧
𝜕𝑡2

𝐸𝑧 = 𝐸(𝑟)𝑒𝑖𝜔𝑡 𝐸′′ +
𝐸′

𝑟
+

𝜔

𝑐

2

𝐸 = 0

This has the form of Bessel’s equation of zero order, with know 

solutions: 

𝐸 𝑟 = 𝐸0𝐽0
𝜔

𝑐
𝑟

The surface of the pillbox is conducting, so at r=R, E=0 and the lowest 

frequency mode will be:

2𝜋𝑓

𝑐
𝑅 = 2.405

For a reasonable R ~30 cm, the frequency 
will be in the 400 MHz range- RF range 



Cyclotrons
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• D. W. Kerst proposed increasing the 

focusing by increasing the angle the 

particles make with the sectors

– TRIUMF, Texas A&M, Michigan State, PSI

• TRITRON, was able to fully separate orbits 

through a combination of edge focusing, 

individual gradient windings along each 

sector

– RF cavities were superconducting

– Problem is it creates an odd shape gap to 

put an accelerating structure
PSI



“Particles should be constrained to move in a circle of constant radius thus enabling 

the use of an annular ring of magnetic field...which would be varied in such a way that 

the radius of curvature remains constant as the particle gains energy through 

successive accelerations by an alternating electric field applied between coaxial 

hollow electrodes.” - Mark Oliphant

Synchrotron
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RF cavity

• B increases synchronously with 

rising E

• Cavity has field oscillating with 

𝑓𝑅𝐹 = ℎ𝑓𝑟𝑒𝑣
• Synchronous particle

∆𝐸 = ~𝑞𝑉𝑠𝑖𝑛𝜑𝑠

• Energy gain per turn:

𝑓𝑟𝑒𝑣 =
𝛽𝑐

2𝜋𝑅

Talk on Light Sources and Applications Monday 9:30



There is a limit to the effective longitudinal length of the cavity

– If too long, the particle would be in the cavity when the field 

flipped and would decelerate the particle

RF Cavity
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The change in energy of a particle crossing a gap is given by:

∆𝐸 = න
𝑡0

𝑡0+𝑇 𝑞𝑉0
𝑔

cos 𝜔𝑡 𝑣𝑑𝑡

gap length

max voltage

RF frequency, not revolution 𝜔

particle’s initial velocity

The transit time T through the cavity must satisfy:

𝑔 = න
𝑡0

𝑡0+𝑇

𝑣𝑑𝑡



• The quality factor, Q, is a figure of merit for a cavity

– The higher the Q the better

– High quality EM resonators: Typical Q0 > 1010

• Q is a ratio of the total stored energy to power lost

Quality Factor
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𝑄 =
𝜔𝑈

𝑃

• Q is a measure of the power loss in the walls of the cavity due to 

current flowing through resistive walls

• The power loss can be reduced by 

– Shaping the pillbox surface

– Making the walls out of 

superconducting material

Ring for ~1 year



Often multicell cavities are grouped together and run from a 

single source

A single cavity is good, but multiple cavities much better!
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GIF produced by Sam Posen



Other Cavity Shapes
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Photo: Ryan Postel, Fermilab

R. Leuxe CERN

J. Holzbauer Fermilab

M. Seidel PSI



• Fermi has a large superconducting 

cavity research group

• Working to improve Q through

– doping (Nitrogen)

– efficient Meissner expulsion

– coating cavities with superconducting 

Nb3-Sn

Superconducting Cavities
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https://td.fnal.gov/srf-rd/

TEM cross sectional image of a Nb3Sn layer on 
a niobium substrate



• A cyclotron or synchrotron is designed so the reference particle hits the 

RF wave at a desired phase 𝜑𝑠

• A synchronous particle would return to the same location on the voltage 

curve after one period (revolution)

Voltage in RF Cavity
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𝑉𝑅𝐹(𝑡) = 𝑉𝑠𝑖𝑛(𝜔𝑅𝐹𝑡 + 𝜑𝑠)



• Revolution frequency change:

Frequency change with changing momentum
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𝑓𝑟𝑒𝑣 =
𝛽𝑐

2𝜋𝑅

𝑑𝑓

𝑓
=
𝑑𝛽

𝛽
−
𝑑𝑅

𝑅

Change in velocity

Change in orbit length

∆𝐿

𝐿
= 𝛼𝑐

∆𝑝

𝑝
• In terms of momentum compaction 

𝑑𝑓

𝑓
=
𝑑𝛽

𝛽
− 𝛼𝑐

∆𝑝

𝑝
=

1

𝛾2
− 𝛼𝑐

∆𝑝

𝑝



• Relative change in revolution frequency: 

Transition Energy
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𝑑𝑓

𝑓
=

1

𝛾2
− 𝛼𝑐

∆𝑝

𝑝
= η

∆𝑝

𝑝

• η is the slip factor

• Transition energy when η = 0

• Below transition, frequency is dominated by 
𝑑𝛽

𝛽
term

– Particles behave ~non-relativistically

• Above transition, 
∆𝐿

𝐿
term dominates

– Particles  behave relativistically

η =
1

𝛾2
− 𝛼𝑐

𝛾𝑡𝑟 =
1

𝛼𝑐



• Particles with higher energy hitting the RF wave earlier in its ramp up 

cycle and receiving a smaller energy gain. 

• The slower particles hit the RF wave after the reference particle where the 

RF wave has risen higher and thus receive a larger energy gain. 

• By the next RF cavity, or on the next RF cycle, the particles have been 

adjusted toward the timing of the reference particle, and oscillate about its 

timing.

Phase stability below transition, η >0
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𝜑𝑠

• Red particle revolution equals RF frequency

• Blue particle is later in time, sees a higher voltage, gains 

more energy, less late to the next cycle

• …

Below Transition
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Subsequent turns
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Subsequent turns
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Subsequent turns
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Subsequent turns
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Subsequent turns
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Subsequent turns
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Subsequent turns
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Subsequent turns
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• The blue particle has made one oscillation around the red 

particle.

• This motion is similar to a pendulum with the RF forming a 

potential well

• This stable region is called the RF bucket

• For particles below transition, we sat on the rising edge of the 

sine wave

• For particles above transition, we shift to the falling edge of 

the sine wave

Synchrotron Oscillation
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Above Transition , η <0
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𝜑𝑠

• Higher momentum particle has a lower f than the 

synchronous particle

Above Transition
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Slides by E. Wildner
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𝛾𝑡



• We have just barely touched on the basics of accelerators 

and equations of motion with simple assumptions (perfect 

magnetic fields, alignment, …)

• Hopefully you gained a sense of the various research topics 

and areas in accelerators (Material science, beam dynamics, 

..)

• The really exiting stuff is in the details, some of which will be 

covered later this week

• If you have any questions about these lectures or Fermilab, 

please reach out

So many other topics!

K. Badgley | ASP2463

Kbadgley@fnal.gov
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This is a second order differential inhomogeneous differential equation, 

so the solution is

Where d(s) is the solution particular solution of the differential equation

We solve this piecewise, 

for K constant and find
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Transition crossing
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https://intranet.cells.es/Intranet/Labs/Elec/chap6.pdf


