

Fundamentals of Particle Accelerators I

Dr. Karie Badgley ASP 2024- Morocco

Fermilab

Fermilab Preserve West Chicago West Chicago Community High School ane County Cougars 38 ox Valley Ice Arena Vancouver WASHINGTON ALDI Inc Corporate Headquarters 🛄 The OREGON Kress Creek Farms Park NEVA E Wilson San Francisco CALIFORNIA Mack Rd Pine Sr Los Angel Blackw Forest Pres San Diego • Summerlakes Park Goodwill Store & Donation Center hart Supercenter DuPage County

Fermilab

‡ Fermilab

Muon Experiments

K. Badgley | ASP24

PIP-II

Upgrade to accelerator to enable experiments such as DUNE

Overview

- Why accelerate particles
- A bit of accelerator history
- Components of an accelerator
- Magnets
- Equations of Transvers Motion
 Weak Focusing
- Matrix Representation
- Strong Focusing
- Betatron motion

Accelerators Worldwide

K. Badgley | ASP24

Accelerator Applications

Accelerator Applications- Medicine

Of the ~35,000 accelerators worldwide, roughly half are medical

Proton Therapy

Reduce dose to surrounding healthy tissue

Isotope Production

Mo-99 to Tc-99m

Imaging

Device Sterilization

Looking to replace ethlylene oxide and cobalt-60 with x-rays from electron beams

🛟 Fermilab

Accelerator Applications- Security

Cargo containers scanned at ports and border crossings

Accelerator-based sources of X-Rays can be far more penetrating (6MV) than Co-60 sources.

Container must be scanned in 30 seconds.

Image: dutch.euro

Accelerator Applications- Energy/Environment

Accelerator Applications- Energy/Environment

Wastewater treatment

High energy electron to break down pollutants

Accelerator on a truck

Use electron beam to resurface road

...and so many more!

🛟 Fermilab

The Accelerator is Born

- 1919 Ernst Rutherford called for "copious supply" of particles more energetic than produced by natural radioactive sources
- 1924 Gustav Ising developed the concept of a linear particle accelerator (Linac)
- 1928 Rolf Wideröe builds the first linac in Aachen, Germany
 - He first tried to build a betatron, but when that was unsuccessful, switched to a linac for his thesis

Wideröe, Über ein neues Prinzip zur Herstellung hoher Spannungen, Archiv für Elektrotechnik 21, 387 (1928)

Livingston Plot

- It was estimated in a 2014 Symmetry article that there were over 30,000 operating particle accelerators
- In his 1954 book, Stanley Livingston noted that advances in accelerator technology allowed a factor of 10 increase in energy every 6-7 years

https://www.symmetrymagazine.org/article/o ctober-2009/deconstruction-livingston-plot

Laboratory energy of particles colliding with a proton at rest to reach the same center of mass energy

🛟 Fermilab

Units

1 eV= energy of a particle q = e when accelerated across a 1 V potential

 $e = 1.6 \times 10^{-19} C$ $1 eV = 1.6 \times 10^{-19} J$

Through the relationship between mass and energy, the rest mass can also be expressed in terms of eV

$$U = mc^2$$

Particle	Rest Mass, kg	Rest mass, eV/c ²
Electron, e^-	9.11×10^{-31}	$0.511 imes 10^{6}$
Proton, e ⁺	1.67×10^{-27}	938×10^{6}

When we refer to the energy of a particle, it is the kinetic energy

Fermilab

Anatomy of an Accelerator

Charged particles

Thermionic- heated cathode

to induce emission

www.thermofisher.com

Source

- Electrons
- Protons
- lons

Photo emission - light to produce electrons through photoelectric effect

Field emission - strong E field

lon source – electron ionization, plasma, ...

🛠 Fermilab

Electromagnetic force on a charged particle

- Force from the Electric field is the direction of particle velocity
 Used to accelerate the particle in the direction of the E field
- Force from the magnetic field is perpendicular to particle velocity
 - Used to bend and focus the particle

Electromagnetic force on a charged particle

Loretnz Force:

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

- Magnitude of Force
 - Force from magnetic field scales with velocity
 - Velocity of high energy particle $\sim 3x10^8$ m/s
 - Using a high E field of 1 MV/m and medium B field of 1 T the force from the B field will be ~300 times stronger

$$\frac{\vec{v}\times\vec{B}}{\vec{E}}\approx\frac{3\times10^8}{1\times10^6}\approx300$$

Anatomy of an Accelerator

Source

- **Electric Field**
- Electrons

– Protons

- Electrostatic(DC)
- Time-varying(AC)

lons

More on this when we get to longitudinal motion next lecture

Anatomy of an Accelerator

Source

Electric Field

– DC

- Electrons
- Protons AC
- lons

Magnets

- Dipole
- Quadrupole
- Sextupole

— ...

Types of magnets

- Dipoles bending (transport, energy selection...)
- Quadrupoles focusing
- Sextupoles correction
- Combined function
- Correctors
- Septa
- Kickers
- Solenoids

Less common/specialty magnets

╋

Magnetic Field Harmonics

The magnetic field can be found from the expansion*:

More slides in the backup if anyone is curious about this

$$B_{y} + iB_{x} = n \sum_{n=1}^{\infty} C_{n} \mathbb{Z}^{n-1} = n \sum_{n=1}^{\infty} C_{n} (x + iy)^{n-1}$$

Plugging in C_n , it takes the form:

 $C_n = (B_n + iA_n)$

$$B_{y} + iB_{x} = \sum_{n} (B_{n} + iA_{n}) (x + iy)^{n-1} = B_{0} \sum_{n} (b_{n} + ia_{n}) (x + iy)^{n-1}$$

where B_0 is the reference field, the coefficients b_n and a_n correspond to normal and skew terms, and n gives the order of the pole

n=1 corresponding to a dipole, n=2 a quadrupole, n=3 a sextupole...

Dipole (two pole, n=1)

$$B_{y} + iB_{x} = \sum_{n} (B_{n} + iA_{n}) (x + iy)^{n-1}$$
$$B_{y} + iB_{x} = (B_{1} + iA_{1})(x + iy)^{0} = B_{1} + iA_{1}$$

Equate real and imaginary parts:

$$B_{y} = B_{1} \qquad \qquad iB_{x} = iA_{1}$$

"Normal": C=real, $A_1=0$ "Skew": C=imaginary, $B_1=0$

$$B_{y} = B_{1}$$
$$B_{x} = 0$$
$$B_{y} = 0$$

N

Force?

🛟 Fermilab

25

Window frame dipole

H dipole

K. Badgley | ASP24

Dipoles

Quadrupole (four pole, n=2)

28

🛠 Fermilab

$$B_{y} + iB_{x} = n \sum_{n=1}^{\infty} C_{n} \mathbb{Z}^{n-1} = n \sum_{n=1}^{\infty} C_{n} (x + iy)^{n-1}$$

 $B_y + iB_x = 2(C_2)(x + iy)^1 = 2C_2x + i2C_2y$

Normal, C is real:

$B_y = 2C_2 x$	$B_x = 2C_2 y$	$\frac{\partial B_y}{\partial x} = 2c_2 = g$	$\frac{\partial B_x}{dy} = 2c_2 = g$
Skew, C is imagi	nary:	B = g	$gy\hat{x} + gx\hat{y}$
$B_{\chi} = 2C_2 x$	$B_y = -2C_2 y$	Gi	radient (T/m)

 \sim -

The quadrupole field varies linearly with the distance from the magnet center. It **focuses** the beam in one direction and **defocuses** in the other. An F or focusing quadrupole focuses the particle beam along the horizontal plane.

K. Badgley | ASP24

Quadrupole

ALBA SR Quadrupole

Panofsky Quadrupole

Fermilab Quadrupole

K. Badgley | ASP24

Sextupole (six pole, n=3)

$$B_y + iB_x = -n\sum_{n=1}^{\infty} C_n (x + iy)^{n-1}$$

 $B_y + iB_x = -3C_3 (x + iy)^2 \implies B_y + iB_x = -3C_3 (x^2 - y^2) - i6C_3 xy$

Normal, C is real:

$$B_x = -6C_3 xy \qquad B_y = -3C_3(x^2 - y^2)$$
$$\frac{\partial^2 B_y}{\partial x^2} = B'' = -6C_3$$
$$B_x = B'' xy \qquad B_y = \frac{B''}{2}(x^2 - y^2)$$

The sextupole field varies *quadratically* with the distance from the magnet center. It's purpose is to effect the beam at the edges. An *F* sextupole will steer the particle beam toward the center of the ring. Note that the sextupole also steers along the 60 and 120 degree lines.

Sextupole

ALBA SR Sextupole

Sextupole (FNAL)

K. Badgley | ASP24

Optics Analogy

Anatomy of an Accelerator

Source

Electric Field

- Electrons – DC
- -AC– Protons
- lons
- Power Supplies
- Cryogenics
- **Beam diagnostics**
- Control system

Magnets

Vacuum system

- Dipole
- Quadrupole
- Sextupole

Equations of Transverse Motion

$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

Motion in a uniform B field

$$\vec{F} = q(\vec{v} \times \vec{B}) = m \frac{v^2}{\rho}$$
$$qvB = \frac{\gamma m_0 v^2}{\rho}$$

In terms of momentum, $p = \gamma m_0 v$

 $\frac{p}{q} = B\rho$

Magnetic rigidity How hard a particle is to deflect [T m]

 $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$

 \overrightarrow{B}

 $qB = \frac{p}{\rho}$

Comparison of Particle Colliders To reach higher and higher collision energies, scientists have built and proposed larger and larger machines.

Equations of motion

Particle motion will be expanded about the ideal or design trajectory (x, y)

$$\vec{B} = (B_x, B_y, 0)$$

Reference frame:

x : horizontal
y : vertical
s : longitudinal-along the
ideal trajectory(x=y=0)

😤 Fermilab

Equations of motion

$$\vec{B} = (B_x, B_y, 0)$$

Particle motion will be expanded about the ideal or design trajectory (x, y)

 $F_x = -qvB_y = ma_{rad}$

 $F_y = qvB_x$ Radial acceleration:

$$a_{rad} = \frac{d^2r}{dt^2} - r\left(\frac{d\theta}{dt}\right)^2$$

 $r \rightarrow \rho + x$

$$F_{x} = m \frac{d^{2}(\rho + x)}{dt^{2}} - m(\rho + x) \left(\frac{d\theta}{dt}\right)^{2} = -qvB_{y}$$

🛟 Fermilab

Equations of motion- Horizontal

🚰 Fermilab

Equations of motion- Horizontal

$$F_x = m\frac{d^2x}{dt^2} - \frac{mv^2}{\rho + x} = -qvB_y$$

 $x \ll \rho$ so we can do a Taylor expansion

$$f(x) = f(x_0) + \frac{(x - x_0)}{1!} f'(x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) + \dots$$

$$\frac{1}{\rho+x} \approx \frac{1}{\rho} - \frac{x}{\rho^2} + \dots \approx \frac{1}{\rho} \left(1 - \frac{x}{\rho} \right)$$

$$F_x = m\frac{d^2x}{dt^2} - \frac{mv^2}{\rho}\left(1 - \frac{x}{\rho}\right) = -qvB_y$$

Equations of motion- Horizontal

$$F_x = m\frac{d^2x}{dt^2} - \frac{mv^2}{\rho}\left(1 - \frac{x}{\rho}\right) = -qvB_y$$

Divide by m and multiply the r.h.s. by v/v

$$\frac{d^2x}{dt^2} - \frac{v^2}{\rho} \left(1 - \frac{x}{\rho}\right) = \frac{-qv^2 B_y}{mv}$$

 $\frac{q}{p} = \frac{1}{B\rho}$

$$\frac{d^2x}{dt^2} - \frac{v^2}{\rho} \left(1 - \frac{x}{\rho}\right) = \frac{-v^2 B_y}{B\rho}$$

Equations of motion

$$\frac{d^2x}{dt^2} - \frac{v^2}{\rho} \left(1 - \frac{x}{\rho}\right) = \frac{-v^2 B_y}{B\rho}$$

We can also do a Taylor expansion of the B_y field about the reference orbit if we assume $\frac{dB_y}{dx}$ is small $B_y(x) = B_0 + \frac{dB_y}{dx}x + \cdots$ Define the gradient $g = \frac{dB_y}{dx}$

$$B_{\mathcal{Y}}(x) = B_0 + gx + \cdots$$

$$\frac{d^2x}{dt^2} - \frac{v^2}{\rho} \left(1 - \frac{x}{\rho} \right) = \frac{-v^2(B + gx)}{B\rho} = \frac{-v^2}{\rho} - \frac{v^2gx}{B\rho}$$

Equations of motion - Horizontal

$$\frac{d^2x}{dt^2} - \frac{v^2}{\rho} \left(1 - \frac{x}{\rho}\right) = \frac{-v^2}{\rho} - \frac{v^2gx}{B\rho} \implies \frac{d^2x}{dt^2} + \left(\frac{v^2x}{\rho^2}\right) = -\frac{v^2gx}{B\rho}$$

Convert from t to s

$$\begin{aligned} \frac{dx}{dt} &= \frac{dx}{ds}\frac{ds}{dt} & \frac{d^2x}{dt^2} = \frac{d}{dt}\left(\frac{dx}{ds}\frac{ds}{dt}\right) = \frac{d}{ds}\left(\frac{dx}{ds}\frac{ds}{dt}\right)\frac{ds}{dt} \\ \frac{d^2x}{dt^2} &= x''v^2 & x'v \end{aligned}$$

$$\frac{d^2xv^2}{ds^2} + \left(\frac{v^2x}{\rho^2}\right) = -\frac{v^2gx}{B\rho} \qquad \Longrightarrow \qquad \frac{d^2x}{ds^2} + \frac{x}{\rho^2} + \frac{gx}{B\rho} = 0$$

Equations of motion - Horizontal

$$\frac{d^2x}{ds^2} + \frac{x}{\rho^2} + \frac{gx}{B\rho} = 0$$
$$x'' + \left(\frac{1}{\rho^2} + \frac{g}{B\rho}\right)x = 0$$

We can define
$$k = \frac{g}{B\rho}$$

$$x'' + \left(\frac{1}{\rho^2} + k\right)x = 0$$

and
$$K = \frac{1}{\rho^2} + k$$

$$x^{\prime\prime}+Kx=0$$

Equations of Motion - Vertical

A similar treatment of the vertical motion yields

$$\frac{d^2 y}{ds^2} - \frac{dB_x}{dy} \frac{y}{B\rho} = 0 \qquad B_x(y) = \frac{dB_x}{dy} y + \cdots$$
$$\frac{d^2 y}{g} - \frac{gy}{B\rho} = 0 \qquad \text{We can define } k = \frac{g}{B\rho}$$

$$y^{\prime\prime}-ky=0$$

Quick Aside on Springs

The form of this equation should look familiar

Recall Hooke's law for a mass, m, on a spring, k $\vec{F} = -k\vec{x}$

|x'' + Kx = 0|

Solutions to the Equations of Motion

1

H

Horizontal:
$$K = \frac{1}{\rho^2} + k$$

Vertical: $K = -k$ $y'' + Ky = 0$

These look like our familiar harmonic motion equations with known solutions of the form:

$$x(s) = A\cos(\omega s) + B\sin(\omega s)$$

$$x'(s) = -A\omega \sin(\omega s) + B\omega \cos(\omega s)$$

$$x''(s) = -A\omega^2 \cos(\omega s) - B\omega^2 \sin(\omega s) = -\omega^2 x(s)$$

$$\omega = \sqrt{K}$$

Matrix Representation

 $x(s) = Acos(\sqrt{K}s) + Bsin(\sqrt{K}s)$ $x'(s) = -A\sqrt{K}sin(\sqrt{K}s) + B\sqrt{K}cos(\sqrt{K}s)$

The constants A and B can be found from initial conditions $x(0) = x_0$ $x'(0) = x'_0$ \longrightarrow $A = x_0$ $B = \frac{x'_0}{\sqrt{K}}$

$$x'(s) = -x_0\sqrt{K}sin(\sqrt{K}s) + x'_0cos(\sqrt{K}s)$$

Matrix Reminder

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} aV_1 + bV_2 \\ cV_1 + dV_2 \end{pmatrix}$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \equiv \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (ad - bc)$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (ad - bc)$$
$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = a \begin{vmatrix} e & f \\ h & i \end{vmatrix} - b \begin{vmatrix} d & f \\ g & i \end{vmatrix} + c \begin{vmatrix} d & e \\ g & h \end{vmatrix}$$

Matrix Representation

$$x(s) = x_0 cos(\sqrt{K}s) + \frac{x'_0}{\sqrt{K}}sin(\sqrt{K}s)$$
$$x'(s) = -x_0\sqrt{K}sin(\sqrt{K}s) + x'_0cos(\sqrt{K}s)$$

These equation can now be expressed in matrix form

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s} = M \begin{pmatrix} x \\ x' \end{pmatrix}_{s0} \qquad M = \begin{pmatrix} \cos(\sqrt{K}s) & \frac{\sin(\sqrt{K}s)}{\sqrt{K}} \\ -\sqrt{K}\sin(\sqrt{K}s) & \cos(\sqrt{K}s) \end{pmatrix}$$

Horizontal Focusing

For K > 0, this is focusing

$$M = \begin{pmatrix} \cos(\sqrt{K}s) & \frac{\sin(\sqrt{K}s)}{\sqrt{K}} \\ -\sqrt{K}\sin(\sqrt{K}s) & \cos(\sqrt{K}s) \end{pmatrix}$$

For
$$K < 0$$
, this is defocusing
 $x(s) = Acos(\sqrt{K}s) + Bsin(\sqrt{K}s)$
 \checkmark
 $M = \begin{pmatrix} cosh(\sqrt{K}s) & \frac{sinh(\sqrt{K}s)}{\sqrt{K}} \\ \sqrt{K}sinh(\sqrt{K}s) & cosh(\sqrt{K}s) \end{pmatrix}$

$$x^{\prime\prime} + Kx = 0$$

$$x^{\prime\prime}-Kx=0$$

cos(ix) = cosh(x)-isin(ix) = sinh(x)

Weak Focusing

Define a field index

$$B_y(x) = B_0 + \frac{dB_y}{dx}x \qquad B_x(y) = \frac{dB_x}{dy}y \qquad \qquad n = -\frac{p}{B_0}g$$

Fields of this shape lead to focusing when 0 < n < 1

Fig. 6-7. Radially decreasing magnetic field between poles of a cyclotron magnet, showing shims for field correction.

Weak Focusing

Several early machines relied on weak focusing

- Cyclotrons relied on the uneven field between poles
 - First cyclotron built by Ernest Lawrence in 1930, 4" diam.

🚰 Fermilab

 The Betatron, first built by Donald Kerst in 1940, uses this field shape

- In 1943, Marcus Oliphant develops the idea for the synchrotron
 - The most famous weak focusing was the Bevatron built at Berkely in 1954, led to the discovery of the antiproton(Nobel Prize)

Drift Space

$$\binom{x}{x'}_{s} = M \binom{x}{x'}_{s0}$$

For K = 0, this is just a drift space of length L

$$M = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} x(s) \\ x'(s) \end{pmatrix} = \begin{pmatrix} 1 & L \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x(0) \\ x'(0) \end{pmatrix}$$

$$x(s) = x(0) + Lx'(0)$$

$$x'(0) = x'(L)$$
 Slope hasn't changed

If the focal length is much longer than the length of the quadrupole 1

$$f = \frac{1}{kL} \gg L$$

We can rewrite the focusing and defocusing matrices as:

$$M_F = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \qquad \qquad M_D = \begin{pmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{pmatrix}$$

Focusing Thin Lens

$$M_F = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix}$$

$$\begin{pmatrix} x(s) \\ x'(s) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{pmatrix} \begin{pmatrix} x(0) \\ x'(0) \end{pmatrix}$$

$$\binom{x}{x'}_{s} = M \binom{x}{x'}_{s0}$$

x(s) = x(0) Initial position hasn't changed $x'(0) = x'(0) - \frac{1}{f}x(0)$ Slope changed

Sector Dipole Bend

Particle trajectory is perpendicular to the dipole edge

Horizontal plane: $K = \frac{1}{\rho^2} - k$ Vertical plane: K = k

If $k = 0, L = \rho \theta$

$$M_{H} = \begin{pmatrix} cos\theta & \rho sin\theta \\ -\frac{1}{\rho}sin\theta & cos\theta \end{pmatrix} \qquad \begin{array}{l} \rho = \text{bending radius} \\ \theta = \text{bending angle} \end{array}$$

$$M_V = \begin{pmatrix} 1 & \rho\theta \\ 0 & 1 \end{pmatrix}$$
 Looks like drift

Transfer Matrices

A simple beam line can now be constructed by combining these elements as a product of the matrices

$$M = M_N \cdot \cdots \cdot M_4 \cdot M_3 \cdot M_2 \cdot M_1$$

From $\binom{x_0}{x'_0}$, the final position and divergence of the particle are $\binom{x_1}{x'_1}$ $\binom{x_1}{x'_1} = M\binom{x_0}{x'_0}$

The elements of the transfer matrix can be referenced with the following notation:

$$M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$

Strong Focusing

59

A common combination is a focusing(F) quadrupole followed by a drift, then a defocusing(D) quadrupole, and another drift. Often referred to as FODO or doublet

The result of this doublet, no matter the order FODO or DOFO, results in a net focusing in the horizontal and vertical direction

The particle moves from left to right, first encountering the F quadrupole, so we apply that matrix first, and so on

This is only for the x or y, the sign of the quadrupole will need to change for the other plane

🚰 Fermilab

Periodic

We will build our accelerator out of cells which are periodic such that:

$$\vec{B}(x,y,s+C) = \vec{B}(x,y,s)$$

C is the length of a cell, could be circumference of a circular machine or the length of a FODO cell

The equations of motion found previously:

x'' + Kx = 0 If K = constant => motion of harmonic oscillator

x'' + K(s)x = 0 If K varies with s: Hill's equation (well studied D. E.)

The solution of the Hill equation is given by:

$$x(s) = Aw(s)\cos(\psi(s) + \delta)$$

Constants of integration

The constants can be distributed and the solution written:

 $x(s) = w(s) \left(A_1 \cos \psi(s) + A_2 \sin \psi(s) \right)$

$$x'(s) = \left(A_1w' + \frac{A_2k}{w}\right)\cos\psi(s) + \left(A_2w' - \frac{A_1k}{w}\right)\sin\psi(s)$$

As before, solving for initial conditions of x, x' at $s = s_0$

$$A_1 = \frac{x_0}{w(s)}$$
 $A_2 = \frac{x'_0 w(s) - x_0 w'(s)}{k}$

Matrix for propagation over one period, s_0 to $s_0 + C$

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s_{0}+c} = \begin{pmatrix} \cos\Delta\psi - \frac{ww'}{k}\sin\Delta\psi & \frac{w^2}{k}\sin\Delta\psi \\ -\frac{1 + (ww'/k)^2}{w^2/k}\sin\Delta\psi & \cos\Delta\psi + \frac{ww'}{k}\sin\Delta\psi \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{s_0}$$

Phase of particle's oscillation advances by

$$\Delta \psi = \int_{s_0}^{s_0 + C} \frac{k ds}{w^2(s)}$$

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s_{0+C}} = \begin{pmatrix} \cos\Delta\psi - \frac{ww'}{k}\sin\Delta\psi & \frac{w^2}{k}\sin\Delta\psi \\ -\frac{1 + (ww'/k)^2}{w^2/k}\sin\Delta\psi & \cos\Delta\psi + \frac{ww'}{k}\sin\Delta\psi \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{s_0}$$

We can define new variables

$$\beta(s) = \frac{w^2(s)}{k}$$
The phase advance becomes:

$$\alpha(s) = -\frac{1}{2} \frac{d\beta(s)}{ds} = -\frac{1}{2} \frac{d}{ds} \left(\frac{w^2(s)}{k}\right)$$

$$\Delta \psi = \int_{s_0}^{s_0+C} \frac{ds}{\beta(s)}$$

$$\gamma(s) = \frac{1+\alpha^2}{\beta}$$
 $\alpha, \beta, \gamma \text{ are the Twiss parameters}$

The matrix simplifies to:

 $\begin{pmatrix} x \\ x' \end{pmatrix}_{s_{0+C}} = \begin{pmatrix} \cos\Delta\psi + \alpha\sin\Delta\psi & \beta\sin\Delta\psi \\ -\gamma\sin\Delta\psi & \cos\Delta\psi - \alpha\sin\Delta\psi \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{s_{0}}$

or even more succinctly to:

$$M = cos\mu \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + sin\mu \begin{pmatrix} \alpha & \beta \\ -\gamma & -\alpha \end{pmatrix} \qquad \begin{array}{c} \mu = \Delta \psi \\ phase advance over C \end{array}$$

The α , β , γ functions can also be transformed using the elements of the transport matrix

$$\begin{pmatrix} \beta(s) \\ \alpha(s) \\ \gamma(s) \end{pmatrix}_{f} = \begin{pmatrix} M_{11}^{2} & -2M_{11}M_{12} & M_{12}^{2} \\ -M_{11}M_{21} & 1 + 2M_{12}M_{21} & -M_{12}M_{22} \\ M_{21}^{2} & -2M_{21}M_{22} & M_{22}^{2} \end{pmatrix} \begin{pmatrix} \beta(s) \\ \alpha(s) \\ \gamma(s) \end{pmatrix}_{i}$$

Betatron Motion

We can now describe the particle motion or oscillation

$$x(s) = A\sqrt{\beta(s)}\cos(\psi(s) + \delta)$$
Deviation from nominal in one plane Betatron function defines the beam envelope, similar to wavenumber
$$Phase \longrightarrow \Delta \psi = \int_{s_0}^{s_0+C} \frac{ds}{\beta(s)}$$
Small β -lots of oscillations Large β -few oscillations

Phase advance in one turn "Betatron Tune"

$$Q_{x,y} = \frac{1}{2\pi} \oint \frac{ds}{\beta_{x,y}(s)}$$

Betatron Oscillation

- Sinusoidal motion in vertical and horizontal are known as betatron oscillations
- The betatron function represents a bounding envelope to the beam motion, not the beam motion itself
- Particles oscillate around the closed orbit, a number of times which is determined by the betatron tune

Computer Codes for Accelerator Design

- The calculations with multiple elements can get complex quickly, so we can turn to computer codes
- MAD-X is one of the standard codes, but there are many others
 MAD Methodical Accelerator Design

Beam Envelope

E. Prebys using g4beamline

Tune

Why is the tune so important?

- If not carefully chosen, it can lead to harmful resonances which in turn can lead to beam blow-up
- Integer values should be avoided Q_x , $Q_y = m$
- Coupling between the x and y motion can also result from magnet or alignment errors
- Coupling tunes to avoid:
 - Integer sum
 - $Q_x + Q_y = m$
 - Half integer tunes
 - $2Q_x = \pm m$, $2Q_y = \pm m$
 - Walknsaw resonance
 - $Q_x 2Q_y = m, \pm 3Q_x = m$
 - Other higher order

Tune diagram showing the first(red), second(blue), and third(green) order resonances

To be continued...

Bonus Slides

K. Badgley | ASP24
Laplace's Equation

$$\nabla^2 F = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2} = 0$$

In a region free of currents and permeable materials, two dimensional magnetic fields can be derived from Laplace's equation

Any analytic function of a complex variable satisfies Laplace's equation

Complex Functions

$$\mathbb{Z} = x + iy \qquad (x, y) \in D \qquad F(\mathbb{Z}) = \mathbf{A} + iV = \sum_{n=1}^{\infty} C_n \mathbb{Z}^n$$
$$F(x + iy) = F_x(x, y) + iF_y(x, y) = \sum_{n=1}^{\infty} C_n (x + iy)^n$$

A complex function is analytic if it converges with its power series in a domain D. To be analytic, the real and imaginary parts of the function must obey the Cauchy-Riemann equations.

$$\frac{\partial F_x}{\partial x} - \frac{\partial F_y}{\partial y} = 0$$
$$\frac{\partial F_x}{\partial y} + \frac{\partial F_y}{\partial x} = 0$$

Augustin Louis Cauchy French 1789-1857

 ∞

Bernhard Riemann German 1826-1866

Analytic Complex Function

$$F(x + iy) = F_x(x, y) + iF_y(x, y) \qquad F(z) = (A + iV)$$

Cauchy – Riemann:

$F(\mathbb{Z}) = (\boldsymbol{A} + i\boldsymbol{V})$

Vector potential

- Using $\nabla \cdot B = 0$, we can define a vector potential A such that $B = \nabla \times A$
- Adding a gradient to this potential $(A' = A + \nabla f)$ still satisfies $\nabla \times A' = \nabla \times A + \nabla \times \nabla f = B$

Scalar potential

• For charge and magnetic material free regions, $\nabla \times B = 0$ and we can define a scalar potential

$$B = -\nabla V$$

The function of a complex variable

A : Vector potential*V* : Scalar potential

F = A + iV

$$\boldsymbol{B} = \boldsymbol{\nabla} \times \boldsymbol{A} = \begin{vmatrix} \boldsymbol{i} & \boldsymbol{j} & \boldsymbol{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} \qquad \qquad \boldsymbol{B} = -\boldsymbol{\nabla} \boldsymbol{V} = -\left(\boldsymbol{i} \frac{\partial V}{\partial x} + \boldsymbol{j} \frac{\partial V}{\partial y} + \boldsymbol{k} \frac{\partial V}{\partial z}\right)$$

$$\nabla \times B = \nabla \times (\nabla \times A) = \nabla (\nabla \cdot A) - \nabla^2 A = 0 \longrightarrow \nabla^2 A = 0$$

0 (Coulomb gauge) A satisfies the Laplace equation!

$$\boldsymbol{\nabla} \cdot \boldsymbol{B} = \boldsymbol{\nabla} \cdot (-\boldsymbol{\nabla} V) = -\boldsymbol{\nabla}^2 V = 0 \longrightarrow \boldsymbol{\nabla}^2 V = \mathbf{0}$$

V also satisfies the Laplace equation!

The complex function F = A + iV must also satisfy the Laplace equation $\nabla^2 F = 0$

Fields from the 2D function of a complex variable

Cauchy – Riemann:

 ∂A

дy

$\frac{\partial A}{\partial x} = \frac{\partial V}{\partial y}$	$\boldsymbol{B} = -\boldsymbol{\nabla}V = -\left(\boldsymbol{i}\frac{\partial V}{\partial x} + \boldsymbol{j}\frac{\partial V}{\partial y} + \boldsymbol{k}\frac{\partial V}{\partial z}\right)$
$\frac{\partial A}{\partial y} = -\frac{\partial V}{\partial x}$	$B_x = -\frac{\partial V}{\partial x} \qquad B_y = -\frac{\partial V}{\partial y}$

$$B_x = -\frac{\partial V}{\partial x} = \frac{\partial A}{\partial y}$$
 $B_y = -\frac{\partial V}{\partial y} = -\frac{\partial A}{\partial x}$

$$F'(\mathbb{Z}) = \frac{\partial F(\mathbb{Z})}{\partial \mathbb{Z}} = \frac{\partial A + i\partial V}{\partial x + i\partial y}$$

Fields from the 2D function of a complex variable

$$F'(z) = \frac{\partial F(z)}{\partial z} = \frac{\partial A + i\partial V}{\partial x + i\partial y} \qquad F(z) = A + iV, \quad z = x + iy$$

$$\frac{\partial x}{\partial x} = \frac{\partial A}{\partial x} + i\frac{\partial V}{\partial x}$$

$$F'(z) = \frac{\partial A}{\partial x} + i\frac{\partial V}{\partial x} \qquad F'(z) = \frac{\partial A}{\partial y} + i\frac{\partial V}{\partial y}$$

$$F'(z) = \frac{\partial A}{\partial x} + i\frac{\partial V}{\partial x} \qquad F'(z) = -i\frac{\partial A}{\partial y} + \frac{\partial V}{\partial y}$$

$$B_y = -\frac{\partial V}{\partial y} = -\frac{\partial A}{\partial x}$$

$$F'(z) = -B_y - iB_x \qquad F'(z) = -iB_x - B_y$$

$$B^* = B_x - iB_y = iF'(z) \qquad B_y + iB_x = -F'(z)$$

K. Badgley | ASP24

Vector Operations

• Scalar "dot" product

• Vector "cross" product

$$\vec{C} = \vec{A} \times \vec{B} = ABsin(\theta)$$

Resulting vector perpendicular to the plane formed by A and B

Differential Operators

$$- \text{ Grad operator} \qquad \overline{\nabla} = \left(\frac{\partial}{\partial x}\hat{i} + \frac{\partial}{\partial y}\hat{j} + \frac{\partial}{\partial z}\hat{k}\right)$$

$$- \text{ Gradient} \qquad \overline{\nabla}\phi = \left(\frac{\partial\phi}{\partial x}\hat{i} + \frac{\partial\phi}{\partial y}\hat{j} + \frac{\partial\phi}{\partial z}\hat{k}\right)$$

$$- \text{ Divergence} \qquad \overline{\nabla}\cdot\vec{A} = \left(\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}\right)$$

$$- \text{ Curl} \qquad \overline{\nabla}\times\vec{A} = \left|\begin{array}{cc}\hat{i} & \hat{j} & \hat{k}\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\ A_x & A_y & A_z\end{array}\right| = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\hat{j}\hat{i} + \left(\frac{\partial A_z}{\partial z} - \frac{\partial A_z}{\partial x}\right)\hat{j} + \left(\frac{\partial A_x}{\partial y} - \frac{\partial A_y}{\partial x}\right)\hat{k}$$

‡ Fermilab

Maxwell's Equations

(in vacuum)

Gauss's law
$$\begin{bmatrix} \nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} & \text{if } \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\varepsilon_0} \\ \nabla \cdot \mathbf{B} = 0 & \text{if } \mathbf{B} \cdot d\mathbf{A} = 0 \end{bmatrix}$$

Faraday's law

$$\nabla \times E = -\frac{\partial B}{\partial t} \qquad \oint E \cdot dl = -\iint \frac{\partial B}{\partial t} \cdot dA$$
Ampere's law

$$\nabla \times B = \mu_o J + \mu_o \varepsilon_o \frac{\partial E}{\partial t} \qquad \oint B \cdot dl = \mu_o I + \mu_o \varepsilon_o \iint \frac{\partial E}{\partial t} \cdot dA$$

K. Badgley | ASP24

Gauss's Law

The total electric flux through a closed surface is equal to the total (net) electric charge inside the surface, divided by ϵ_0

 ϵ_o is electric constant = 8.85418781762 × 10⁻¹² A²·s⁴·kg⁻¹·m⁻³

🚰 Fermilab

Faraday's Law

The integrated electric field around any closed loop is proportional to the rate of change of the magnetic flux passing through the loop

$$\oint \boldsymbol{E} \cdot d\boldsymbol{l} = -\iint \frac{\partial \boldsymbol{B}}{\partial t} \cdot d\boldsymbol{A}$$

Ampere's Law

The current passing through a surface is equal to the line integral of the B field around that closed surface

