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Muon Experiments
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Upgrade to accelerator to enable experiments such as DUNE

PIP-II
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• Why accelerate particles

• A bit of accelerator history 

• Components of an accelerator

• Magnets

• Equations of Transvers Motion

– Weak Focusing

• Matrix Representation

• Strong Focusing

• Betatron motion

Overview
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Accelerators Worldwide
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IAEA.org

•Accelerator-Based Neutron Sources

•Boron Neutron Capture Therapy (BNCT) facilities

•Electrostatic Accelerators

•Synchrotron Light Sources

•X-ray Free Electron Laser Sources



Accelerator Applications
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Cathode ray tube TVs



Of the ~35,000 accelerators worldwide, roughly half are medical

Accelerator Applications- Medicine
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Proton Therapy Imaging

Isotope Production

Device Sterilization

samsunghospital.com

www.triumf.ca

Looking to replace ethlylene oxide and cobalt-60 
with x-rays from electron beams 

Fnal.gov

Mo-99 to Tc-99m

Reduce dose to surrounding healthy tissue



Accelerator Applications- Security
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• Transmute long lived 

nuclear waste 

• Subcritical - Safe

• Produce power

• Close nuclear fuel cycle

Accelerator Applications- Energy/Environment
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Accelerator Applications- Energy/Environment
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…and so many more!

Wastewater treatment
High energy electron to break down pollutants

Accelerator on a truck

Use electron beam to resurface road



• 1919 Ernst Rutherford called for “copious supply” of particles 

more energetic than produced by natural radioactive sources

• 1924 Gustav Ising developed the concept of a linear particle 

accelerator (Linac)

The Accelerator is Born
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Wideröe, Über ein neues Prinzip zur
Herstellung hoher Spannungen, Archiv für
Elektrotechnik 21, 387 (1928)

• 1928 Rolf Wideröe builds the 

first linac in Aachen, Germany

– He first tried to build a 

betatron, but when that was 

unsuccessful, switched to a 

linac for his thesis



• It was estimated in a 2014 

Symmetry article that 

there were over 30,000 

operating particle 

accelerators

• In his 1954 book, Stanley 

Livingston noted that 

advances in accelerator 

technology allowed a 

factor of 10 increase in 

energy every 6-7 years

Livingston Plot
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Laboratory energy of particles colliding with a proton at 
rest to reach the same center of mass energy

https://www.symmetrymagazine.org/article/o
ctober-2009/deconstruction-livingston-plot



1 eV= energy of a particle 𝑞 = 𝑒 when accelerated across a 1 V 

potential

Units
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𝑒 = 1.6 × 10−19 𝐶

1 𝑒𝑉 = 1.6 × 10−19 𝐽

Particle Rest Mass, kg Rest mass, eV/c2

Electron, 𝑒− 9.11 × 10−31 0.511 × 106

Proton, 𝑒+ 1.67 × 10−27 938 × 106

𝑈 = 𝑚𝑐2

Through the relationship between mass and energy, the rest 

mass can also be expressed in terms of eV



Momentum

Relativity Review
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𝛽 =
𝑣

𝑐

𝛾 =
1

1 − 𝛽2

Total energy

Kinetic energy

Particle velocity

Speed of light

𝑝 = 𝛾𝑚𝑣 = β𝛾𝑚𝑐

𝑈 = 𝛾𝑚𝑐2

𝐾 = 𝑈 −𝑚𝑐2

𝛾 ≈ 1 non-relativistic
𝛾 > 1 relativistic

When we refer to the energy of a particle, it is the kinetic energy 

Rest mass

𝑐 = 2.99792 × 108𝑚/𝑠



Source

– Electrons 

– Protons

– Ions

Anatomy of an Accelerator
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Field emission - strong E field 

to induce emission

Thermionic- heated 

cathode
www.thermofisher.com

Photo emission - light to 

produce electrons through 

photoelectric effect

www.sciencedirect.com

Ion source – electron 

ionization, plasma, …

wikipedia.org

Charged particles



Lorentz Force:

Electromagnetic force on a charged particle
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Ԧ𝐹 = 𝑞(𝐸 + Ԧ𝑣 × 𝐵)

• Force from the Electric field is the direction of particle velocity

– Used to accelerate the particle in the direction of the E field

• Force from the magnetic field is perpendicular to particle 

velocity

– Used to bend and focus the particle

∆𝐾 = 𝑊𝑜𝑟𝑘 = Ԧ𝐹 ∙ Ԧ𝑑 = 𝑞𝐸 ∙ Ԧ𝑑 + 𝑞( Ԧ𝑣 × 𝐵) ∙ Ԧ𝑑

𝐸

𝐵

0

q
Ԧ𝑣



Loretnz Force:

Electromagnetic force on a charged particle
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Ԧ𝐹 = 𝑞(𝐸 + Ԧ𝑣 × 𝐵)

• Magnitude of Force

– Force from magnetic field scales with velocity

– Velocity of high energy particle ~3x108 m/s

– Using a high E field of 1 MV/m and medium B field of 1 T

the force from the B field will be ~300 times stronger

Ԧ𝑣 × 𝐵

𝐸
≈
3 × 108

1 × 106
≈ 300



Source

– Electrons

– Protons

– Ions

Anatomy of an Accelerator
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Electric Field

– Electrostatic(DC)

– Time-varying(AC)

More on this when we get to longitudinal motion next lecture

𝐸 = −∇𝑉 −
𝜕 Ԧ𝐴

𝜕𝑡

𝐷𝐶 A𝐶



Source

– Electrons

– Protons

– Ions

Anatomy of an Accelerator

K. Badgley | ASP2422

Electric Field

– DC

– AC

Magnets

– Dipole

– Quadrupole

– Sextupole

– …



Types of magnets

• Dipoles – bending (transport, energy selection…)

• Quadrupoles - focusing

• Sextupoles - correction

• Combined function 

• Correctors

• Septa

• Kickers

• Solenoids

23

Less common/specialty magnets

K. Badgley | ASP24

= +



Magnetic Field Harmonics
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Plugging in 𝐶𝑛, it takes the form:

where 𝐵0 is the reference field, the coefficients 𝑏𝑛 and 𝑎𝑛 correspond to 

normal and skew terms, and n gives the order of the pole

n=1 corresponding to a dipole, n=2 a quadrupole, n=3 a sextupole…

𝐵𝑦 + 𝑖𝐵𝑥 = 𝑛෍

𝑛=1

𝐶𝑛 𝕫
𝑛−1 = 𝑛෍

𝑛=1

𝐶𝑛 (𝑥 + 𝑖𝑦)𝑛−1

𝐵𝑦 + 𝑖𝐵𝑥 =෍

𝑛

𝐵𝑛 + 𝑖𝐴𝑛 𝑥 + 𝑖𝑦 𝑛−1 = 𝐵0෍

𝑛

𝑏𝑛 + 𝑖𝑎𝑛 (𝑥 + 𝑖𝑦)𝑛−1

More slides in the backup if 
anyone is curious about thisThe magnetic field can be found from the expansion*:

𝐶𝑛 = 𝐵𝑛 + 𝑖𝐴𝑛



Dipole (two pole, n=1)
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𝐵𝑦 + 𝑖𝐵𝑥 =෍

𝑛

𝐵𝑛 + 𝑖𝐴𝑛 𝑥 + 𝑖𝑦 𝑛−1

𝐵𝑦 + 𝑖𝐵𝑥 = 𝐵1 + 𝑖𝐴1 (𝑥 + 𝑖𝑦)0= 𝐵1 + 𝑖𝐴1

𝐵𝑦 = 𝐵1 𝑖𝐵𝑥 = 𝑖𝐴1

Equate real and imaginary parts: C

“Normal”: C=real, 𝐴1=0 

𝐵𝑦 = 𝐵1

𝐵𝑥 = 0

𝐵𝑥 = 𝐴1

𝐵𝑦 = 0

“Skew”: C=imaginary, 𝐵1=0

K. Badgley | ASP24

Force?



Dipoles
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Dipole (FNAL)

Window frame dipole

H dipole

K. Badgley | ASP24



Dipoles
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C dipole

Muon g-2



Quadrupole (four pole, n=2)

The quadrupole field varies linearly with the distance from the magnet center. It focuses the
beam in one direction and defocuses in the other. An F or focusing quadrupole focuses the
particle beam along the horizontal plane.
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𝐵𝑦 + 𝑖𝐵𝑥 = 𝑛෍

𝑛=1

𝐶𝑛 𝕫
𝑛−1 = 𝑛෍

𝑛=1

𝐶𝑛 (𝑥 + 𝑖𝑦)𝑛−1

𝐵𝑦 + 𝑖𝐵𝑥 = 2 𝐶2 (𝑥 + 𝑖𝑦)1= 2𝐶2𝑥 + 𝑖2𝐶2𝑦

Skew, C is imaginary:

𝐵𝑥 = 2𝐶2𝑥 𝐵𝑦 = −2𝐶2𝑦

𝐵𝑦 = 2𝐶2𝑥 𝐵𝑥 = 2𝐶2𝑦

Normal, C is real:

𝐵 = 𝑔𝑦ො𝑥 + 𝑔𝑥 ො𝑦

Gradient (T/m)

𝜕𝐵𝑦

𝑑𝑥
= 2𝑐2 = 𝑔

𝜕𝐵𝑥
𝑑𝑦

= 2𝑐2 = 𝑔

K. Badgley | ASP24

Force?



Quadrupole

ALBA SR Quadrupole

29

Fermilab Quadrupole

Panofsky Quadrupole

K. Badgley | ASP24



Sextupole (six pole, n=3)

The sextupole field varies quadratically with the distance from the magnet center. It’s purpose is to 
effect the beam at the edges.  An F sextupole will steer the particle beam toward the center of the ring.
Note that the sextupole also steers along the 60 and 120 degree lines.

30

𝐵𝑦 + 𝑖𝐵𝑥 = −𝑛෍

𝑛=1

𝐶𝑛 (𝑥 + 𝑖𝑦)𝑛−1

𝐵𝑦 + 𝑖𝐵𝑥 = −3𝐶3 (𝑥 + 𝑖𝑦)2 𝐵𝑦 + 𝑖𝐵𝑥 = −3𝐶3 𝑥2 − 𝑦2 − 𝑖6𝐶3𝑥𝑦

𝐵𝑥 = −6𝐶3𝑥𝑦 𝐵𝑦 = −3𝐶3 𝑥2 − 𝑦2

Normal, C is real:

𝜕2𝐵𝑦

𝜕𝑥2
= 𝐵′′ = −6𝐶3

𝐵𝑦 =
𝐵′′

2
𝑥2 − 𝑦2𝐵𝑥 = 𝐵′′𝑥𝑦

K. Badgley | ASP24



Sextupole

ALBA SR Sextupole

31

Sextupole (FNAL)
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Optics Analogy

K. Badgley | ASP2432

Dipole

Quadrupole
Incoming beam

Low energy

Sextupole

Desired focus

Low energy focus High energy focus



Source

– Electrons

– Protons

– Ions

Anatomy of an Accelerator

K. Badgley | ASP2433

Electric Field

– DC

– AC

Magnets

– Dipole

– Quadrupole

– Sextupole

Vacuum system

• Power Supplies

• Cryogenics 

• Beam diagnostics

• Control system



Equations of Transverse Motion
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Ԧ𝐹 = 𝑞(𝐸 + Ԧ𝑣 × 𝐵)
0



In terms of momentum,

Motion in a uniform B field

K. Badgley | ASP2435

Ԧ𝐹 = 𝑞 Ԧ𝑣 × 𝐵 = 𝑚
𝑣2

𝜌
𝝆

𝑩

𝜽
𝑞𝑣𝐵 =

𝛾𝑚0𝑣
2

𝜌

𝑞𝐵 =
𝑝

𝜌

𝑝 = 𝛾𝑚0𝑣

𝒑

𝒒
= 𝑩𝝆

Ԧ𝐹 = 𝑞(𝐸 + Ԧ𝑣 × 𝐵)
0

Magnetic rigidity

How hard a particle is 
to deflect [T m]
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Particle motion will be expanded about the ideal or design 

trajectory (𝒙, 𝒚)

Equations of motion

K. Badgley | ASP2437

𝝆

𝜽 𝒙

𝒚

Reference frame:

𝐵 = (𝐵𝑥 , 𝐵𝑦 , 0)

𝒙

𝒚

𝒔
𝝆

x : horizontal
y : vertical 
s : longitudinal-along the 
ideal trajectory(x=y=0)



Particle motion will be expanded about the ideal or design 

trajectory (𝒙, 𝒚)

Equations of motion

K. Badgley | ASP2438

𝝆

𝜽 𝒙

𝒚

Radial acceleration:

𝐹𝑥 = −𝑞𝑣𝐵𝑦 = 𝑚𝑎𝑟𝑎𝑑

𝐵 = (𝐵𝑥 , 𝐵𝑦 , 0)

𝑎𝑟𝑎𝑑 =
𝑑2𝑟

𝑑𝑡2
− 𝑟

𝑑𝜃

𝑑𝑡

2

𝑟 → 𝜌 + 𝑥

𝐹𝑥 = 𝑚
𝑑2(𝜌 + 𝑥)

𝑑𝑡2
−𝑚 𝜌 + 𝑥

𝑑𝜃

𝑑𝑡

2

= −𝑞𝑣𝐵𝑦

𝐹𝑦 = 𝑞𝑣𝐵𝑥



𝜌 is the radius and is constant

Equations of motion- Horizontal
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𝐹𝑥 = 𝑚
𝑑2(𝜌 + 𝑥)

𝑑𝑡2
−𝑚 𝜌 + 𝑥

𝑑𝜃

𝑑𝑡

2

= −𝑞𝑣𝐵𝑦

𝑑𝜃

𝑑𝑡
= 𝜔 =

𝑣

𝜌 + 𝑥

𝐹𝑥 = 𝑚
𝑑2(𝜌 + 𝑥)

𝑑𝑡2
−
𝑚𝑣2

𝜌 + 𝑥
= −𝑞𝑣𝐵𝑦

𝐹𝑥 = 𝑚
𝑑2𝑥

𝑑𝑡2
−
𝑚𝑣2

𝜌 + 𝑥
= −𝑞𝑣𝐵𝑦



Equations of motion- Horizontal
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𝐹𝑥 = 𝑚
𝑑2𝑥

𝑑𝑡2
−
𝑚𝑣2

𝜌 + 𝑥
= −𝑞𝑣𝐵𝑦

𝑥 ≪ 𝜌 so we can do a Taylor expansion

1

𝜌 + 𝑥
≈
1

𝜌
−

𝑥

𝜌2
+⋯ ≈

1

𝜌
1 −

𝑥

𝜌

𝐹𝑥 = 𝑚
𝑑2𝑥

𝑑𝑡2
−
𝑚𝑣2

𝜌
1 −

𝑥

𝜌
= −𝑞𝑣𝐵𝑦

𝑓 𝑥 = 𝑓 𝑥0 +
(𝑥 − 𝑥0)

1!
𝑓′ 𝑥0 +

(𝑥 − 𝑥0)
2

2!
𝑓′′ 𝑥0 +. .



Divide by 𝑚 and multiply the r.h.s. by 𝑣/𝑣

Equations of motion- Horizontal

K. Badgley | ASP2441

𝐹𝑥 = 𝑚
𝑑2𝑥

𝑑𝑡2
−
𝑚𝑣2

𝜌
1 −

𝑥

𝜌
= −𝑞𝑣𝐵𝑦

𝑞

𝑝
=

1

𝐵𝜌
𝑑2𝑥

𝑑𝑡2
−
𝑣2

𝜌
1 −

𝑥

𝜌
=
−𝑞𝑣2𝐵𝑦

𝑚𝑣

𝑝

𝑑2𝑥

𝑑𝑡2
−
𝑣2

𝜌
1 −

𝑥

𝜌
=
−𝑣2𝐵𝑦

𝐵𝜌



We can also do a Taylor expansion of the 𝐵𝑦 field about the 

reference orbit if we assume 
𝑑𝐵𝑦

𝑑𝑥
is small

Equations of motion

K. Badgley | ASP2442

𝐵𝑦 𝑥 = 𝐵0 +
𝑑𝐵𝑦

𝑑𝑥
𝑥 +⋯

Define the gradient 𝑔 =
𝑑𝐵𝑦

𝑑𝑥

𝐵𝑦 𝑥 = 𝐵0 + 𝑔𝑥 +⋯

𝑑2𝑥

𝑑𝑡2
−
𝑣2

𝜌
1 −

𝑥

𝜌
=
−𝑣2𝐵𝑦
𝐵𝜌

𝑑2𝑥

𝑑𝑡2
−
𝑣2

𝜌
1 −

𝑥

𝜌
=
−𝑣2(𝐵 + 𝑔𝑥 )

𝐵𝜌
=
−𝑣2

𝜌
−
𝑣2𝑔𝑥

𝐵𝜌



Convert from t to s

Equations of motion - Horizontal
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𝑑2𝑥

𝑑𝑡2
−
𝑣2

𝜌
1 −

𝑥

𝜌
=
−𝑣2

𝜌
−
𝑣2𝑔𝑥

𝐵𝜌

𝑑2𝑥

𝑑𝑡2
+

𝑣2𝑥

𝜌2
= −

𝑣2𝑔𝑥

𝐵𝜌

𝑑𝑥

𝑑𝑡
=
𝑑𝑥

𝑑𝑠

𝑑𝑠

𝑑𝑡

𝑑2𝑥𝑣2

𝑑𝑠2
+

𝑣2𝑥

𝜌2
= −

𝑣2𝑔𝑥

𝐵𝜌

𝑑2𝑥

𝑑𝑠2
+

𝑥

𝜌2
+
𝑔𝑥

𝐵𝜌
= 0

𝑑2𝑥

𝑑𝑡2
= 𝑥′′𝑣2

𝑑2𝑥

𝑑𝑡2
=

𝑑

𝑑𝑡

𝑑𝑥

𝑑𝑠

𝑑𝑠

𝑑𝑡
=

𝑑

𝑑𝑠

𝑑𝑥

𝑑𝑠

𝑑𝑠

𝑑𝑡

𝑑𝑠

𝑑𝑡

𝑥′ 𝑣



Equations of motion - Horizontal
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We can define 𝑘 =
𝑔

𝐵𝜌

𝑑2𝑥

𝑑𝑠2
+

𝑥

𝜌2
+
𝑔𝑥

𝐵𝜌
= 0

𝑥′′ +
1

𝜌2
+

𝑔

𝐵𝜌
𝑥 = 0

𝑥′′ +
1

𝜌2
+ 𝑘 𝑥 = 0 and K =

1

𝜌2
+ 𝑘

𝑥′′ + 𝐾𝑥 = 0



A similar treatment of the vertical motion yields 

Equations of Motion - Vertical
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𝐵𝑥 𝑦 =
𝑑𝐵𝑥
𝑑𝑦

𝑦 +⋯
𝑑2𝑦

𝑑𝑠2
−
𝑑𝐵𝑥
𝑑𝑦

𝑦

𝐵𝜌
= 0

𝑔
𝑑2𝑦

𝑑𝑠2
−
𝑔𝑦

𝐵𝜌
= 0 We can define 𝑘 =

𝑔

𝐵𝜌

𝑦′′ − 𝑘𝑦 = 0



The form of this equation should look familiar

Quick Aside on Springs

K. Badgley | ASP2446

𝑥′′ + 𝐾𝑥 = 0

Ԧ𝐹 = −𝑘 Ԧ𝑥Recall Hooke’s law for a mass, m, on a spring, k

𝐹 = 𝑚𝑎 −𝑘𝑥 = 𝑚𝑎

−𝑘𝑥 = 𝑚
𝑑2𝑥

𝑑𝑡2
−𝑘𝑥 = 𝑚𝑥′′

−
𝑘

𝑚
𝑥 = 𝑥′′ 𝑥′′ +

𝑘

𝑚
𝑥 = 0 𝜔 =

𝑘

𝑚



These look like our familiar harmonic motion equations with 

known solutions of the form:

Solutions to the Equations of Motion

K. Badgley | ASP2447

𝑥′′ + 𝐾𝑥 = 0

𝑦′′ + 𝐾𝑦 = 0

𝐾 =
1

𝜌2
+ 𝑘

𝐾 = −𝑘Vertical:

Horizontal:

𝑥 𝑠 = 𝐴𝑐𝑜𝑠 𝜔𝑠 + 𝐵𝑠𝑖𝑛(𝜔𝑠)

𝑥′(𝑠) = −𝐴𝜔𝑠𝑖𝑛 𝜔𝑠 + 𝐵𝜔𝑐𝑜𝑠(𝜔𝑠)

𝑥′′(𝑠) = −𝐴𝜔2𝑐𝑜𝑠 𝜔𝑠 − 𝐵𝜔2𝑠𝑖𝑛 𝜔𝑠 = −𝜔2𝑥(𝑠)

𝜔 = 𝐾



The constants A and B can be found from initial conditions

Matrix Representation
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𝑥 𝑠 = 𝐴𝑐𝑜𝑠 𝐾𝑠 + 𝐵𝑠𝑖𝑛( 𝐾𝑠)

𝑥 0 = 𝑥0 𝑥′ 0 = 𝑥′0

𝑥 𝑠 = 𝑥0𝑐𝑜𝑠 𝐾𝑠 +
𝑥′0

𝐾
𝑠𝑖𝑛( 𝐾𝑠)

𝑥′ 𝑠 = −𝑥0 𝐾𝑠𝑖𝑛 𝐾𝑠 + 𝑥′0𝑐𝑜𝑠( 𝐾𝑠)

𝐴 = 𝑥0 𝐵 =
𝑥′0

𝐾

𝑥′(𝑠) = −𝐴 𝐾𝑠𝑖𝑛 𝐾𝑠 + 𝐵 𝐾𝑐𝑜𝑠( 𝐾𝑠)

𝑥

𝑠

𝑑𝑥

𝑑𝑠
= 𝑥′~𝜃

𝜃



Matrix Reminder
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Matrix Representation
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𝑥 𝑠 = 𝑥0𝑐𝑜𝑠 𝐾𝑠 +
𝑥′0

𝐾
𝑠𝑖𝑛( 𝐾𝑠)

𝑥′ 𝑠 = −𝑥0 𝐾𝑠𝑖𝑛 𝐾𝑠 + 𝑥′0𝑐𝑜𝑠( 𝐾𝑠)

These equation can now be expressed in matrix form 

𝑥
𝑥′ 𝑠

= 𝑀
𝑥
𝑥′ 𝑠0

𝑀 =
𝑐𝑜𝑠 𝐾𝑠

𝑠𝑖𝑛( 𝐾𝑠)

𝐾

− 𝐾𝑠𝑖𝑛 𝐾𝑠 𝑐𝑜𝑠( 𝐾𝑠)



For 𝐾 > 0, this is focusing

Horizontal Focusing
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𝑀 =
𝑐𝑜𝑠 𝐾𝑠

𝑠𝑖𝑛( 𝐾𝑠)

𝐾

− 𝐾𝑠𝑖𝑛 𝐾𝑠 𝑐𝑜𝑠( 𝐾𝑠)

𝑥′′ + 𝐾𝑥 = 0

For 𝐾 < 0, this is defocusing 𝑥′′ − 𝐾𝑥 = 0

𝑐𝑜𝑠 𝑖𝑥 = cosh(𝑥)

−𝑖𝑠𝑖𝑛 𝑖𝑥 = sinh(𝑥)

𝑥 𝑠 = 𝐴𝑐𝑜𝑠 𝐾𝑠 + 𝐵𝑠𝑖𝑛( 𝐾𝑠)

𝑀 =
𝑐𝑜𝑠ℎ 𝐾𝑠

𝑠𝑖𝑛ℎ( 𝐾𝑠)

𝐾

𝐾𝑠𝑖𝑛ℎ 𝐾𝑠 𝑐𝑜𝑠ℎ( 𝐾𝑠)



Fields of this shape lead to focusing when 0 < 𝑛 < 1

Weak Focusing

K. Badgley | ASP2452

𝐵𝑦 𝑥 = 𝐵0 +
𝑑𝐵𝑦

𝑑𝑥
𝑥 𝐵𝑥 𝑦 =

𝑑𝐵𝑥
𝑑𝑦

𝑦 𝑛 = −
𝜌

𝐵0
𝑔

Define a field index 



Several early machines relied on weak focusing 

• Cyclotrons relied on the uneven field between poles

– First cyclotron built by 

Ernest Lawrence in 1930, 4” diam.

• The Betatron, first built by Donald Kerst in 1940, uses this field 

shape

• In 1943, Marcus Oliphant develops the idea for the synchrotron

– The most famous weak focusing was the Bevatron built at Berkely 

in 1954, led to the discovery of the antiproton( Nobel Prize)  

Weak Focusing
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Drift Space
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For 𝐾 = 0, this is just a drift space of length 𝐿

𝑀 =
1 𝐿
0 1

Slope hasn’t changed

𝑥(𝑠)

𝑥′(𝑠)
=

1 𝐿
0 1

𝑥(0)

𝑥′(0)

𝑥 𝑠 = 𝑥 0 + 𝐿𝑥′(0)

𝑥

𝑠

𝑥 (0)

𝑥(𝐿)

𝐿

𝑥′(0) = 𝑥′(𝐿)

𝑥
𝑥′ 𝑠

= 𝑀
𝑥
𝑥′ 𝑠0



For a focusing quadrupole of length L

Thin Lens Approximation
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𝑀 =
𝑐𝑜𝑠 𝐾𝐿

𝑠𝑖𝑛( 𝐾𝐿)

𝐾

− 𝐾𝑠𝑖𝑛 𝐾𝐿 𝑐𝑜𝑠( 𝐾𝐿)

If the focal length is much longer than the length of the 

quadrupole

𝑓

𝑓 =
1

𝑘𝐿
≫ 𝐿

We can rewrite the focusing and defocusing matrices as:

𝑀𝐹 = −

1 0
1

𝑓
1 𝑀𝐷 =

1 0
1

𝑓
1

𝑓 =
𝐵𝜌

𝑔𝐿
𝑘 =

𝑔

𝐵𝜌



Focusing Thin Lens
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𝑥
𝑥′ 𝑠

= 𝑀
𝑥
𝑥′ 𝑠0

𝑥(𝑠)

𝑥′(𝑠)
= −

1 0
1

𝑓
1

𝑥(0)

𝑥′(0)

𝑥 𝑠 = 𝑥 0

𝑥′(0) = 𝑥′ 0 −
1

𝑓
𝑥(0)

Initial position hasn’t changed

Slope changed

𝑀𝐹 = −

1 0
1

𝑓
1



Particle trajectory is perpendicular to the dipole edge

Sector Dipole Bend
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Horizontal plane: 𝐾 = ൗ1 𝜌2 − 𝑘

Vertical plane: 𝐾 = 𝑘

If 𝑘 = 0, 𝐿 = 𝜌𝜃

𝑀𝐻 =

𝑐𝑜𝑠𝜃 𝜌𝑠𝑖𝑛𝜃

−
1

𝜌
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

𝑀𝑉 =
1 𝜌𝜃
0 1

r = bending radius
q = bending angle

Looks like drift



A simple beam line can now be constructed by combining these 

elements as a product of the matrices

Transfer Matrices
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𝑀 = 𝑀𝑁 ∙ ⋯ ∙ 𝑀4 ∙ 𝑀3 ∙ 𝑀2 ∙ 𝑀1

From 
𝑥0
𝑥′0

, the final position and divergence of the particle are 
𝑥1
𝑥′1

𝑥1
𝑥′1

= 𝑀
𝑥0
𝑥′0

The elements of the transfer matrix can be referenced with the 

following notation:

𝑀 =
𝑚11 𝑚12

𝑚21 𝑚22



Strong Focusing
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A common combination is a focusing(F) quadrupole followed by a 

drift, then a defocusing(D) quadrupole, and another drift. Often 

referred to as FODO or doublet

The result of this doublet, no matter the order FODO or DOFO, results 

in a net focusing in the horizontal and vertical direction

Strong focusing also has 
tunes greater than 1



FODO
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F D

L L

The particle moves from left to right, first encountering the F 

quadrupole, so we apply that matrix first, and so on 

𝑀 =
1 𝐿
0 1

1 0
1

𝑓
1

1 𝐿
0 1

−
1 0
1

𝑓
1 =

1 −
𝐿

𝑓
−

𝐿

𝑓

2
2𝐿 +

𝐿2

𝑓

−𝐿

𝑓2
1 +

𝐿

𝑓

𝑥
𝑥′ 𝑠

= 𝑀
𝑥
𝑥′ 𝑠0

This is only for the x or y, the sign of the quadrupole will need to 

change for the other plane



We will build our accelerator out of cells which are periodic such 

that:

Periodic
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C is the length of a cell, could be circumference of a circular machine 
or the length of a FODO cell



The equations of motion found previously:

Twiss Parameters
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𝑥′′ + 𝐾𝑥 = 0 If K  = constant => motion of harmonic oscillator

If K varies with s : Hill’s equation (well studied D. E.)𝑥′′ + 𝐾(𝑠)𝑥 = 0

The solution of the Hill equation is given by:

𝑥(𝑠) = 𝐴𝑤(𝑠) 𝑐𝑜𝑠 ψ 𝑠 + 𝛿

Constants of integration

𝑥(𝑠) = 𝑤(𝑠) (𝐴1cosψ 𝑠 + 𝐴2sinψ 𝑠 )

The constants can be distributed and the solution written:

𝑥′ 𝑠 = 𝐴1𝑤
′ +

𝐴2𝑘

𝑤
𝑐𝑜𝑠ψ 𝑠 + 𝐴2𝑤

′ −
𝐴1𝑘

𝑤
sinψ 𝑠



As before, solving for initial conditions of 𝑥, 𝑥′ at 𝑠 = 𝑠0

Twiss Parameters
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𝐴1 =
𝑥0
𝑤(𝑠) 𝐴2 =

𝑥′0𝑤(𝑠) − 𝑥0𝑤′(𝑠)

𝑘

Matrix for propagation over one period, 𝑠0 𝑡𝑜 𝑠0 + 𝐶

𝑥
𝑥′ 𝑠0+𝐶

=
𝑐𝑜𝑠∆ψ −

𝑤𝑤′

𝑘
𝑠𝑖𝑛∆ψ

𝑤2

𝑘
𝑠𝑖𝑛∆ψ

−
1 + 𝑤𝑤′/𝑘 2

𝑤2/𝑘
𝑠𝑖𝑛∆ψ 𝑐𝑜𝑠∆ψ +

𝑤𝑤′

𝑘
𝑠𝑖𝑛∆ψ

𝑥
𝑥′ 𝑠0

∆ψ = න
𝑠0

𝑠0+𝐶 𝑘𝑑𝑠

𝑤2(𝑠)
Phase of particle’s oscillation 

advances by  



We can define new variables

Twiss Parameters
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𝑥
𝑥′ 𝑠0+𝐶

=
𝑐𝑜𝑠∆ψ −

𝑤𝑤′

𝑘
𝑠𝑖𝑛∆ψ

𝑤2

𝑘
𝑠𝑖𝑛∆ψ

−
1 + 𝑤𝑤′/𝑘 2

𝑤2/𝑘
𝑠𝑖𝑛∆ψ 𝑐𝑜𝑠∆ψ +

𝑤𝑤′

𝑘
𝑠𝑖𝑛∆ψ

𝑥
𝑥′ 𝑠0

𝛽(𝑠) =
𝑤2(𝑠)

𝑘

𝛼 𝑠 = −
1

2

𝑑𝛽 𝑠

𝑑𝑠
= −

1

2

𝑑

𝑑𝑠

𝑤2(𝑠)

𝑘

𝛾 𝑠 =
1 + 𝛼2

𝛽

∆ψ = න
𝑠0

𝑠0+𝐶 𝑑𝑠

𝛽 (𝑠)

The phase advance becomes:

𝛼, 𝛽, 𝛾 are the Twiss parameters



The 𝛼, 𝛽, 𝛾 functions can also be transformed using the elements of 

the transport matrix

Twiss Parameters
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𝑥
𝑥′ 𝑠0+𝐶

=
𝑐𝑜𝑠∆ψ + 𝛼𝑠𝑖𝑛∆ψ 𝛽𝑠𝑖𝑛∆ψ

−𝛾𝑠𝑖𝑛∆ψ 𝑐𝑜𝑠∆ψ − 𝛼𝑠𝑖𝑛∆ψ
𝑥
𝑥′ 𝑠0

The matrix simplifies to:

or even more succinctly to:

𝑀 = 𝑐𝑜𝑠𝜇
1 0
0 1

+ 𝑠𝑖𝑛𝜇
𝛼 𝛽
−𝛾 −𝛼

𝜇 = ∆ψ
phase advance over C



Betatron Motion
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We can now describe the particle motion or oscillation 

𝑥(𝑠) = 𝐴 𝛽(𝑠)𝑐𝑜𝑠 ψ 𝑠 + 𝛿

∆ψ = න
𝑠0

𝑠0+𝐶 𝑑𝑠

𝛽 (𝑠)

Betatron function defines the 

beam envelope, similar to 

wavenumber

Deviation from 

nominal in one plane

Phase 

advance

Phase advance in one turn 

“Betatron Tune” Qx,y =
1

2π
ර

ds

βx,y (s)

Small 𝛽 –lots of oscillations
Large 𝛽 –few oscillations  



Betatron Oscillation
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Betatron oscillation 

• Beta function           : 

– Describes the envelope of the betatron oscillation in an accelerator 

 

• Phase advance: 

• Betatron tune: number of betatron oscillations in one orbital turn  

   

bx (s)

   

y(s) =
1

b x (s)
0

s

ò ds

 

Qx =
y(0 |C)

2p
=

ds

b x (s)
ò /2p =

R

áb x ñ

• Sinusoidal motion in vertical and horizontal are known as 

betatron oscillations

• The betatron function represents a bounding envelope to 

the beam motion, not the beam motion itself

• Particles oscillate around the closed orbit, a number of 

times which is determined by the betatron tune



• The calculations with multiple elements can get complex 

quickly, so we can turn to computer codes

• MAD-X is one of the standard codes, but there are many 

others

Computer Codes for Accelerator Design
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E. Prebys using g4beamline



Beam Envelope
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E. Prebys using g4beamline



Tune
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Why is the tune so important?

• If not carefully chosen, it can lead to harmful resonances 

which in turn can lead to beam blow-up

• Integer values should be avoided 𝑄𝑥 , 𝑄𝑦 = 𝑚

• Coupling between the x and y motion can also result from 

magnet or alignment errors 

Coupling tunes to avoid:

– Integer sum 

• 𝑄𝑥 + 𝑄𝑦 = 𝑚

– Half integer tunes 

• 2𝑄𝑥 = ±𝑚, 2𝑄𝑦 = ±𝑚

– Walknsaw resonance 

• 𝑄𝑥 − 2𝑄𝑦 = 𝑚, ±3𝑄𝑥= 𝑚

– Other higher order 

Tune diagram showing the first(red), 
second(blue), and third(green) order resonances



To be continued…
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Bonus Slides
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Laplace’s Equation

73

∇2𝐹 =
𝜕2𝐹

𝜕𝑥2
+
𝜕2𝐹

𝜕𝑦2
= 0

In a region free of currents and permeable materials, two 
dimensional magnetic fields can be derived from Laplace’s equation

Any analytic function of a complex variable satisfies Laplace’s 
equation
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Complex Functions

74

𝐹 𝕫 = 𝑨 + 𝑖𝑉 = ෍

𝑛=1

∞

𝐶𝑛𝕫
𝑛𝕫 = 𝑥 + 𝑖𝑦

A complex function is analytic if it converges with its power series in a
domain D. To be analytic, the real and imaginary parts of the function
must obey the Cauchy-Riemann equations.

𝐹 𝑥 + 𝑖𝑦 = 𝐹𝑥 𝑥, 𝑦 + 𝑖𝐹𝑦(𝑥, 𝑦) = ෍

𝑛=1

∞

𝐶𝑛(𝑥 + 𝑖𝑦)𝑛

𝑥, 𝑦 ∈ 𝐷

𝜕𝐹𝑥
𝜕𝑥

−
𝜕𝐹𝑦
𝜕𝑦

= 0

𝜕𝐹𝑥
𝜕𝑦

+
𝜕𝐹𝑦
𝜕𝑥

= 0
Augustin Louis Cauchy
French 1789-1857

Bernhard Riemann
German 1826-1866
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Analytic Complex Function 

75

𝜕𝐹𝑥
𝜕𝑥

−
𝜕𝐹𝑦
𝜕𝑦

= 0

𝜕𝐹𝑥
𝜕𝑦

+
𝜕𝐹𝑦
𝜕𝑥

= 0

𝐹 𝑥 + 𝑖𝑦 = 𝐹𝑥 𝑥, 𝑦 + 𝑖𝐹𝑦(𝑥, 𝑦) 𝐹 𝕫 = 𝑨 + 𝑖𝑉

𝐶𝑎𝑢𝑐ℎ𝑦 − 𝑅𝑖𝑒𝑚𝑎𝑛𝑛:

𝜕𝑨

𝜕𝑥
−
𝜕𝑉

𝜕𝑦
= 0

𝜕𝑨

𝜕𝑦
+
𝜕𝑉

𝜕𝑥
= 0

𝜕𝑨

𝜕𝑥
=
𝜕𝑉

𝜕𝑦

𝜕𝑨

𝜕𝑦
= −

𝜕𝑉

𝜕𝑥
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Vector potential

• Using 𝜵 ∙ 𝑩 = 0, we can define a vector potential 𝐴 such that 

𝑩 = 𝜵 × 𝑨

• Adding a gradient to this potential (𝑨′ = 𝑨 + 𝛻𝑓) still satisfies 

𝜵 × 𝑨′ = 𝜵 × 𝑨 + 𝜵 × 𝜵𝑓 = 𝑩

Scalar potential

• For charge and magnetic material free regions, 𝜵 × 𝑩 = 0
and we can define a scalar potential

76

0 

𝐵 = −𝜵𝑉

𝐹 𝕫 = 𝑨 + 𝑖𝑉
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The function of a complex variable

𝑭 = 𝑨 + 𝑖𝑉

A : Vector potential
V : Scalar potential

𝑩 = 𝜵 × 𝑨 =

𝒊 𝒋 𝒌
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝐴𝑥 𝐴𝑦 𝐴𝑧

𝑩 = −𝜵𝑉 = − 𝒊
𝜕𝑉

𝜕𝑥
+ 𝒋

𝜕𝑉

𝜕𝑦
+ 𝒌

𝜕𝑉

𝜕𝑧

𝜵 × 𝑩 = 𝜵 × 𝜵 × 𝑨 = 𝜵 𝜵 ∙ 𝑨 − 𝜵𝟐𝑨 = 0

0 (Coulomb gauge)

𝜵𝟐𝑨 = 0

A satisfies the Laplace equation!

𝜵 ∙ 𝑩 = 𝜵 ∙ −𝜵𝑉 = −𝜵𝟐𝑉 = 0 𝜵𝟐𝑉 = 𝟎

V also satisfies the Laplace equation!

The complex function 𝑭 = 𝑨 + 𝑖𝑉 must also satisfy the Laplace equation 
𝜵𝟐𝑭 = 0

77
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Fields from the 2D function of a complex variable

𝜕𝑨

𝜕𝑥
=
𝜕𝑉

𝜕𝑦

𝜕𝑨

𝜕𝑦
= −

𝜕𝑉

𝜕𝑥

𝑩 = −𝜵𝑉 = − 𝒊
𝜕𝑉

𝜕𝑥
+ 𝒋

𝜕𝑉

𝜕𝑦
+ 𝒌

𝜕𝑉

𝜕𝑧

𝐵𝑥 = −
𝜕𝑉

𝜕𝑥
𝐵𝑦 = −

𝜕𝑉

𝜕𝑦

𝐵𝑥 = −
𝜕𝑉

𝜕𝑥
=
𝜕𝐴

𝜕𝑦
𝐵𝑦 = −

𝜕𝑉

𝜕𝑦
= −

𝜕𝐴

𝜕𝑥

𝑭′ 𝕫 =
𝜕𝐹(𝕫)

𝜕𝕫
=
𝜕𝑨 + 𝑖𝜕𝑉

𝜕𝑥 + 𝑖𝜕𝑦

𝐶𝑎𝑢𝑐ℎ𝑦 − 𝑅𝑖𝑒𝑚𝑎𝑛𝑛:
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Fields from the 2D function of a complex variable

𝕫 = 𝑥 + 𝑖𝑦𝑭 𝕫 = 𝑨 + 𝑖𝑉, 𝑭′ 𝕫 =
𝜕𝐹(𝕫)

𝜕𝕫
=
𝜕𝑨 + 𝑖𝜕𝑉

𝜕𝑥 + 𝑖𝜕𝑦

𝑩
∗
= 𝐵𝑥 − 𝑖𝐵𝑦 = 𝑖𝑭′ 𝕫

79

𝑭′ 𝕫 = −𝑖𝐵𝑥 − 𝐵𝑦𝑭′ 𝕫 = −𝐵𝑦 − 𝑖𝐵𝑥

𝑭′ 𝕫 =

𝜕𝑨
𝜕𝑥

+ 𝑖
𝜕𝑉
𝜕𝑥

𝜕𝑥
𝜕𝑥

+ 𝑖
𝜕𝑦
𝜕𝑥

𝑭′ 𝕫 =

𝜕𝑨
𝜕𝑦

+ 𝑖
𝜕𝑉
𝜕𝑦

𝜕𝑥
𝜕𝑦

+ 𝑖
𝜕𝑦
𝜕𝑦

𝑭′ 𝕫 =
𝜕𝑨

𝜕𝑥
+ 𝑖

𝜕𝑉

𝜕𝑥
𝑭′ 𝕫 = −𝑖

𝜕𝑨

𝜕𝑦
+
𝜕𝑉

𝜕𝑦

𝜕𝑥 𝜕𝑦

𝐵𝑦 + 𝑖𝐵𝑥 = −𝑭′ 𝕫

𝐵𝑥 = −
𝜕𝑉

𝜕𝑥
=
𝜕𝐴

𝜕𝑦

𝐵𝑦 = −
𝜕𝑉

𝜕𝑦
= −

𝜕𝐴

𝜕𝑥
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• Scalar “dot” product

• Vector “cross” product

Vector Operations
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Ԧ𝐴 ∙ 𝐵 = 𝐴𝐵𝑐𝑜𝑠 𝜃 = | Ԧ𝐴||𝐵|cos(𝜃)

𝑨

𝜃

𝑩

𝐵𝑐𝑜𝑠(θ)

Ԧ𝐶 = Ԧ𝐴 × 𝐵 = 𝐴𝐵𝑠𝑖𝑛(𝜃)

𝑨

𝜃

𝑩𝑪

Resulting vector perpendicular to 
the plane formed by A and B



Differential Operators
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– Grad operator

– Gradient

– Divergence

– Curl



Maxwell’s Equations
(in vacuum)

𝛻 ∙ 𝑬 =
𝜌

𝜀𝑜

𝛻 ∙ 𝑩 = 0

𝛻 × 𝑬 = −
𝜕𝑩

𝜕𝑡

𝛻 × 𝑩 = 𝜇𝑜𝑱 + 𝜇𝑜𝜀𝑜
𝜕𝑬

𝜕𝑡

Gauss’s law

Faraday’s law

Ampere’s law

඾𝑬 ∙ 𝑑𝑨 =
𝑄

𝜀𝑜

඾𝑩 ∙ 𝑑𝑨 = 0

ර𝑬 ∙ 𝑑𝒍 = −ඵ
𝜕𝑩

𝜕𝑡
∙ 𝑑𝑨

ර𝑩 ∙ 𝑑𝒍 = 𝜇𝑜𝑰 + 𝜇𝑜𝜀𝑜ඵ
𝜕𝑬

𝜕𝑡
∙ 𝑑𝑨
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James Clerk Maxwell
Scottish 1831-1879
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The total electric flux through a closed surface is equal to 

the total (net) electric charge inside the surface, divided by 

𝜖0

Gauss’s Law
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Φ𝐸 =඾𝑬 ∙ 𝑑𝑨 =
𝑄𝑒𝑛𝑐𝑙
𝜖0

𝜖𝑜 𝑖𝑠 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 8.85418781762× 10−12 A2⋅s4⋅kg−1⋅m−3

඾𝑩 ∙ 𝑑𝑨 = 0

No known 
magnetic 
monopoles



The integrated electric field around any closed loop is 

proportional to the rate of change of the magnetic flux 

passing through the loop

Faraday’s Law
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ර𝑬 ∙ 𝑑𝒍 = −ඵ
𝜕𝑩

𝜕𝑡
∙ 𝑑𝑨



The current passing through a surface is equal to the line 

integral of the B field around that closed surface

Ampere’s Law
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ර𝑩 ∙ 𝑑𝒍 = 𝜇𝑜𝑰 + 𝜇𝑜𝜀𝑜ඵ
𝜕𝑬

𝜕𝑡
∙ 𝑑𝑨

“Displacement current” 
in charging capacitor 
for example

Enclosed current

I

B

B


