

Fundamentals of Particle Accelerators II

Dr. Karie Badgley ASP 2024- Morocco

Overview

- Emittance
- Phase space
- Acceleration
- Cyclotrons
- RF cavities
- Phase stability

Last Time

$$
x(s)=x_{0} \cos (\sqrt{K} s)+\frac{x_{0}^{\prime}}{\sqrt{K}} \sin (\sqrt{K} s)
$$

$$
x^{\prime}(s)=-x_{0} \sqrt{K} \sin (\sqrt{K} s)+x_{0}^{\prime} \cos (\sqrt{K} s)
$$

$$
M=\left(\begin{array}{cc}
\cos (\sqrt{K} s) & \frac{\sin (\sqrt{K} s)}{\sqrt{K}} \\
-\sqrt{K} \sin (\sqrt{K} s) & \cos (\sqrt{K} s)
\end{array}\right) \quad\binom{x}{x^{\prime}}_{s}=M\binom{x}{x^{\prime}}_{s 0}
$$

$$
x(s)=A \sqrt{\beta(s)} \cos (\psi(s)+\delta)
$$

$$
\begin{gathered}
x(s)=A \sqrt{\beta(s)} \cos (\psi(s)+\delta) \\
\binom{x}{x^{\prime}}_{s_{0+C}}=\left(\begin{array}{cc}
\cos \Delta \psi+\alpha \sin \Delta \psi & \beta \sin \Delta \psi \\
-\gamma \sin \Delta \psi & \cos \Delta \psi-\alpha \sin \Delta \psi
\end{array}\right)\binom{x}{x^{\prime}}_{s_{0}}
\end{gathered}
$$

α, β, γ are the Twiss parameters

Emittance

$$
x(s)=A \sqrt{\beta(s)} \cos (\psi(s)+\delta)
$$

We can write the constant A as $\sqrt{\epsilon}$ and find this constant, emittance, is a useful value in describing the beam

$$
\text { emittance }=\epsilon=\text { constant }
$$

From the amplitude of the orbit equation, we can find the maximum and minimum particle displacement

$$
\cos (\psi(s)+\delta)= \pm 1 \quad \text { Max displacement } x_{\max }= \pm \sqrt{\epsilon \beta(s)}
$$

This sets a limit on the minimum beam aperture a machine can have to prevent particle loss
-We haven't included other effects which influence the beam such as resonance, space-charge, ...

Emittance

We can also express emittance in terms of the Twiss parameters by eliminating the trigonometric terms in the betatron oscillation

$$
x(s)=\sqrt{\epsilon \beta(s)} \cos (\psi(s)+\delta)
$$

If we multiply x and x^{\prime} by αx and βx^{\prime} :

$$
\alpha(s) x(s)+\beta(s) x^{\prime}(s)=-\sqrt{\epsilon \beta(s)} \sin (\psi(s)+\delta)
$$

Squaring and summing the above equations yields:

$$
\epsilon=\gamma(s) x(s)^{2}+2 \alpha(s) x(s) x^{\prime}(s)+\beta(s) x^{\prime}(s)^{2}
$$

This Courant-Snyder invariant will be constant* for all locations through the lattice. Represents the area in phase space, measure of accelerator performance

Shape and orientation of the ellipse will change

Phase Space

Initial $s(0)$

Final s

Single Particle to Beam Ellipse

- Reference particle Other particles
(No magnetic field from 1 to 4)
Slide by C. Biscari

Single Particle to Beam Ellipse

- Reference particle Other particles
 - -

-

Single Particle to Beam Ellipse

- Reference particle Other particles
(No magnetic field from 1 to 4)
Slide by C. Biscari

Single Particle to Beam Ellipse

(No magnetic field from 1 to 4)
Slide by C. Biscari

Single Particle to Beam Ellipse

Emittance ~ Area of phase space Beam will have emittance in each plane

- Horizontal (x, x^{\prime})
- Vertical (y, y^{\prime})
- Longitudinal (Time-Energy)

For unaccelerated particles, the area of the ellipse will remain constant, but the ellipse orientation and shape will change along s

Particles will not be evenly distributed in phase space

Slide by C. Biscari

Beam Size

If you know the emittance and the Twiss parameters at a point in the accelerator, the beam dimensions σ_{x} and σ_{x}^{\prime} can be obtained

Adiabatic Damping

According to Liouville's theorem, the phase space area is constant if there are only conservative forces acting on the beam

- Magnetic fields of dipoles and quadrupoles are conservative

When there is acceleration, the emittance decreases proportional to increase in momentum

$$
x^{\prime}=\frac{d x}{d s}=\frac{d p_{x}}{d p}
$$

We can also define a normalized emittance

$$
\varepsilon_{n}=\varepsilon \beta \gamma \quad \beta \gamma \text { are relativistic, not Twiss! }
$$

With acceleration, the area in the $x-x^{\prime}$ plane is no longer constant, but in the $x-p_{x}$ plane will remain constant

RMS Emittance

If the beam doesn't have an elliptical or gaussian distribution, a more general form of the emittance can be defined

$$
\epsilon_{R M S}=\sqrt{\left\langle x^{2}\right\rangle\left\langle x^{\prime 2}\right\rangle-\left\langle x \cdot x^{\prime}\right\rangle^{2}}
$$

Here \rangle is the variance

$$
\langle x\rangle=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}
$$

Luminosity

An important performance measure of a collider is the luminosity, number of particles passing through a cross section per second

For colliding beams $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]$:

$$
\frac{d N_{\text {events }}}{d t}<L_{L \sigma}^{\text {production cross section }}
$$

For head on collisions of a bunch of N particles:

For round beams:

$$
L=\frac{N^{2} n f_{\text {rev }}}{4 \pi \epsilon \beta} \text { emittance and betatron function }
$$

Space Charge

Gaussian distribution:

$$
n(r)=\frac{N}{2 \pi l \sigma^{2}} e^{-\frac{r^{2}}{2 \sigma^{2}}}
$$

$$
F_{r}=\frac{N q^{2}}{2 \pi \epsilon_{0} l}\left(1-\beta^{2}\right) \frac{1-e^{-\frac{r^{2}}{2 \sigma^{2}}}}{r}
$$

Larger issue for lower energy

Longitudinal Motion

$$
\vec{F}=q(\vec{E}+\vec{v} \times \vec{B})
$$

Dipole Bend

$$
\begin{gathered}
s_{0}=\rho \theta \\
q B=\frac{p}{\rho} \\
\theta=\frac{s_{0}}{\rho}=\frac{q B s_{0}}{p}
\end{gathered}
$$

- Bend angle depends on momentum
- Similar to optics where index of refraction depends on frequency

Off-momentum particle

- If particle is off from design momentum (which it will be), it will have a slightly different orbit
- Radius off by x, path length:

$$
d s_{0}=\rho d \theta \Rightarrow d s_{0}=(\rho+x) d \theta
$$

- Relative difference in path length:

$$
\frac{d l}{d s_{0}}=\frac{d s-d s_{0}}{d s_{0}}=\frac{x}{\rho}=\frac{D_{x}}{\rho} \frac{d p}{p}
$$

- D_{x} is dispersion

$$
\Delta x(s)=D_{x}(s) \frac{\Delta p}{p_{0}}
$$

- Change in closed orbit (position) as function of momentum

Rob Williamson

Momentum Compaction

- Integrate to get total path length change

$$
\Delta C=\oint \mathrm{d} l=\oint \frac{x}{\rho\left(s_{0}\right)} \mathrm{d} s_{0}=\oint \frac{D_{x}\left(s_{0}\right)}{\rho\left(s_{0}\right)} \frac{\mathrm{d} p}{p} \mathrm{~d} s_{0}
$$

- Momentum compaction, α_{c}, is the change in closed orbit length as a function of momentum

$$
\begin{aligned}
\alpha_{c} \equiv \frac{\mathrm{~d} L / L}{\mathrm{~d} p / p} & =\frac{1}{L} \oint \frac{D_{x}\left(s_{0}\right)}{\rho\left(s_{0}\right)} \mathrm{d} s_{0} \approx \frac{1}{C} \sum_{i}\left\langle D_{x}\right\rangle_{i} \theta_{i} \\
\frac{\Delta L}{L} & =\alpha_{c} \frac{\Delta p}{p}
\end{aligned}
$$

Updating equations of motion

- Our equations of motion now have an extra term:

$$
x^{\prime \prime}+K(s) x=0 \quad \Rightarrow x^{\prime \prime}+K(s) x=\frac{1}{\rho} \frac{\Delta p}{p_{0}}=\frac{\delta}{\rho}
$$

- We can use a sum of solutions to the previous homogenous equations with an additional term:

$$
x=x_{\text {Hoт }}+D(s) \delta
$$

$$
\begin{array}{r}
x(s)=x_{0} \mathrm{C}(s)+x_{0}{ }_{0} \mathrm{~S}(s) \\
x^{\prime}(s)=x_{0} \mathrm{C}^{\prime}(s)+x^{\prime}{ }_{0} \mathrm{~S}^{\prime}(s) \\
+
\end{array}
$$

Previous solutions had this form
New term

Matrix Form

- We can add this to our matrix

Previous transfer matrix

$$
\left(\begin{array}{c}
x(s) \\
x^{\prime}(s) \\
\delta
\end{array}\right)=\left(\begin{array}{ccc}
\frac{m_{11}}{m_{11}} & m_{12} \\
m_{21} & m_{22}
\end{array} \quad \begin{array}{c}
d(s) \\
d^{\prime}(s) \\
0
\end{array} 00101 \begin{array}{c}
x_{0} \\
x_{0}^{\prime} \\
\delta
\end{array}\right)
$$

$$
\frac{\Delta p}{p_{0}}=\delta
$$

Velocity and Kinetic Energy

Particle
Rest mass, eV/c²
Electron, e^{-}
$\beta=\frac{v}{c}$
$U=\gamma m c^{2}$
Proton, e^{+}
0.511×10^{6}
938×10^{6}
$\gamma=\frac{1}{\sqrt{1-\beta^{2}}} \quad K=U-m c^{2}$

Electrons are relativistic at few MeV , protons at GeV

Electrostatic Fields-DC

- If we set $B=0$, we can only get static electric fields

$$
\vec{F}=q(\vec{E}+\vec{v} \times<\vec{B})
$$

- Limited energy gain $\sim 60 \mathrm{MeV} / \mathrm{q}$
- 1929 Robert Van de Graaff
- Up to ~ 5MV
- 1932 Cockroft-Walton
- For N number of stages, able to get N*supply voltage

A two-stage Cockcroft-Walton multiplier Wikipedia.org

The Need for AC

From Faraday's law, a changing magnetic

$$
\oint \boldsymbol{E} \cdot d \boldsymbol{l}=-\iint \frac{\partial B}{\partial t} \cdot d \boldsymbol{A}
$$ flux will produce a tangentially directed electric field

If there were a cylindrical region of changing magnetic flux, it would produce an E field around the cylinder

If now there is a B field perpendicular to this E field, we could have a particle travel around the circle at radius ρ

This is the idea behind the Betatron, the first circular accelerator to operate at a constant orbit radius

Alvarez Linac - Drift Tube

Acceleration occurs in the gaps between the drift tubes, length of tubes grows with velocity

Synchronism condition:

$$
L=\frac{v}{2 f_{R F}}
$$

First practical linac ($200 \mathrm{MHz}, 32 \mathrm{MeV}$) built by L. Alvarez at Berkeley in 1946

Cyclotron

$$
F=q(v \times B)=\frac{M v^{2}}{r}
$$

Another method is to accelerate particles in a circular path between two D shaped pole pieces and apply an alternating voltage across the gap

Cyclotron frequency:
$\omega=\frac{q B}{M}$
Particles must be isochronous "same time" and arrive at the gap at the same time to be accelerated-constant ω

Now add relativity:

$$
\beta=\frac{v}{c} \quad \gamma=\frac{1}{\sqrt{1-\beta^{2}}} \quad \mathrm{M}=\gamma M_{0}
$$

B must increase as γB_{0} to maintain isochronicity

Cyclotrons

- If we radially increase B to maintain isochronicity, we destroy the weak focusing, limited for protons to about $\sim 12 \mathrm{MeV}$

- L.H. Thomas proposed a separated sector cyclotron which allowed the radial field to increase, and gained focusing between the sectors

Cyclotrons

- Another issue arises if you don't have enough energy gain per turn, the turns can overlap

Resonant Cavity-Pillbox

Another setup would be to have an oscillating field in a region(or multiple regions) only when the particles are passing through

We also only want to produce an electric field in E_{Z},
 the direction of particle motion, and a magnetic field B_{θ}

Maxwells' equations reduce to:

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{\theta}\right)=\frac{1}{c^{2}} \frac{\partial E_{z}}{\partial t}
$$

Take the derivative w.r.t r plug in to eliminate B_{θ}

$$
\frac{\partial^{2} E_{Z}}{\partial r^{2}}+\frac{1}{r} \frac{\partial E_{z}}{\partial r}=\frac{1}{c^{2}} \frac{\partial^{2} E_{z}}{\partial t^{2}}
$$

Resonant Cavity

$$
\frac{\partial^{2} E_{z}}{\partial r^{2}}+\frac{1}{r} \frac{\partial E_{z}}{\partial r}=\frac{1}{c^{2}} \frac{\partial^{2} E_{Z}}{\partial t^{2}}
$$

A solution with frequency ω will have the form:

$$
E_{z}=E(r) e^{i \omega t} \quad E^{\prime \prime}+\frac{E^{\prime}}{r}+\left(\frac{\omega}{c}\right)^{2} E=0
$$

This has the form of Bessel's equation of zero order, with know solutions:

$$
E(r)=E_{0} J_{0}\left(\frac{\omega}{c} r\right)
$$

The surface of the pillbox is conducting, so at $r=R, E=0$ and the lowest frequency mode will be:

$$
\frac{2 \pi f}{c} R=2.405
$$

For a reasonable $R \sim 30 \mathrm{~cm}$, the frequency will be in the 400 MHz range- RF range

Cyclotrons

- D. W. Kerst proposed increasing the focusing by increasing the angle the particles make with the sectors
- TRIUMF, Texas A\&M, Michigan State, PSI
- Problem is it creates an odd shape gap to
 put an accelerating structure
- TRITRON, was able to fully separate orbits through a combination of edge focusing, individual gradient windings along each sector
- RF cavities were superconducting

Synchrotron

"Particles should be constrained to move in a circle of constant radius thus enabling the use of an annular ring of magnetic field...which would be varied in such a way that the radius of curvature remains constant as the particle gains energy through successive accelerations by an alternating electric field applied between coaxial hollow electrodes." - Mark Oliphant

- B increases synchronously with rising E
- Cavity has field oscillating with $f_{R F}=h f_{\text {rev }}$
- Synchronous particle
- Energy gain per turn:

$$
\Delta E=\sim q V \sin \varphi_{s}
$$

$$
f_{\text {rev }}=\frac{\beta c}{2 \pi R}
$$

RF Cavity

There is a limit to the effective longitudinal length of the cavity

- If too long, the particle would be in the cavity when the field flipped and would decelerate the particle

The change in energy of a particle crossing a gap is given by:

$$
\Delta E=\int_{t_{0}}^{t_{0}+T} \frac{q V_{0}^{\text {max voltage }}}{g} \cos (\omega t) v v_{\text {RF frequency, not revolution } \omega}^{\text {particle's initial velocity }}
$$

The transit time T through the cavity must satisfy:

$$
g=\int_{t_{0}}^{t_{0}+T} v d t
$$

Quality Factor

- The quality factor, Q, is a figure of merit for a cavity
- The higher the Q the better
- High quality EM resonators: Typical $Q_{0}>10^{10}$
- Q is a ratio of the total stored energy to power lost

Ring for ${ }^{\sim} 1$ year

$$
Q=\frac{\omega U}{P}
$$

- Q is a measure of the power loss in the walls of the cavity due to current flowing through resistive walls
- The power loss can be reduced by
- Shaping the pillbox surface
- Making the walls out of superconducting material

A single cavity is good, but multiple cavities much better!

Often multicell cavities are grouped together and run from a single source

GIF produced by

Other Cavity Shapes

M. Seidel PSI

Photo: Ryan Postel, Fermilab

J. Holzbauer Fermilab

Superconducting Cavities

- Fermi has a large superconducting cavity research group
- Working to improve Q through
- doping (Nitrogen)
- efficient Meissner expulsion
- coating cavities with superconducting $\mathrm{Nb}_{3}-\mathrm{Sn}$

TEM cross sectional image of $\mathrm{a}_{3} \mathrm{Sn}$ layer on a niobium substrate

Voltage in RF Cavity

- A cyclotron or synchrotron is designed so the reference particle hits the RF wave at a desired phase φ_{s}

$$
V_{R F}(t)=V \sin \left(\omega_{R F} t+\varphi_{s}\right)
$$

- A synchronous particle would return to the same location on the voltage curve after one period (revolution)

Frequency change with changing momentum

- Revolution frequency change:

$$
f_{\text {rev }}=\frac{\beta c}{2 \pi R}
$$

$$
\frac{d f}{f}=\frac{d \beta}{\beta}-\frac{d R}{R} \quad \text { Change in orbit length }
$$

Change in velocity

- In terms of momentum compaction

$$
\frac{\Delta L}{L}=\alpha_{c} \frac{\Delta p}{p}
$$

$$
\frac{d f}{f}=\frac{d \beta}{\beta}-\alpha_{c} \frac{\Delta p}{p}=\left(\frac{1}{\gamma^{2}}-\alpha_{c}\right) \frac{\Delta p}{p}
$$

Transition Energy

- Relative change in revolution frequency:

$$
\frac{d f}{f}=\left(\frac{1}{\gamma^{2}}-\alpha_{c}\right) \frac{\Delta p}{p}=\eta \frac{\Delta p}{p}
$$

- η is the slip factor

$$
\eta=\frac{1}{\gamma^{2}}-\alpha_{c}
$$

- Transition energy when $\eta=0 \quad \gamma_{t r}=\frac{1}{\sqrt{\alpha_{c}}}$
- Below transition, frequency is dominated by $\frac{d \beta}{\beta}$ term
- Particles behave ~non-relativistically
- Above transition, $\frac{\Delta L}{L}$ term dominates
- Particles behave relativistically

Phase stability below transition, $\eta>0$

- Particles with higher energy hitting the RF wave earlier in its ramp up cycle and receiving a smaller energy gain.
- The slower particles hit the RF wave after the reference particle where the RF wave has risen higher and thus receive a larger energy gain.
- By the next RF cavity, or on the next RF cycle, the particles have been adjusted toward the timing of the reference particle, and oscillate about its timing.

Below Transition

- Red particle revolution equals RF frequency
- Blue particle is later in time, sees a higher voltage, gains more energy, less late to the next cycle

Subsequent turns

Synchrotron Oscillation

- The blue particle has made one oscillation around the red particle.
- This motion is similar to a pendulum with the RF forming a potential well
- This stable region is called the RF bucket
- For particles below transition, we sat on the rising edge of the sine wave
- For particles above transition, we shift to the falling edge of the sine wave

Above Transition , $\eta<0$

Above Transition

- Higher momentum particle has a lower f than the synchronous particle

Slides by E. Wildner

So many other topics!

- We have just barely touched on the basics of accelerators and equations of motion with simple assumptions (perfect magnetic fields, alignment, ...)
- Hopefully you gained a sense of the various research topics and areas in accelerators (Material science, beam dynamics, ..)
- The really exiting stuff is in the details, some of which will be covered later this week
- If you have any questions about these lectures or Fermilab, please reach out

Kbadgley@fnal.gov

References

Lectures:

- African School of Physics (ASP)
- Previous lectures (https://www.africanschoolofphysics.org/)
- US Particle Accelerator School (USPAS)
- (https://uspas.fnal.gov/)
- Cern Accelerator School (CAS)
- (https://cas.web.cern.ch/)

Books:

- Particle Accelerator Physics- Helmut Wiedemann
- Introduction to the Physics of Particle Accelerators- Mario Conte and William MacKay
- An introduction to the Physics of High Energy AcceleratorsD.A. Edwards and M.J. Syphers

This is a second order differential inhomogeneous differential equation, so the solution is

$$
\begin{aligned}
x(s) & =x_{0} C(s)+x_{0}^{\prime} S(s)+\delta d(s) \\
x^{\prime}(s) & =x_{0} C^{\prime}(s)+x_{0}^{\prime} S^{\prime}(s)+\delta d^{\prime}(s)
\end{aligned}
$$

Where $\mathrm{d}(\mathrm{s})$ is the solution particular solution of the differential equation

$$
d^{\prime \prime}+K d=\frac{1}{\rho}
$$

We solve this piecewise, for K constant and find

$$
\begin{aligned}
K>0: \quad d(s)=\frac{1}{\rho K}(1-\cos \sqrt{K} s) \\
d^{\prime}(s)=\frac{1}{\rho \sqrt{K}} \sin \sqrt{K} s \\
K<0: \quad d(s)=-\frac{1}{\rho K}(1-\cosh \sqrt{K} s) \\
d^{\prime}(s)=\frac{1}{\rho \sqrt{K}} \sinh \sqrt{K} s
\end{aligned}
$$

Transition crossing

Figure 1: Revolution frequency .v. particle momentum
https://intranet.cells.es/Intranet/Labs/Elec/chap6.pdf

