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Preface
Many of us teach advanced “data analysis” courses that last an 
entire academic term. How to condense?
Here I concentrate on the “theoretical” underpinnings:          
What you must know in order to choose appropriate methods.

My hope is that by studying these slides you will learn to avoid 
common pitfalls (and even silly statements) that can trip up 
professionals in the field.
This is a dense talk – you will not pick it all up in real time.          
It should however be extremely useful to you to study this talk, 
referring to the references.
I initialIy focus on definitions and the Bayesian approach.      
That helps to understand what the frequentist approach 
(common in HEP) is not ! Then, compare and contrast.
I will end on Thursday with an example of statistics in practice:
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Statistics in practice on July 4, 2012: Imagine being in the 
audience for the talks on the discovery of the Higgs boson

A goal this week is to help you understand plots like these      
…not just what is plotted, but also deeper issues. 



Why Foundations Matter
In the “final analysis”, we often make approximations, take a 
pragmatic approach, or follow a convention.  
To inform such actions, it is important to understand some 
foundational aspects of statistical inference.
In Quantum Mechanics, we are used to the fact that for all of our 
practical work, one’s philosophical interpretation (e.g., of 
collapse of the wave function) does not matter.        
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Why Foundations Matter (cont.)
In statistical inference, however, foundational differences result 
in different answers: one cannot ignore them!
The professional statistics community went through the topics 
of many of our discussions starting in the 1920’s, and revisited 
them in the resurgence of Bayesian methods in recent decades.
I will attempt to summarize some of the things we should 
understand from that debate.  
Most importantly: understand both approaches!
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Machine learning inherits these issues
The increasingly common uses of machine learning (boosted 
decision trees, deep neural nets, etc) in physics do not make 
the foundational issues go away. If anything, ML adds more 
issues while being amazingly useful.
E.g., the output of a neural net is a “statistic” (function of the 
data) that is conceptually on a similar level (and can even 
correspond to) more traditional statistics such as likelihood 
ratios, which we will discuss.
The language in the machine learning community is sometimes 
different from that in the statistical inference community, while 
concepts can be fundamentally the same.
Mastering the traditional foundations of statistical inference, 
and mapping the language of ML it, can thus lead to useful 
inquiries regarding what is the underlying “philosophy” of the 
“machine”, etc.
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Definitions are Important

As in physics, much confusion can be avoided by being precise 
about definitions, and much confusion can be generated by 
being imprecise, or by assuming every-day definitions in a 
technical context.
You have learned in physics to see confusion in the statement,

“I did a lot of work today by carrying this big stone around 
the building and then putting it back in its original place.”

You should see just as much confusion in these two statements:
1) “The confidence level tells you how much confidence one 

has that the true value is in the confidence interval.”
2) “A noninformative prior probability density does not insert 

any information.” 
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Example adapted from Eadie et al. (James06, p. 2)

Physicists say… when Statisticians say:

Determine
Estimate
Gaussian
Breit-Wigner, 
Lorentizian

Estimate
(Informed) Guess
Normal
Cauchy
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Key tasks: Important to distinguish!

• Point estimation: what single “measured” value of a parameter 
do you report?
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Key tasks: Important to distinguish!

• Point estimation: what single “measured” value of a parameter 
do you report?

• Interval estimation: what interval (giving a measure of 
uncertainty of the parameter inference) do you report?
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Key tasks: Important to distinguish!

• Point estimation: what single “measured” value of a parameter 
do you report?

• Interval estimation: what interval (giving a measure of 
uncertainty of the parameter inference) do you report?

• Hypothesis testing: Many special cases:
a) A given functional form (“model”) vs another functional 

form.  Also known as “model selection”.
b) A single value of a parameter (say 0 or 1) vs all other values
c) Goodness of Fit: A given functional form against all other 

(unspecified) functional forms (aka “model checking”)
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Key tasks: Important to distinguish!

• Point estimation: what single “measured” value of a parameter 
do you report?

• Interval estimation: what interval (giving a measure of 
uncertainty of the parameter inference) do you report?

• Hypothesis testing: Many special cases:
a) A given functional form (“model”) vs another functional 

form.  Also known as “model selection”.
b) A single value of a parameter (say 0 or 1) vs all other values
c) Goodness of Fit: A given functional form against all other 

(unspecified) functional forms (aka “model checking”)
• Decision making: What action should I take (tell no one, issue 

press release, propose new experiment, ...) based on the 
observed data?  Rarely done formally in HEP, but important to 
understand outline of formal theory, to avoid confusion with 
inference and to inform informal application.
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Key tasks: Important to distinguish! (cont.)

In frequentist statistics, the above hypothesis testing case,
(b) A single value of a parameter (say 0 or 1) vs all other values,
maps identically onto interval estimation. 
This is called the duality of “inversion of a hypothesis test to get 
confidence interval”, and vice versa.  I just mention it now but 
discuss it in more detail later.
In contrast, in Bayesian statistics, testing case (b) is an 
especially controversial form of case (a) model selection.                  
The model with fixed value of parameter is lower-dimensional in 
parameter space than the model with parameter not fixed.
Again, I just mention this now to foreshadow a very deep issue, 
where frequentist and Bayesian methods do not converge in the 
limit of large data sets.
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Comments on key tasks
• Point estimation: Long history. In the end it is not clear what the 

criteria are for “best” estimator. Decision Theory can be used to 
specify criteria and choose among point estimators.                                                       
IMO, point estimation is not a key issue; typically the maximum 
likelihood (ML) point estimator serves our needs in HEP. 

• Interval estimation: In HEP, it is fairly mandatory that there is a 
confidence level that gives frequentist coverage probability of a 
method, even if it’s a Bayesian-inspired recipe. For many 
problems in HEP, there is reasonable hope of approximate 
reconciliation between Bayesian and frequentist methods,.

Point estimation and interval estimation can be approached 
consistently by insisting that the interval estimate contain the 
point estimate; in that case one constructs the point estimate by 
taking the limit of interval estimates as intervals get smaller (limit 
of confidence level going to zero).
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Comments on key tasks (cont.)
• Hypothesis testing: 

– Bayesian methods attempt to calculate probability that a 
hypothesis is true. 

– Frequentist methods use p-values (often bashed). 

Can be dramatic differences between frequentist  and Bayesian 
hypothesis testing methods, even asymptotically. Beware! 
See my paper on Jeffreys-Lindley paradox, 
https://arxiv.org/abs/1310.3791 .

Much more in subsequent slides.
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“Probability”
• Abstract mathematical probability P can be defined in terms of 

sets and axioms that P obeys.  Conditional probabilities are 
related by (next slide) Bayes’ Theorem (or “Bayes’ Rule”),

          P(B|A) = P(A|B) P(B) / P(A).
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P, Conditional P, and “Derivation” of Bayes’ Theorem

A B
Whole space

P(B) × P(A|B) = × =

P(A)  = P(B)  = 

P(A ∩ B) = 

P(B|A) = P(A|B) = 

P(A) × P(B|A) = × = =   P(A ∩ B) 

=   P(A ∩ B) 

⇒  P(B|A)  = P(A|B) × P(B) / P(A) Bob Cousins, Stats in Theory, Africa 2024 17



“Probability” (cont.)
Two established* incarnations of mathematical P are:

1) Frequentist P: limiting frequency in ensemble of imagined 
repeated samples (as usually taught in Q.M.).              
P(constant of nature) and P(SUSY is true) do not exist              
(in a useful way) for this definition of P (at least in 1 universe).

2) (Subjective) Bayesian P: subjective (personalistic) degree of 
belief.  (de Finetti, Savage)                                                     
P(constant of nature) and P(SUSY is true) exist for You.    
Shown to be basis for coherent personal decision-making.

• It is important to be able to work with either definition of P, and 
to know which one you are using!

*Of course they are still argued about, but to less practical effect, I think.
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“Bayes' rule is satisfying, convincing, and fun to use. 
But using Bayes' rule does not make one a Bayesian; 
always using it does, and that's where difficulties 
begin.”
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I’ll give a simple example for each definition of P.      
One of the sillier things one sometimes sees in HEP is 
the use of a frequentist example of Bayes’ Theorem as 
a foundational argument for “Bayesian” statistics.
 



Aside: What is the “Whole Space”?
For probabilities to be well-defined, the “whole space” needs to 
be defined. Can be hard for both frequentists and Bayesians!
Thus the “whole space” itself is more properly thought of as a 
conditional space, conditional on the assumptions going into 
the model (Poisson process, whether or not total number of 
events was fixed, etc.).
Furthermore, it is widely accepted that restricting the “whole 
space” to a relevant (“conditional”) subspace can sometimes 
improve the quality of statistical inference.  The important topic 
of such “conditioning” in frequentist inference will be 
discussed in detail later.
I will not clutter the notation with explicit mention of the 
assumptions defining the “whole space”, but some prefer to do 
so – in any case, it is important to keep them in mind.
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Example of Bayes’ Theorem Using Frequentist P
In high-energy collisions, dedicated algorithms are used to 

detect the presence of clusters (“jets”) of particles containing 
bottom quarks, i.e., to “tag b jets”.

 

A b-tagging algorithm is developed and one measures:
P(btag | b-jet),                i.e., efficiency for tagging b jets
P(btag | not a b-jet),      i.e., efficiency for background
P(no btag | b-jet)           = 1 - P(btag | b-jet), 
P(no btag | not a b-jet) = 1 - P(btag | not a b-jet)

Question: Given a selection of jets tagged as b-jets, what 
fraction of them is truly b-jets?  I.e., what is P(b-jet | btag) ?
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Example of Bayes’ Theorem Using Frequentist P
In high-energy collisions, dedicated algorithms are used to 

detect the presence of clusters (“jets”) of particles containing 
bottom quarks, i.e., to “tag b jets”.

 

A b-tagging algorithm is developed and one measures:
P(btag | b-jet),                i.e., efficiency for tagging b jets
P(btag | not a b-jet),      i.e., efficiency for background
P(no btag | b-jet)           = 1 - P(btag | b-jet), 
P(no btag | not a b-jet) = 1 - P(btag | not a b-jet)

Question: Given a selection of jets tagged as b-jets, what 
fraction of them is truly b-jets?  I.e., what is P(b-jet | btag) ?

Answer: Cannot be determined from the given information!
Need in addition: P(b-jet), the true fraction of all jets that are     
b-jets.  Then Bayes’ Thm inverts the conditionality:

P(b-jet | btag) ∝ P(btag |b-jet) P(b-jet)
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Example of Bayes’ Theorem Using Frequentist P (cont.)

In HEP, as noted,
P(btag | b-jet) is called the efficiency for tagging b’s.
Meanwhile
P(b-jet | btag) is often called the purity of a sample of b-tagged 
jets.
As this is a pretty “easy” distinction, it is helpful to keep it in 
mind when one encounters cases where it is perhaps tempting 
to make the logical error of equating P(A|B) and P(B|A).

Note: Looking ahead, when we talk about frequentist hypothesis 
testing later in the lectures, we will mention names for 
analogous probabilities in other fields of science. 
E.g., in medicine, P(Covid test is positive | patient has Covid) is 
called the sensitivity of the Covid test, or (unfortunately IMO), 
the true positive rate.
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Example of Bayes’ Theorem Using Bayesian P
In a background-free experiment, a theorist uses a “model” to 

predict a signal with Poisson mean of 3 events. From Poisson 
formula we know
P(0 events | model true) = 30e-3/0! = 0.05
P(0 events | model false) = 1.0
P(>0 events | model true) = 0.95
P(>0 events | model false) = 0.0

The experiment is performed and zero events are observed.
Question: Given the result of the expt, what is the probability that 

the model is true? I.e., What is P(model true | 0 events) ?
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Example of Bayes’ Theorem Using Bayesian P
In a background-free experiment, a theorist uses a “model” to 

predict a signal with Poisson mean of 3 events. From Poisson 
formula we know
P(0 events | model true) = 30e-3/0! = 0.05
P(0 events | model false) = 1.0
P(>0 events | model true) = 0.95
P(>0 events | model false) = 0.0

The experiment is performed and zero events are observed.
Question: Given the result of the expt, what is the probability that 

the model is true? I.e., What is P(model true | 0 events) ?
Answer: Cannot be determined from the given information!                      

Need in addition: P(model true), the degree of belief in the 
model prior to the experiment.  Then Bayes’ Thm inverts the 
conditionality:

P(model true | 0 events) ∝ P(0 events | model true) P(model true)
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Example of Bayes’ Theorem Using Bayesian P (cont.)
P(0 events | model true) = 0.05
P(0 events | model false) = 1.0
0 events observed

Apply Bayes’ Thm in a little more detail, with normalization:
Let “A” ↔ “0 events”; let “B” ↔ “model true”.  Recall:

P(B|A)  = P(A|B) × P(B) / P(A) . 
Similarly, with P(not B) = 1 – P(B) 
P(not B|A)  = P(A| not B) × P(not B) / P(A) . 

P(B|A) + P(not B|A)  = 1, so P(A) is normalization. Can easily show

P(B|A) = 0.05 P(B) / (1 – 0.95 P(B)), i.e., 
 P(model true | 0 events) 
    = 0.05 P(model true) / (1 – 0.95 P(model true)).
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P(model true | 0 events) 
    = 0.05 P(model true) / (1 – 0.95 P(model true)).
Limiting cases of very high and very low prior belief on model:

1) Let “model” be Standard Model, prior P(model true) = 1 – ε1     
for ε1 << 1  ⇒ P(model true | 0 events)  ≈ 1 – 20ε1

Still very high degree of belief!  Even if someone says, 
“P(0 events | model true) = 5%, and 0 events observed
 means there is 5% chance the S.M. is true.” (UGH!)

2) Let “model” be large extra dimensions, 
prior P(model true) = ε2 << 1,
⇒ P(model true | 0 events) ≈ 0.05 ε2
Low prior belief becomes even lower.

N.B. More realistic examples are of course more complex.
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A Note re Decisions
Suppose that as a result of the previous experiment, your degree 
of belief in the model is P(model true | 0 events) = 1%.
And you need to decide on an action, e.g., announcing in a press 
release that the model is false, or making no announcement while 
taking more data. 
Question: What should you decide?
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A Note re Decisions
Suppose that as a result of the previous experiment, your degree 
of belief in the model is P(model true | 0 events) = 1%.
And you need to decide on an action, e.g., announcing in a press 
release that the model is false, or making no announcement while 
taking more data. 
Question: What should you decide?
Answer: Cannot be determined from the given information!    
You need in addition: 
The utility function (or its negative, the loss function), which 
quantifies the relative costs (to You) of 

– Type I error: announcing that the model is false, when it is 
true (thus eventually harming your reputation);

– Type II error: not announcing that the model is false when it 
is false, thus potentially allowing another experiment to 
make the announcement first.
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A Note re Decisions (cont.)
Thus, Your decision, requires two subjective inputs: Your prior 
probabilities, and the relative costs to You of outcomes.
Statisticians often focus on decision-making.
In HEP, the tradition thus far is to communicate experimental 
results (well) short of formal decision calculations.  
It should become clear later in lectures: 
Frequentist (classical) “hypothesis testing” (especially with 
conventions like 95% C.L. or 5σ ) is not a complete theory of 
decision-making!
It is important to keep this in mind, since the “accept/reject” 
language of classical hypothesis testing (later in lectures) is too 
simplistic for “deciding” in important situations.
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Probability, Probability Density, Likelihood

These are key building blocks in both frequentist and Bayesian 
statistics, and it is crucial distinguish among them.
In the following, we let x be an observed or measured quantity;      
sometimes we use n if the observation is integer-valued and we 
want to emphasize that.
A “(statistical) model” is an expression specifying probabilities 
or probability densities for observing x. 
We use µ for parameters (sometimes vector-valued) in the 
model.  (Statistical literature prefers θ.)
Then the most common examples in HEP (discussed in the 
prerequisite reading in Leo’s book) are:
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• Binomial probability of non successes in ntot trials, each with 
binomial parameter ρ: 

        Bi(non | ntot, ρ) = ntot!
non! (ntot−non)! ρnon (1 − ρ)(n

 
tot − non)

• Poisson probability P(n|µ) = µn exp(-µ)/n!

• Gaussian probability density function (pdf) p(x|µ,σ): 
p(x|µ,σ)dx is differential of probability dP.

In Poisson case, suppose n=3 is observed.                
Substituting observed value n=3 into P(n|µ) yields the
likelihood function 
                               L(µ) = µ3 exp(-µ)/3!
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L(µ) = µ3e-µ/3! 

µ

µML = 3 

L(µ)

Example likelihood function L(µ) = µ3 exp(-µ)/3!
Its maximum is at µML = 3.
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It is tempting to consider area 
under L, but L(µ) is not a 
probability density in µ:
Area under L is meaningless.

As we shall see, 
Likelihood Ratios L(µ1) /L(µ2)  
are useful and frequently used. 



Notation reminder
x denotes observable(s)
More generally, x is any convenient or useful function of the 
observed data, and is called a “statistic” or “test statistic”
µ denotes parameter(s)                                    
p(x|µ) is probability/pdf characterizing everything that 
determines the probabilities (densities) of the observations, 
from laws of physics to experiment setup and protocol
p(x|µ) is called “the statistical model”, or simply “the model”, by 
statisticians.
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Change of observable variable (“metric”) x in pdf p(x|µ) 
For pdf p(x|µ) and 1-to-1 change of variable (metric) from x to y(x),      
volume element modified by Jacobian. In 1D, p(y) |dy|  = p(x) |dx|. 

          p(y(x)|µ) = p(x|µ) / |dy/dx|. 

Jacobian modifies probability density, guaranties that                
         P( y(x1)< y < y(x2) )  =  P(x1 < x < x2 ), 
(or equivalent with decreasing y(x)).  I.e., guarantees that
Probabilities are invariant under change of variable x.
E.g.,  for x↔τ and y(x) ↔ Γ=1/τ, must have
P( τ ⊂ [τ1, τ2] )  =  P ( Γ ⊂ [1/τ2, 1/τ1] ) 

Mode of probability density is not invariant (so, e.g., criterion of 
maximum probability density is ill-defined).

Likelihood ratio L(µ1) /L(µ2) is invariant under change of variable x 
to y(x). (Jacobian in denominator cancels that in numerator).
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Probability Integral Transform
“…seems likely to be one of the most fruitful conceptions 

introduced into statistical theory in the last few years”   
    − Egon Pearson (1938) commenting on his father’s work.
Given continuous x ∈ (a,b), and its pdf p(x), define

      y(x) = ∫a
x p(x′) dx′ .

Then y ∈ (0,1) and easy to show that p(y) = 1 (uniform) for all y. (!)
So there always exists a metric y in which the pdf is uniform.  
Many issues become more clear (or trivial) after this 
transformation*. (If x is discrete, some complications.)
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Probability Integral Transform
“…seems likely to be one of the most fruitful conceptions 

introduced into statistical theory in the last few years”   
    − Egon Pearson (1938) commenting on his father’s work.
Given continuous x ∈ (a,b), and its pdf p(x), let

      y(x) = ∫a
x p(x′) dx′ .

Then y ∈ (0,1) and easy to show that p(y) = 1 (uniform) for all y. (!)
So there always exists a metric y in which the pdf is uniform.  
Many issues become more clear (or trivial) after this 
transformation*. (If x is discrete, some complications.)
A look ahead, just mentioned here: The specification of a Bayesian 
prior pdf p(µ) for parameter µ is thus equivalent to the choice of 
the metric g(µ) in which the pdf is uniform.  This is a deep issue, 
not always recognized by users of uniform prior pdf’s in HEP!

*And the inverse transformation provides for efficient M.C. generation of p(x) starting from RAN().
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Change of parameter µ in pdf p(x|µ) 

The pdf for x given parameter µ=3 is the same as 
the pdf for x given 1/µ=1/3, or given µ2=9, or given any specified 
function of µ. 
They all imply the same µ, and hence the same pdf for x.

In slightly confusing notation, that is what we mean by changing 
parameter from µ to f(µ), and saying that 
    p(x|f(µ)) = p(x|µ).
    

Thus the likelihood function L(µ) is invariant (!) under 
reparametrization from parameter µ to f(µ):
   L( f(µ) ) = L(µ).

This reinforces the fact that L(µ) is not a pdf in µ.

Bob Cousins, Stats in Theory, Africa 2024 38



Bayes’ Theorem Generalized to Probability Densities
Recall P(B|A) ∝ P(A|B) P(B). 
For Bayesian P, continuous parameters such as µ are random 

variables with pdf’s.
Let pdf p(µ|x) be the conditional pdf for parameter µ, given data x.  

As usual p(x|µ) is the conditional pdf for data x, given 
parameter µ. Then Bayes’ Thm becomes

p(µ|x) ∝ p(x|µ) p(µ).
Substituting in a particular set of observed data, x0 :
p(µ|x0) ∝ p(x0|µ) p(µ).  
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p(µ|x0) ∝ p(x0|µ) p(µ).  
Recognizing the likelihood (variously written as L(x0|µ) , L(µ), or 

unfortunately even L(µ|x0) ), then

p(µ|x0) ∝ L(x0|µ) p(µ), where:
p(µ|x0)  = posterior pdf for µ, given the results of this expt
L(x0|µ)  = likelihood function of µ from the experiment
p(µ) = prior pdf for µ, before applying the results of this expt

Note! There is one (and only one) probability density in µ on each 
side of the eqn, consistent with L(x0|µ) not being a density in µ.
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Quick intro to “Bayesian” analysis
All equations up until now are true for any definition of 
probability P that obeys the axioms, including frequentist P, as 
long as the probabilities exist (for example if µ is sampled from 
an ensemble with known “prior” pdf).
The word “Bayesian” refers not to these equations, but to the 
choice of definition of P as personal subjective degree of belief.
Bayesian P applies to hypotheses and constants of nature  
(frequentist P does not), so many Bayesian-only applications.
Since Bayesian analysis requires a prior pdf, big issues in 
Bayesian analysis include:
• What prior pdf to use, and how sensitive is the result?
• How to interpret posterior probability if the prior pdf is not 

Your personal subjective belief?

Frequentist tools can be highly relevant to both questions!
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Use of Bayesian posterior pdf p(µ|x0) 
Point estimation: Some Bayesians use the posterior mode (aka 
maximum posterior density) as the point estimate of µ (though 
metric-dependent), others say point estimation is misguided. 
Since the Jacobian moves the mode around under change of 
parameter (say from lifetime τ to decay rate Γ=1/τ), care must 
be used to interpret it. (Posterior median can be used in 1D.)
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Use of Bayesian posterior pdf p(µ|x0) 
Point estimation: Some Bayesians use the posterior mode (aka 
maximum posterior density) as the point estimate of µ (though 
metric-dependent), others say point estimation is misguided. 
Since the Jacobian moves the mode around under change of 
parameter (say from lifetime τ to decay rate Γ=1/τ), care must 
be used to interpret it. (Posterior median can be used in 1D.)
Interval estimation: Credibility of µ being in any interval [µ1,µ2] 
can be calculated by integrating p(µ|x0) over the interval.
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Use of Bayesian posterior pdf p(µ|x0) 
Point estimation: Some Bayesians use the posterior mode (aka 
maximum posterior density) as the point estimate of µ (though 
metric-dependent), others say point estimation is misguided. 
Since the Jacobian moves the mode around under change of 
parameter (say from lifetime τ to decay rate Γ=1/τ), care must 
be used to interpret it. (Posterior median can be used in 1D.)
Interval estimation: Credibility of µ being in any interval [µ1,µ2] 
can be calculated by integrating p(µ|x0) over the interval.
Hypothesis testing: Unlike frequentist statistics, testing 
credibility of whether or not µ equals a particular value µ0 is not 
performed by examining intervals.* 
One starts over with Bayesian model selection (later topic). 
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Use of Bayesian posterior pdf p(µ|x0) 
Point estimation: Some Bayesians use the posterior mode (aka 
maximum posterior density) as the point estimate of µ (though 
metric-dependent), others say point estimation is misguided. 
Since the Jacobian moves the mode around under change of 
parameter (say from lifetime τ to decay rate Γ=1/τ), care must 
be used to interpret it. (Posterior median can be used in 1D.)
Interval estimation: Credibility of µ being in any interval [µ1,µ2] 
can be calculated by integrating p(µ|x0) over the interval.
Hypothesis testing: Unlike frequentist statistics, testing 
credibility of whether or not µ equals a particular value µ0 is not 
performed by examining intervals.* 
One starts over with Bayesian model selection (later topic). 
Decision making: All Decisions about µ require not only p(µ|x0) 
but also further input: the utility function.
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*assuming regular pdf p.  Dirac δ–ftns in p correspond to model selection, with its issues.



Can “subjective” be taken out of “degree of belief”?
There are compelling arguments (Savage, De Finetti et al.) that 
Bayesian reasoning with personal subjective P is the uniquely 
“coherent” way (with technical definition of coherent) of 
updating personal beliefs upon obtaining new data.
The huge question is: can the Bayesian formalism be used by 
scientists to report the results of their experiments in an 
“objective” way (however one defines “objective”), and does any 
of the glow of coherence remain when subjective P is replaced 
by something else?
An idea vigorously pursued by physicist Harold Jeffreys in mid-
20th century: 
Can one define a prior p(µ) that contains as little information as 
possible?
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“Uniform Prior” Requires a Choice of Metric
The really really thoughtless idea*, recognized by Jeffreys as 
such, but dismayingly common historically in HEP: 
Just choose prior p(µ) uniform in whatever metric you happen 
to be using!  (UGH!)
Recall that the probability integral transform always allows one 
to find a metric in which p is uniform (for continuous µ).
Thus the question “What is the prior pdf p(µ)?” is equivalent to 
the question, “For what function y(µ) is p(y) uniform?”
The choice y(u) = u needs to be justified. 
(It does not represent ignorance!)

*despite having a fancy name,  Laplace’s Principle of Insufficient Reason
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Jeffreys’s Choice of Metric for Uniform Prior
For estimation, Harold Jeffreys answered the question using a 
prior uniform in a metric related to the Fisher information, 
calculated from curvature of the log-likelihood function 
averaged over sample space.  Jeffreys priors:

Poisson signal mean µ, no background:         p(µ) = 1/sqrt(µ)
Poisson signal mean µ, mean background b: p(µ) = 1/sqrt(µ+b)
Unbounded or bounded mean µ of Gaussian: p(µ) = 1
RMS deviation of a Gaussian when mean fixed: p(σ) = 1/σ
Binomial parameter ρ, 0 ≤ ρ ≤1 : p(ρ) = ρ-1/2(1 - ρ)-1/2 = Beta(1/2,1/2)

Note: Jeffreys priors are commonly improper: cannot be 
normalized to 1. Considered by proponents not to be a disaster 
for estimation, as long as posterior pdf is proper, as is typical. 
(Still a disaster for model selection.)
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Jeffreys’s Choice of Metric for Uniform Prior (cont.)
If parameter µ is changed to f(µ), the recipe for obtaining 
Jeffreys prior for f(µ) yields a different-looking prior that 
corresponds to the same choice of uniform metric. 
So p(µ) is replaced by p(f(µ)) that is correctly related by 
Jacobian, and probabilities (integrals of pdfs over equivalent 
endpoints) using Jeffreys prior are invariant under choices of 
different parameterizations.
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What to call such Non-Subjective Priors?
• “Noninformative priors”? “Uninformative priors”? Traditional 

among statisticians, even though they know it is misnomer. 
(You should too!)

• “Vague priors”? “Ignorance priors”? “Default priors”?
• “Reference priors”? (Unfortunately also refers to a specific 

recipe of Bernardo)
• “Objective priors”?  Despite the highly questionable use of 

the word, Jeffreys prior and its generalization by Bernardo 
and Berger are now widely referred to as “objective priors”.

• Kass and Wasserman J.  Amer. Stat. Assn. 91 1343 (1996) 
give the best (neutral) name in my opinion:                               
Priors selected by “formal rules”.
– Required reading for anyone using Bayesian methods!

Whatever the name, prior in one metric determines it in all other 
metrics: be careful in choice of metric in which it is uniform!
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Jeffreys Prior (cont.)
For one-parameter models, the “Jeffreys prior” is the most 
common choice among statisticians for a “default” prior --       
so common that statisticians are referring to the Jeffreys prior 
when they say “flat prior”.
The obvious generalization to multi-parameter models turns out 
to be problematic, so alternatives have been developed, 
notably by Bernardo (with Berger).  In 1D, they provide a 
different rationale for Jeffreys’s prior, namely the prior that 
leads to a posterior pdf that is most dominated by the 
likelihood. 
There are many subtleties. Beware!
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Jeffreys’s Prior (cont.)
A key point: priors such as the Jeffreys prior are based on the 
likelihood function and thus inherently derived from the 
measurement apparatus and procedure, not from thinking 
about the parameter!
This may seem strange, but does give advantages, particularly 
for frequentist (!) coverage, as discussed briefly later.
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Whatever you call non-subjective priors,                  
they do not represent ignorance!

Dennis V. Lindley Stat. Sci 5 85 (1990), “the mistake is to think 
of them [Jeffreys priors or Bernardo/Berger’s reference 
priors] as representing ignorance”

This Lindley quote is emphasized by Christian Robert, The 
Bayesian Choice, (2007) p. 29.

Jose Bernardo: “[With non-subjective priors,] The contribution 
of the data in constructing the posterior of interest should be 
“dominant”. Note that this does not mean that a non-
subjective prior is a mathematical description of 
“ignorance”. Any prior reflects some form of knowledge.”

Nonetheless, Berger (1985, p. 90) argues that Bayesian analysis 
with noninformative priors (older name for objective priors) 
such as Jeffreys and Barnardo/Berger “is the single most 
powerful method of statistical analysis, in the sense of being 
the ad hoc method most likely to yield a sensible answer for 
a given investment of effort”.  
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Priors in high dimensions

Is there a sort of informational phase space that can lead us to 
a sort of probability Dalitz plot? I.e., the desire is that structure 
in the posterior pdf represents information in the data, not the 
effect of Jacobians.  Notoriously hard problem!
Be careful: Uniform priors push the probability away from the 
origin to the boundary! (Volume element in 3D goes as r2dr.) 
State of the art for “objective” priors may be “reference priors” 
of Bernardo and Berger, but multi-D tools have been lacking.
Subjective priors also very difficult to construct in high 
dimensions: human intuition is poor.

• Subjective Bayesian Michael Goldstein: “meaningful prior 
specification of beliefs in probabilistic form over very 
large possibility spaces is very difficult and may lead to a 
lot of arbitrariness in the specification”.
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“Perhaps the most important general lesson 
is that the facile use of what appear to be 
uninformative priors is a dangerous 
practice in high dimensions.”
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Sir David Cox at PhyStat-LHC 2007
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Currently in HEP, the main application is #5.
In particular, for upper limits we use uniform prior for 
Poisson mean for frequentist reasons (See my AJP 
paper, http://aapt.scitation.org/doi/10.1119/1.17901 .)
Unfortunately some in HEP have also added a 6th:

http://aapt.scitation.org/doi/10.1119/1.17901


Cox’s list, as I have seen it augmented in HEP

Six

•  Priors uniform in arbitrary variables, or in 
“the parameter of interest” (UGH!).  This has no               
justification in modern subjective or objective 
Bayesian theory.
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Sensitivity Analysis
Since a Bayesian result depends on the prior probabilities, 
which are either personalistic or with elements of arbitrariness, 
it is widely recommended by Bayesian statisticians to study the 
sensitivity of the result to varying the prior.
I think that historically, too little emphasis was given to this by 
Bayesian advocates in HEP.  
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Sensitivity Analysis
An “objective Bayesian’s” point of view: 
“Non-subjective Bayesian analysis is just a part -- an 
important part, I believe – of a healthy sensitivity analysis 
to the prior choice…”
    – J.M. Bernardo, J. Roy. Stat. Soc., Ser. B 41 113 (1979)
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From the Proceedings: “…Again, different individuals may 
react differently, and the sensitivity analysis for the effect of 
the prior on the posterior is the analysis of the scientific 
community...”

From his transparencies:
“Sensitivity Analysis is at the heart of scientific Bayesianism.”

Sensitivity analysis:       
A subjective Bayesian’s 
point of view:
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Bayesian Must-Read for HEP/Astro/Cosmo (incl discussion!)

Robert E. Kass and Larry Wasserman, “The Selection of Prior 
Distributions by Formal Rules,” J. Amer. Stat. Assoc.  91 
1343 (1996).

Telba Z. Irony and Nozer D. Singpurwalla, “Non-informative 
priors do not exist: A dialogue with Jose M. Bernardo,” J. 
Statistical Planning and Inference 65 159 (1997).

James Berger, “The Case for Objective Bayesian Analysis,” 
Bayesian Analysis 1 385 (2006)

Michael Goldstein, “Subjective Bayesian Analysis: Principles 
and Practice,” Bayesian Analysis 1 403 (2006)

J.O. Berger and L.R. Pericchi,  “Objective Bayesian Methods for 
Model Selection: Introduction and Comparison,” in  Model 
Selection, Inst. of Mathematical Statistics Lecture Notes-
Monograph Series, ed. P. Lahiri, vol 38 (2001) pp .135-207
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Memorable Quotes Therein from Jim Berger
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“The Case for Objective Bayesian Analysis,” Bayesian Analysis 1.  See pp. 397, 459.

***



Memorable Quotes Therein from Jim Berger
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“The Case for Objective Bayesian Analysis,” Bayesian Analysis 1.  See pp. 397, 459.

***

Pseudo-Bayes analyses pop up from time to time in HEP.    
Flat priors, etc. (The worst are in Model Selection.)              
See my Comment at https://arxiv.org/abs/0807.1330 and my         
“pseudo-Bayes detection” slides 62-68 at Tokyo PhyStat-nu, 
http://indico.ipmu.jp/indico/event/82/session/9/contribution/16/material/slides/0.pdf .

An excellent discussion by Harrison Prosper is in Ch. 12 of 
Data Analysis in High Energy Physics, Ed. By O. Behnke et al.

https://arxiv.org/abs/0807.1330
http://indico.ipmu.jp/indico/event/82/session/9/contribution/16/material/slides/0.pdf


What can be computed without using a prior,              
with only the frequentist definition of P?

Not  P(constant of nature is in some specific interval | data) 
Not  P(Supersymmetry is true | data) 
Not  P(Standard Model is false | data) 
Rather:
1) Confidence Intervals for constants of nature, parameter 

values, as defined in the 1930’s by Jerzy Neyman. 
Statements are made about probabilities in ensembles of 
intervals (fraction containing unknown true value)

2) Likelihood ratios, the basis for a large set of techniques for 
point estimation, interval estimation, and hypothesis testing.

Both can be constructed using the frequentist definition of P.
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Confidence Intervals
“Confidence intervals”, and this phrase to describe them, were 
invented by Jerzy Neyman in 1934-37.  Statisticians mean 
Neyman’s intervals (or an approximation) when they say 
“confidence interval”.  In HEP the language is a little loose.
I highly recommend using “confidence interval” (and 
“confidence regions” when multi-D) only to describe intervals 
and regions corresponding to Neyman’s construction, 
described below, or by recipes of any origin that yield good 
approximations thereof.
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Basic notions of confidence intervals
Conceptual idea in two sentences:

Given the model p(x|µ) and the observed value x0, for what values 
of µ is x0 an “extreme” value of x?  
Include in the confidence interval [µ1,µ2] those values of µ for 
which x0 is not “extreme”.
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Basic notions of confidence intervals
Conceptual idea in two sentences:

Given the model p(x|µ) and the observed value x0, for what values 
of µ is x0 an “extreme” value of x?  
Include in the confidence interval [µ1,µ2] those values of µ for 
which x0 is not “extreme”.

To be well-defined, the first point needs to be supplemented:

1) In order to define “extreme”, one needs to choose an ordering 
principle for x applicable to each µ: high rank means not extreme. 

2) Need also to specify what fraction of values of x are not 
considered extreme.
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Some common ordering choices in 1D (when p(x|µ) is such that 
higher µ implies higher average x):
1. Order x from largest to smallest.                                                 

So smallest values of x are most extreme.                            
Given x0, the confidence interval containing µ for which x0 is 
not extreme will typically not contain largest values of µ.   
Leads to confidence intervals known as upper limits on µ.

2. Order x from smallest to largest.  Leads to lower limits on µ. 
3. Order x using central quantiles of p(x|µ), with the quantiles 

shorter in x (least integrated probability of x) containing 
higher-ranked x, with lower-ranked x added as the central 
quantile gets longer. Gives central confidence intervals for µ.

N.B. These three apply only when x is 1D. 

(4th ordering, likelihood ratio used by F-C, still to come.)
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Basic notions of confidence intervals (cont.)
Given model p(x|µ) and ordering of x, one chooses a fraction of 
highest-ranked values of x that are not considered as “extreme”.
This fraction is called the confidence level (C.L.), say 68% or 95%.
We also define α = 1 – C.L., the lower-ranked, “extreme” fraction.

The confidence interval [µ1,µ2] contains those values of µ for 
which x0 is not “extreme” at the chosen C.L., given the ordering.

E.g., at 68% C.L., [µ1,µ2] contains those µ for which x0 is in the 
highest-ranked (least extreme) 68% values of x.*

*In this talk, 68% is more precisely 68.27%; 84% is 84.13%; etc.
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Basic notions of confidence intervals (cont.)
The endpoints of central confidence 
intervals at C.L. are the same as 
upper/lower limits with 1 – (1 – C.L.)/2.  
E.g.: 
84% C.L. upper limit µ2 excludes µ for 
which x0 is in the lowest 16% values of x.
84% C.L. lower limit µ1 excludes µ for 
which x0 is in the highest 16% values of x. 
Then [µ1,µ2] includes µ for which x0 is in 
the central 68% quantile of x values.  It is a 
68% C.L. central confidence interval (!)
Examples follow, first with continuous x, 
then with discrete x.
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µ2

µ1 µ1

µ2
84% C.L. UL

84% C.L. LL

68% C.L.



Gaussian pdf p(x|µ,σ) with σ a function of µ: σ = 0.2 µ
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Plot of p(x|µ,σ) with µ=10.0,  σ = 2.0 :

p(x|µ,σ)

µ

x

p(x|µ,σ) =
𝟏𝟏
𝟐𝟐� 𝟐𝟐

 𝒆𝒆− x−µ 𝟐𝟐/2σ𝟐𝟐

  σ(µ) = (0.2) µ
µ=10.0



Gaussian pdf p(x|µ,σ) with σ a function of µ: σ = 0.2 µ

Suppose µ is unknown, and x0 = 10.0 is 
observed. What can one say about µ ?
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Plot of p(x|µ,σ) with µ=10.0,  σ = 2.0 :

p(x|µ,σ)

µ

x

x0 = 10.0

p(x|µ,σ) =
𝟏𝟏
𝟐𝟐� 𝟐𝟐

 𝒆𝒆− x−µ 𝟐𝟐/2σ𝟐𝟐

  σ(µ) = (0.2) µ
µ=10.0



Gaussian pdf p(x|µ,σ) with σ a function of µ: σ = 0.2 µ

Suppose x0 = 10.0 is observed.

 Plot of L (µ) for observed x0 = 10. : 
            µML= 9.63

What is confidence interval for µ?
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L (µ)

p(x|µ,σ)

µ

x

x0 = 10.0L (µ) =
𝟏𝟏

𝟐𝟐π(𝟎𝟎.𝟐𝟐µ)𝟐𝟐
 𝒆𝒆− 𝒙𝒙𝟎𝟎−µ 𝟐𝟐/𝟐𝟐(𝟎𝟎.𝟐𝟐µ)𝟐𝟐

µ=10.0
Plot of p(x|µ,σ) with µ=10.0,  σ = 2.0 :

p(x|µ,σ) =
𝟏𝟏
𝟐𝟐� 𝟐𝟐

 𝒆𝒆− x−µ 𝟐𝟐/2σ𝟐𝟐

  σ(µ) = (0.2) µ
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Find µ1 such that 84% of p(x|µ1,σ=0.2µ1) is 
below x0 = 10.0; 16% of prob is above.  
Solve: µ1 = 8.33. 
[µ1,∞] is 84% C.L. confidence interval
µ1 is 84% C.L. lower limit for µ.

 

µ1 = 8.33
σ = 1.67

84% 16%
x

Gaussian pdf p(x|µ,σ) with σ a function of µ: σ = 0.2 µ
Observed x0 = 10.0.

x0=10
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Find µ1 such that 84% of p(x|µ1,σ=0.2µ1) is 
below x0 = 10.0; 16% of prob is above.  
Solve: µ1 = 8.33. 
[µ1,∞] is 84% C.L. confidence interval
µ1 is 84% C.L. lower limit for µ.

 Find µ2 such that 84% of p(x|µ2,σ=0.2µ2) is 
above x0 = 10.0; 16% of prob is below. 
Solve: µ2 = 12.5.
[− ∞,µ2] is 84% C.L. confidence interval
µ2 is 84% C.L. upper limit for µ. 

Then 68% C.L. central confidence interval is 
[µ1,µ2] = [8.33,12.5].

µ1 = 8.33
σ = 1.67

µ2 = 12.5
σ = 2.5

84%

84%

16%

16%

x

x

Gaussian pdf p(x|µ,σ) with σ a function of µ: σ = 0.2 µ
Observed x0 = 10.0.

x0=10
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So the 68% C.L. central confidence interval is [8.33,12.52].
This is “exact”.  Follows reasoning of E.B. Wilson, JASA 1927!

Note difference from (“Wald-like”) reasoning that proceeds as: 
1) For x0 = 10.0, minimum-χ2 point estimate of µ is �µ = 10.0.
2) Then estimate �σ = 0.2 × �µ  = 2.0.
3) Then �µ ± �σ yields interval [8.0,12.0].

For (“exact”) confidence intervals, the reasoning must always 
involve probabilities for x calculated considering particular 
possible true values of parameters, as on previous slide!
Clearly the validity of the Wald-like approximate reasoning 
depends on how much σ(µ) changes for µ relevant to problem at 
hand.  Beware! 

Gaussian pdf p(x|µ,σ) with σ a function of µ: σ = 0.2 µ
Observed x0 = 10.0.



Recall Bi(non | ntot, ρ) for binomial probability of non successes 
in ntot trials, each with binomial parameter ρ: 

Bi(non | ntot, ρ) = ntot!
non! (ntot−non)! ρnon (1 − ρ)(n

 
tot − non)

In repeated trials, non has mean ntot ρ and 

rms deviation ntot ρ (1 − ρ)

With observed successes non,  the M.L. point estimate �ρ of ρ is
(next slide)
                           �ρ = non / ntot .

What confidence interval [ρ1,ρ2] should we report for ρ?
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Confidence intervals for binomial parameter ρ:
Directly relevant to efficiency calculation in HEP

77



Suppose non=3 successes in ntot=10 trials.  

Let’s find “exact” 68% C.L.* central confidence interval [ρ1,ρ2].
Recall shortcut above for central intervals:
Find lower limit ρ1 with C.L. = 1 – (1 – 68%)/2. = 84%
Find upper limit ρ2 with C.L. = 84%
Then [ρ1, ρ2]  is 68% C.L. central confidence interval

*Recall in this talk, 68% is more precisely 68.27; 84% is 84.13%; etc.
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Confidence intervals for binomial ρ (cont.)

78

L (ρ)

ρ

–2 ln L (ρ)

ρ

�ρML= 3/10



non = 3 , ntot=10. 
Find ρ1 such that
Bi(non < 3 | ρ1)  = 84%
Bi(non ≥ 3 | ρ1)  = 16%
(lower limit at 84% C.L.)
Solve: ρ1 = 0.142 
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84%

Bi(non| ρ1)
ρ1 = 0.142 

84%

non

16%



non = 3 , ntot=10. 
Find ρ1 such that
Bi(non < 3 | ρ1)  = 84%
Bi(non ≥ 3 | ρ1)  = 16%
(lower limit at 84% C.L.)
Solve: ρ1 = 0.142 

And find ρ2 such that 
Bi(non > 3 | ρ2)  = 84%
Bi(non ≤ 3 | ρ2)  = 16%
(upper limit at 84% C.L.)
Solve: ρ2 = 0.508

Then [ρ1,ρ2] = (0.142, 0.508)  
is central confidence interval 
with 68% C.L.  Same as 
Clopper and Pearson (1934)
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84%

Bi(non| ρ1)
ρ1 = 0.142 

Bi(non| ρ2)
ρ2 = 0.508 

84%

non

non

16%

16%

For Poisson example, see Fig. 3a,b; R. Cousins, Am. J. Phys. 63 398 (1995) DOI: 10.1119/1.17901
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In HEP, such Clopper-Pearson intervals are the 
standard for a binomial parameter

81

In Particle Data Group’s Review of Particle Physics since 2002. 
Many tables and online calculators for C-P exist, e.g., 
http://statpages.org/confint.html . 
But discreteness of x leads to an issue: C-P is criticized by 
some as “wastefully conservative” – see CHT paper below.
For a comprehensive review of both central and non-central 
confidence intervals for a binomial parameter and for the ratio 
of Poisson means, see Cousins, Hyme, and Tucker, 
http://arxiv.org/abs/0905.3831 . Many  are implemented in 
https://root.cern.ch/doc/master/classTEfficiency.html  .

For related construction of upper/lower limits and central 
interval for Poisson mean, see R. Cousins, Am. J. Phys. 63 398 (1995)

http://statpages.org/confint.html
http://arxiv.org/abs/0905.3831
https://root.cern.ch/doc/master/classTEfficiency.html
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Gaussian approximation for binomial conf. int.

82

As above, non has mean ntot ρ and rms deviation ntot ρ (1 − ρ). 
One can approximate binomial by Gaussian with mean and rms
      µ(ρ) = ntot ρ 
      σ (ρ)  = ntot ρ (1 − ρ) 

Idea is not to substitute �ρ for ρ (big mistake), but rather to follow 
E.B. Wilson (1927): use above recipe for upper and lower limits: 
1)  Find ρ1 such that Gauss(x ≥3 | mean ρ1, σ(ρ1) )  = 0.16
2)  Find ρ2 such that Gauss(x ≤3 | mean ρ2, σ(ρ2) )  = 0.16

This consistently uses the σ associated with each ρ. Leads to a 
quadratic equation with solution [ρ1,ρ2] = [0.18, 0.46] which is 
the approximate 68% C.L. confidence interval known as the 
Wilson score interval. (See CHT paper.)
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Avoid the Wald interval – no reason to use it
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This “Wilson score interval” needs only the quadratic formula 
but is for some reason relatively unknown. It is tempting instead 
to substitute �ρ = non/ntot for ρ in the expression for σ: 
 �σ = ntot 

�ρ (1 − �ρ)  , obtaining the potentially disastrous 
“Wald interval”: [ρ1,ρ2]  = �ρ ± �σ .

The Wald interval does not use the correct logic for frequentist 
confidence!  In fact when non = 0 (or non = ntot ), this gives �σ = 0.

Incredibly, failure of the Wald interval when non = 0 (or non = ntot ) 
has been used as a foundational argument in favor of Bayesian 
intervals in at least four public HEP postings (one retracted) and 
one published astro paper!  (Typically the authors did not 
understand Bayesian statistics either, and used flat prior...)



1. As mentioned, directly relevant to efficiency calculations.
2. Using a famous math identity, directly applicable to 

confidence intervals for ratio of Poisson means. Cousins, 
Hyme, and Tucker, http://arxiv.org/abs/0905.3831   .

3. Then, applicable to significance (ZBi) of excess in a signal bin 
when sideband is used to estimate background.           
Cousins, Linnemann, and Tucker, 
http://arxiv.org/abs/physics/0702156 .

4. Can even stretch #3 (using “rough correspondence”) to 
problem of signal bin when Gaussian estimate of mean 
background exists.
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HEP applications of conf. intervals for binomial param

http://arxiv.org/abs/0905.3831
http://arxiv.org/abs/physics/0702156
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Binomial example in Leo’s book

85

The prerequisite reading for my lectures was Chapter 4 of 
William R. Leo, on Techniques for Nuclear and Particle Physics 
experiments, except for Example 4.5 on page 100.

One wants a 95% C.L. lower limit for the binomial parameter (his 
efficiency ε0) if there are N successes in N trials, with N=100. 

I just described how to do this in frequentist statistics:
Find lower limit ρ1 with C.L. 95%: Find ρ1 such that
Bi(non ≥ 100 | ρ1)  = 5% ⇒ Bi(non = 100 | ρ1) = 0.05 ⇒ (ρ1)1/100=0.05 
⇒ ρ1 = 0.9705. Almost identical to Leo’s solution, but (!):

If you now read Leo’s solution carefully, you should be able to 
see that “With some reflection…” is actually changing 
paradigms without notice and calculating a Bayesian credible 
interval that uses a uniform prior pdf, which is however not the 
“noninformative” prior that most statisticians would use.
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Reaction rate example in Leo’s book
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In fact, I should have also excluded the top of page 99. 
Bottom of page 98: 

Let us assume therefore that the process has some mean 
reaction rate λ. Then the probability for observing no counts in 
a time period T is P(0 | λ) = exp( − λ T ).

This is fine, a frequentist probability.  But then he says:

This, now, can also be interpreted as the probability distribution 
for λ when no counts  are observed in a period T.

Whoa, probability distribution for λ ? Changing paradigms? 
Do you see the  mistake? It is the classic mistake of inverting 
conditional probability, equating P(λ | 0) with P(0 | λ).  The math 
is the same as changing to Bayesian paradigm and assuming 
uniform prior for λ. What is the justification???



For decades, issues with upper limits and central confidence 
intervals have been discussed in prototype problems in HEP:

1. Gaussian measurement resolution near a physical boundary 
(e.g. neutrino mass-squared is non-negative)

2. Poisson signal mean measurement when observed number of 
events is less than mean expected background (so naïve 
“background-subtracted” cross section is negative)

Many ideas put forward, PDG settled on three.  Some history: 
http://www.physics.ucla.edu/~cousins/stats/cousins_bounded_gaussian_virtual_talk_12sep2011.pdf 

Today, I mostly stick to frequentist confidence intervals in this 
situation.
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Issues for upper-lower limits and 
central confidence intervals

http://www.physics.ucla.edu/%7Ecousins/stats/cousins_bounded_gaussian_virtual_talk_12sep2011.pdf


Beyond upper/lower limits and central confidence intervals

More general choices for ordering x in p(x|µ):

• For each µ, order x0 using likelihood ratio L(x0|µ) / L(x0|µbest fit). 
Advocated in HEP by Feldman and Cousins in 1998              
(and in Kendall and Stuart long before and since).                                       
Applicable in both 1D and multi-D for x.

N.B. Recall that likelihood ratios as in F-C are independent of 
metric in x since Jacobian cancels.
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Beyond upper/lower limits and central confidence intervals

More general choices for ordering x in p(x|µ):

• For each µ, order x0 using likelihood ratio L(x0|µ) / L(x0|µbest fit). 
Advocated in HEP by Feldman and Cousins in 1998              
(and in Kendall and Stuart long before and since).                                       
Applicable in both 1D and multi-D for x.

N.B. Recall that likelihood ratios as in F-C are independent of 
metric in x since Jacobian cancels.

Note:
Ordering x by the probability density p(x|µ) is not recommended! 
Recall that change of metric from x to y(x) leads to Jacobian 
|dy/dx| in p(y|µ) = p(x|µ) / |dy/dx|.                                                      
So ordering by p(y|µ) is different than ordering by p(x|µ) and all 
that follows depends on arbitrary choice of metric. 
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Neyman’s Construction of Confidence Intervals
The general method for constructing 
“confidence intervals”, and the name,
were invented by Jerzy Neyman in 1934-37. 
The next few slides give basic outline.
It takes a bit of time to sink in – given how often 
confidence intervals are misinterpreted, the argument is 
perhaps a bit too ingenious.
In particular, you should understand that the confidence 
level does not tell you “how confident you are that the 
unknown true value is in the specific interval you report” – 
only a subjective Bayesian credible interval has that 
property!
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Figure from G. Feldman, R Cousins, Phys Rev D57 3873 (1998) 

Neyman’s Construction of Confidence Intervals
Given p(x|µ) from a model:
For each value of µ , one 
draws a horizontal acceptance 
interval [x1,x2] such that 
p(x ∈ [x1,x2] | µ ) =  C.L. = 1 - α.  
(“Ordering principle” for x is 
used to well-define.)



Given p(x|µ) from a model:
For each value of µ , one 
draws a horizontal acceptance 
interval [x1,x2] such that 
p(x ∈ [x1,x2] | µ ) =  C.L. = 1 - α.  
(“Ordering principle” for x is 
used to well-define.)

Upon observing x, obtaining 
the value x0, one draws the 
vertical line through x0.  
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Figure from G. Feldman, R Cousins, Phys Rev D57 3873 (1998) 

Neyman’s Construction of Confidence Intervals

x0



Given p(x|µ) from a model:
For each value of µ , one 
draws a horizontal acceptance 
interval [x1,x2] such that 
p(x ∈ [x1,x2] | µ ) =  C.L. = 1 - α.  
(“Ordering principle” for x is 
used to well-define.)

Upon observing x, obtaining 
the value x0, one draws the 
vertical line through x0.  
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Figure from G. Feldman, R Cousins, Phys Rev D57 3873 (1998) 

Neyman’s Construction of Confidence Intervals

x0

µ1

µ2

The vertical confidence interval [µ1, µ2] with Confidence Level  
C.L. = 1 - α is the union of all values of µ for which the corres- 
ponding acceptance interval is intercepted by the vertical line.



Important note: x and µ need not 
have the same range, units, or 
(in generalization to higher 
dimensions) dimensionality!

I think it is much easier to avoid confusion when x and µ are 
qualitatively different. 
Louis Lyons gives the example where x is the flux of solar 
neutrinos and µ is the temperature at the center of the sun. 
I like examples where x and µ have different dimensions:
Neyman’s original paper has 2D observation space and 1D 
parameter space – to be discussed later.
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Famous confusion re Gaussian p(x|µ) where µ is mass ≥ 0
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It is crucial to distinguish between the data x, which can be 
negative (no problem), and the mass parameter µ, for which 
negative values do not exist in the model.  
I.e., for mass µ <0,  p(x|µ) does not exist:  You would not know 
how to simulate the physics of detector response for mass < 0.
Constraint µ ≥ 0 has nothing to do with a Bayesian prior for µ !!!
It’s in the model (and hence in L(µ)).



Famous confusion re Gaussian p(x|µ) where µ is mass ≥ 0
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It is crucial to distinguish between the data x, which can be 
negative (no problem), and the mass parameter µ, for which 
negative values do not exist in the model.  
I.e., for mass µ <0,  p(x|µ) does not exist:  You would not know 
how to simulate the physics of detector response for mass < 0.
Constraint µ ≥ 0 has nothing to do with a Bayesian prior for µ !!!
It’s in the model (and hence in L(µ)).
The confusion is encouraged since 
we often refer to x as the “measured 
value of µ”, and say that x<0 is 
“unphysical” – bad habits!
A proper Neyman construction 
graph has x of both signs but only 
non-negative µ ≥ 0.  Example:
Construction on right is LR ordering 
advocated by Feldman-Cousins



“Confidence Belt”
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From the earliest days (as in 1934 Clopper-Pearson example in 
backup), the horizontal line segments are suppressed and only 
the envelope (black curves in figure), whose interior is called a 
confidence belt, is typically plotted.

I added the line segments for 
demonstrating the construction the 
F-C paper after reading Neyman’s 
1937 paper, which had 2D 
acceptance regions shown.  This 
practice is fortunately spreading.
Earlier works have statements that I 
found cryptic, such as “Notice that 
the confidence belt is constructed 
horizontally but read vertically.”

Area inside black curves 
is“confidence belt”



“Confidence Belt”
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From the earliest days (as in 1934 Clopper-Pearson example in 
backup), the horizontal line segments are suppressed and only 
the envelope (black curves in figure), whose interior is called a 
confidence belt, is typically plotted.

I added the line segments for 
demonstrating the construction the 
F-C paper after reading Neyman’s 
1937 paper, which had 2D 
acceptance regions shown.  This 
practice is fortunately spreading.
Earlier works have statements that I 
found cryptic, such as “Notice that 
the confidence belt is constructed 
horizontally but read vertically.”

Area inside black curves 
is“confidence belt”



Confidence Intervals and Coverage
Recall: how is a vector defined in abstract math class?
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Confidence Intervals and Coverage
Recall: how is a vector defined in abstract math class?
In math, one defines a vector space as a set with certain 
properties, and then the definition of a vector is “an element of 
a vector space”.                                                                               
(A vector is not defined in isolation.)
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Confidence Intervals and Coverage
Recall: how is a vector defined in abstract math class?
In math, one defines a vector space as a set with certain 
properties, and then the definition of a vector is “an element of 
a vector space”.                                                                               
(A vector is not defined in isolation.)

Similarly, whether constructed in practice by Neyman’s 
construction or some other technique, a confidence interval is 
defined to be “a element of a confidence set”, where the 
confidence set is a set of intervals defined to have the property 
of frequentist coverage under repeated sampling:
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Confidence Intervals and Coverage (cont.)
Let µt be the unknown true value of µ. In repeated experiments, 
confidence intervals will have different endpoints [µ1, µ2], since 
the endpoints are functions of the randomly sampled x. 
A little thought* will convince you that a fraction C.L. = 1 – α of 
intervals obtained by Neyman’s construction will contain 
(“cover”) the fixed but unknown µt . I.e.,  
P(µt ∈ [µ1, µ2])  =  C.L. = 1 – α.  (Definition of coverage)
In this (frequentist) equation, µt is fixed and unknown.               
The endpoints µ1,µ2 are the random variables (!). 
Coverage is a property of the set of confidence intervals, not of 
any one interval.

* For µt , the probability that x0 is in its acceptance region is C.L., by 
construction.  For those x0’s, the vertical line will intercept µt’s 
acceptance region, and so µt be will be put into the confidence interval.

Bob Cousins, Stats in Theory, Africa 2024 102



Confidence Intervals and Coverage (cont.)
P(µt ∈ [µ1, µ2])  =  C.L. = 1 – α.  (Definition of coverage)

One of the complaints about confidence intervals is that the 
consumer often forgets (if he or she ever knew) that                  
the random variables in this equation are µ1 and µ2, and not µt , 
and that coverage is a property of the set, not of an individual 
interval!                                                                                        
Please don’t forget!
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Confidence Intervals and Coverage (cont.)
P(µt ∈ [µ1, µ2])  =  C.L. = 1 – α.  (Definition of coverage)

One of the complaints about confidence intervals is that the 
consumer often forgets (if he or she ever knew) that                  
the random variables in this equation are µ1 and µ2, and not µt , 
and that coverage is a property of the set, not of an individual 
interval!                                                                                        
Please don’t forget!
A lot of confusion might have been avoided if Neyman had 
chosen the names “coverage intervals” and “coverage level ”! 

Maybe we can have a summit meeting treaty where frequentists 
stop saying “confidence” and Bayesians stop saying 
“noninformative”!
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Confidence Intervals and Coverage (cont.)
It is true (in precisely the sense defined by the ordering principle 
used in the Neyman construction) that the confidence interval 
consists of those values of µ for which the observed x is among 
the C.L. least extreme values to be observed.
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This appeared in early days (before Neyman’s 1937 paper giving 
comprehensive discussion of the construction) when the concept 
of what we now call coverage was discussed from differing points 
of view of both Fisher and Neyman, with different names and 
arguments for justifications.
In retrospect, this paper (citing Fisher, Neyman, and Neyman’s 
students) corresponds exactly to a Neyman construction of 
central confidence intervals.  See backup for details.
As I have discussed, for central intervals the answers are the 
same as those obtained from upper and lower limits.
The same method was applied to confidence intervals for Poisson 
mean by Garwood in his 1934 thesis, and published in 1936. 
Also standard in HEP when no background! 
Controversy when background – see PDG RRP.

Famous 1934 Construction of Clopper and Pearson: 
Central Confidence Intervals for a Binomial Parameter 



Classical Hypothesis Testing
At this point, we set aside confidence intervals for the moment 
and consider from the beginning the nominally different topic of 
hypothesis testing.
In fact, we will soon find that in frequentist statistics, certain 
hypothesis tests will take us immediately back to confidence 
intervals.  But first, we consider the more general framework.
Frequentist hypothesis testing, often called “classical” 
hypothesis testing, was developed by R.A. Fisher in unfriendly 
competition with J. Neyman and E. Pearson. Modern testing has 
a mix of ideas from both. 
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Classical Hypothesis Testing (cont.)
In Neyman-Pearson (N-P) hypothesis testing (James06), frame 
discussion in terms of null hypothesis H0 (e.g. Standard Model) 
and an alternative H1 (e.g., some Beyond-SM model). 
Then p(x|µ) is different for H0 and H1 , either because parameter µ 
is different,  or p() itself is different. 
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Classical Hypothesis Testing (cont.)
For null hypothesis H0, order possible observations x from least 
extreme to most extreme, using an ordering principle (which can 
depend on H1 as well). Choose a probability α (smallish number). 
Then “reject” H0 if observed x0 is in the most extreme fraction α 
of observations x (generated under H0). By construction:

α = probability (with x generated according to H0) of rejecting 
H0 when it is true, i.e., false discovery claim (Type I error)
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Classical Hypothesis Testing (cont.)
For null hypothesis H0, order possible observations x from least 
extreme to most extreme, using an ordering principle (which can 
depend on H1 as well). Choose a probability α (smallish number). 
Then “reject” H0 if observed x0 is in the most extreme fraction α 
of observations x (generated under H0). By construction:

α = probability (with x generated according to H0) of rejecting 
H0 when it is true, i.e., false discovery claim (Type I error)

To quantity the performance of this test if H1 is true, we define:
β = probability (with x generated according to H1) of 

accepting H0 when it is false, i.e., not claiming a discovery 
when there is one (Type II error)

1–β is called the power of the test.
So a given α will correspond to a threshold value C of the test 
statistic x (perhaps an output of a neural net). In HEP, events are 
“background” (H0) if x≤C and “signal” (H1) if x>C. 
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There is a tradeoff between Type I and Type 2 errors.        
Competing analysis algorithms can be compared by looking at 
graphs of power 1–β vs Type 1 error prob α at various µ, and at 
graphs of 1–β vs µ at various α (power function). See James06, 
pp. 258, 262.

Testing H0 vs H1, including the binary classification problem of 
assigning items to one of two classes, is ubiquitous in science. 
There are several sets of words used instead of N-P’s Type I error 
prob α and Type II error prob β and their “power” 1–β.
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Classical Hypothesis Testing Jargon



Typically, H0 is the “boring” hypothesis (background event, no 
disease, no signal of something new), and H1 is something new 
(signal for new science, presence of disease, etc.) 
Rejecting H0 is called a “positive” result of the test (even if news 
of a disease), while not rejecting H0 is a “negative” test results. 
So test results are called true +, true −, false +, or false −.
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Classical Hypothesis Testing Jargon



“ROC curve” jargon for test performance
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The acronym ROC (for “receiver operating characteristic”) from the 
early days of radar is commonly used in many fields of engineering 
and science. 
The ROC curve is a graph of power 1–β vs Type 1 error prob α, 
often with new names: True Positive Rate vs. False Positive Rate.
This definition uses “rate” as a synonym for “probability” (UGH):

False Positive Rate
   = P(reject H0 | H0 true) 
   = α = N-P Type I error prob. 
   (= 1 − specificity in medical jargon)

True Positive Rate
    =   P(reject H0 | H0 false)  
    = 1− β  =  N-P power of test.
    (= sensitivity in medical jargon)

Figure: https://en.wikipedia.org/wiki/File:Roc_curve.svg



“ROC curve” (cont.)
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Again, there is internally a threshold of a test statistic x that 
determines tradeoff between α and 1− β, and hence FPR and TPR.

See https://en.wikipedia.org/wiki/Receiver_operating_characteristic 

Commonly used machine learning software scikit-learn provides 
ROC curves with TPR vs FPR. 

https://en.wikipedia.org/wiki/Receiver_operating_characteristic


Jargon in HEP for Classical Hypothesis Testing 
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P(called signal | bkgnd)  = α is the “mistag” probability for bkgnd 
    (object is “tagged” as signal even though it is background)
 

P(called signal | signal)  = 1− β is the “efficiency” for signal
   (fraction of true signal events that are tagged as signal)
 

P(called bkgnd | signal)  = β is the “inefficiency” for signal
As C is changed, one maps out curves with axes labeled with 
these terms instead of 1− β vs α or TPR vs. FPR.

Note: Assignment of H0 and H1 is arbitrary and can be reversed, 
with corresponding reversal of α and β. 
Typically H0 is the simpler hypothesis.

Warning: “ROC curves” in the TMVA package in ROOT are labeled 
“background rejection” vs “efficiency”, meaning 1− α vs 1− β. 
Beware of the many definitions and conventions! 

 



Review of jargon for medical tests
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Recall: results are true +, true −, false +, or true −.

 P(test is + | disease)  = 1− β is called the “sensitivity” of test:
   Probability of correct diagnosis if actually diseased (true +) .

P(test is − | no disease)  = 1− α is called the “specificity” of test:
   Probability of correct diagnosis if no disease (true −) .

Value of threshold C determines tradeoff between sensitivity and 
specificity.



Jargon medical jargon (cont.)
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Question: Suppose that we know the sensitivity and the specificity. 
Consider the people with positive test results. What fraction of 
them have the disease?  

I.e., what is P(disease | test is +) ? This is called the positive 
predictive value (PPV) in medicine.



Jargon medical jargon (cont.)
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Question: Suppose that we know the sensitivity and the specificity. 
Consider the people with positive test results. What fraction of 
them have the disease?  

I.e., what is P(disease | test is +) ? This is called the positive 
predictive value (PPV) in medicine.

Answer: Cannot be determined from the given information!

Need in addition: P(disease), the true fraction of all people that 
have the disease.  Then Bayes’s Thm inverts the conditionality: 
P(disease | test is +) ∝ P(test is + |disease) P(disease)

Exercise: write sensitivity, specificity, and PPV in terms of 
numbers  of true +, true −, false +, or true −. Check your answers: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698426/ 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698426/


Classical Hypothesis Testing (cont.)
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The N-P language of “accept” or “reject” H0 should not be 
mistaken for a complete theory of decision-making: 
Decision on whether to declare discovery requires 2 more inputs: 
1) Prior belief in H0 vs H1. (Can affect choice of α)
2) Cost of Type I error (false discovery claim) vs cost of Type II 

error (missed discovery). (Can also affect choice of α)
A one-size-fits-all criterion of α corresponding to 5σ is without 

foundation!

Where to live on the ROC curve 
(choice of “the operating point” 
α=FPR) is a long discussion  
(even longer when considered as 
sample size increases, so curve 
moves toward upper left.)

Figure: https://en.wikipedia.org/wiki/File:Roc_curve.svg



Classical Hypothesis Testing: Simple Hypotheses
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In idealized cases, a hypothesis may have no floating (unfixed) 
parameters. 
N-P called such hypotheses simple, in contrast to composite 
hypotheses that have unfixed parameters. 

Examples in HEP where both H0 and H1 are simple are rare, but 
we do have a few examples where the quantity of interest is 
simple in both hypotheses, and the role of unfixed parameters 
does not spoil the “simplicity”, e.g., H0 vs H1 being:

“jet originated from a quark” vs “jet originated from a gluon”
spin-1 vs spin-2 for a new resonance in µ+µ–

JP=0+ vs JP=0– for the Higgs-like boson



The “lemma” applies only to a very special case: no nuisance 
parameters, not even undetermined parameters of interest!
But it has inspired many generalizations, and likelihood ratios 
are an oft-used component of both frequentist and Bayesian 
methods.

Simple Hypotheses Testing: Neyman-Pearson Lemma
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If Type I error probability α is specified in a test of 
simple hypothesis H0 against simple hypothesis H1 , then the 
Type II error probability β is minimized by ordering x according 
to the likelihood ratio λ =  L(x| H0) /L(x| H1). 
One finds cutoff λcut,α for that α and rejects H0 if λ ≤ λcut,α .

For an outline of a proof, see Stuart99, p. 176

Phil. Transactions of the 
Royal Society of London. Vol. 
231, (1933), pp. 289-337
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In contrast to two disjoint simple hypotheses, it is common in HEP 
for H0 to be nested in H1.  
This happens when there is an undetermined parameter µ in H1 , 
and H0 corresponds to a particular parameter value µ0               
(e.g., zero, 1, or ∞). So consider: 
H0: µ = µ0 (the “point null”, or “sharp hypothesis”) vs 
H1: µ ≠ µ0 (the “continuous alternative”).
Common examples: 
Signal strength µ of new physics: null µ0 = 0, alternative µ>0
H0 → γγ before discovery of this decay, µ = signal strength: 
null µ0 = 0, alternative µ>0
H0 → γγ after discovery of this decay: 
null µ0 = Standard Model prediction, alternative any other µ ≠ µ0 

Nested Hypothesis Testing
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H0: µ = µ0 (the “point null”, or “sharp hypothesis”) vs 
H1: µ ≠ µ0 (the “continuous alternative”).
In classical/frequentist formalism (but not Bayesian formalism), the 
theory of such nested tests maps to that of confidence  intervals!

Nested Hypothesis Testing (cont.)
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H0: µ = µ0 (the “point null”, or “sharp hypothesis”) vs 
H1: µ ≠ µ0 (the “continuous alternative”).
In classical/frequentist formalism (but not Bayesian formalism), the 
theory of such nested tests maps to that of confidence  intervals!
Intuitive argument: 
Having observed data x0, suppose the 90% C.L. confidence interval 
for µ is  [µ1,µ2].
This contains all values of µ for which observed x0 is ranked in the 
least extreme 90% of possible outcomes x according to p(x|µ) and 
the ordering principle in use.

Nested Hypothesis Testing (cont.)
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H0: µ = µ0 (the “point null”, or “sharp hypothesis”) vs 
H1: µ ≠ µ0 (the “continuous alternative”).
In classical/frequentist formalism (but not Bayesian formalism), the 
theory of these tests maps to that of confidence  intervals!
Intuitive argument: 
Having observed data x0, suppose the 90% C.L. confidence interval 
for µ is  [µ1,µ2].
This contains all values of µ for which observed x0 is ranked in the 
least extreme 90% of possible outcomes x according to p(x|µ) and 
the ordering principle in use.
Now suppose we wish to test H0 vs H1 at Type I error prob α = 10%. 
We reject H0 if x0 is ranked in the most extreme 10% of x according 
to p(x|µ) and the ordering principle in use.
Comparing the two procedures, we see: 
Reject H0 at α=10% iff µ0 is in 90% C.L. confidence interval [µ1,µ2].

Nested Hypothesis Testing: Duality with Intervals



Nested Hypothesis Testing Duality
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Given an ordering: 
Test of µ=µ0 vs µ≠µ0 at significance level α 
↔ Is µ0 in confidence interval for µ with C.L. = 1- α ?
“There is thus no need to derive optimum properties separately 
for tests and for intervals; there is a one-to-one correspondence 
between the problems as in the dictionary in Table 20.1” 
Stuart99, p. 175. [Table in backup slides]  E.g.,
                    α ↔ 1 – C.L.
Equal-tailed test ↔ central confidence intervals
 One-tailed tests ↔  Upper/lower limits 

Use of the duality is referred to as “inverting a test” to obtain 
confidence intervals, and vice versa.



Nested Hypothesis Testing (cont.)

We emphasized a “new” ordering 
principle based on LR. While paper 
was “in proof”, Gary realized that 
“our” intervals were simply those 
obtained by “inverting” the LR 
hypothesis test. In fact it was all on 
1¼ pages of “Kendall and Stuart”, 
plus nuisance parameters!             
This was of course good ! 
It led to rapid inclusion in PDG RPP. 
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Phys. Rev. D57 3873 (1998):

Test µ=µ0 at α ↔ Is µ0 in conf. int. for µ with C.L. = 1- α 



Above is all “pre-data” characterization of the test
How to characterize post-data? 

p-values and Z-values
In N-P theory, α is specified in advance.  
Suppose after obtaining data, you notice that with α=0.05 
previously specified, you reject H0, but with α=0.01 previously 
specified, you accept H0.  
In fact, you determine that with the data set in hand, H0 would be 
rejected for α ≥ 0.023.  This interesting value has a name:
After data are obtained, the p-value is the smallest value of α for 
which H0 would be rejected, had it been specified in advance.
This is numerically (if not philosophically) the same as definition  
used e.g. by Fisher and often taught: “p-value is probability under 
H0 of obtaining x as extreme or more extreme than observed x0.” 
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Interpreting p-values and Z-values
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It is crucial to realize that that value of α (0.023 in the example) 
was typically not specified in advance, so p-values do not 
correspond to Type I error probs of experiments reporting them.      
In HEP, p-value is typically converted to Z-value, the equivalent 
number of Gaussian sigma.*
E.g.., for one-tailed test, p = 2.87E-7 is Z = 5.
(Z is unfortunately sometimes called “the significance S”),

*Although these lectures are not “statistics in practice”,                      
I mention  ROOT commands for one-tailed conversions:                       
zvalue = -TMath::NormQuantile(pvalue)               
pvalue = 0.5*TMath::Erfc(zvalue/sqrt(2.0))

(Thanks, Igor Volobouev.) Note that p-value > 0.5 means Z-value < 0.
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Interpreting p-values and Z-values (cont.)
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Interpretation of p-values (and hence Z-values) is a long, 
contentious story – beware! 
Widely bashed.  I give some reasons why later.
I defend their use in HEP. See https://arxiv.org/abs/1310.3791.)

Whatever they are, p-values are not the probability that H0 is true!
– They are calculated assuming that H0 is true, so they can 

hardly tell you the probability that H0 is true!
– Calculation of “probability that H0 is true” requires prior(s)!

Please help educate press officers and journalists!                    
(and physicists) !
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https://arxiv.org/abs/1310.3791


Early CMS Higgs spin-parity test of 0+ vs. 0-

Paper reported (fixing typo):

1) -2ln(L0- /L0+) 
             = 5.5  favoring 0+

2) for H0: 0-,  p-value   = 0.0072

3) for H0: 0+, p-value   = 0.7 

4) CLs = (0.0072)/(1–0.7) = 0.024, 
“a more conservative value for 
judging whether the observed 
data are compatible with 0- ”

N.B. See backup for figure and   
pointer to paper by Demortier 
and Lyons discussing two p-
values in simple-vs-simple case.

CMS, Phys. Rev. Lett. 110 (2013) 081803 
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If H0 is specified but the alternative H1 is not, then only the Type I 
error probability α can be calculated, since the Type II error 
probability β depends on H1.  
A test with this feature is called a test for goodness-of-fit (to H0). 
(Fisher called them significance tests.) 
With no alternative specified, the question “Which test is best?” 
is thus ill-posed.  
Despite the popularity of tests with universal maps from test 
statistics to α (in particular χ2 and Kolmogorov tests), they may 
be ill-suited for many problems: they may have poor power      
(1− β) against relevant alternative H1). 
A plethora of possible tests in 1D are described in the book by 
D'Agostino and Stephens, a must-read for those wanting to 
invent a new test. 
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Classical frequentist goodness of fit (g.o.f.)



As multi-D unbinned ML fits have proliferated in recent decades, 
there are increasing needs for multi-D unbinned g.o.f. tests.
 E.g., is it reasonable that 1000 events scattered in a 5D sample 
space have been drawn from a particular pdf (which may have 
parameters that were fit using an unbinned M.L. fit to those 1000 
events)?  
This is an ill-posed question, but we are looking for good 
omnibus tests. Then getting the null distribution of the test 
statistic from simulation is typically doable, it seems.  
One can follow an unbinned ML fit with a binned g.o.f. test such 
as χ2, but this brings in its own issues. 
At a loss of power but increase in transparency, one can also 
perform tests on 1D or 2D distributions of the marginalized 
densities.
Machine learning is also having an impact.
See Appendix B of my writeup on arXiv for more on g.o.f.
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Classical frequentist goodness of fit (cont.)



Recall:  Likelihood function L(µ) is invariant under 
reparametrization from µ to f(µ):  L(µ)  =  L(f(µ)).

So likelihood ratios  L(µ1) /L(µ2) and log-likelihood 
differences lnL(µ1) - lnL(µ2) are also invariant.

After using maximum-likelihood method to obtain estimate �µ that 
maximizes either L(µ) or L(f(µ)), one can obtain a likelihood 
interval [µ1, µ2] as the union of all µ for which 

2lnL(�µ)  -  2lnL(µ)  ≤  Z2,  for Z real.      
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Likelihood (Ratio) Intervals for 1 parameter



Likelihood (Ratio) Intervals for 1 parameter
Recall:  Likelihood function L(µ) is invariant under 
reparametrization from µ to f(µ):  L(µ)  =  L(f(µ)).

So likelihood ratios  L(µ1) /L(µ2) and log-likelihood 
differences lnL(µ1) - lnL(µ2) are also invariant.

After using maximum-likelihood method to obtain estimate �µ that 
maximizes either L(µ) or L(f(µ)), one can obtain a likelihood 
interval [µ1, µ2] as the union of all µ for which 

2lnL(�µ)  -  2lnL(µ)  ≤  Z2,  for Z real.      
As sample size increases (under important regularity conditions) 
this interval approaches a central confidence interval with C.L. 
corresponding to ± Z Gaussian standard deviations
But!  Regularity conditions, in particular requirement that �µ not 
be on the boundary, need to be carefully checked.                   
E.g., if µ ≥ 0 on physical grounds, then �µ = 0 requires care.
This is a special case of an important theorem by S.S. Wilks, to 
be discussed later in these lectures.
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Recall: 
    L (µ) for observed x0 = 10.0. 
     µML= 9.63

Likelihood ratio interval for µ at 
approximate 68% C.L.:
[µ1, µ2] = [8.10, 11.9].

Compare with exact confidence 
interval [8.33,12.5].
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L (µ)

Gaussian pdf p(x|µ,σ) with σ a function of µ: σ = 0.2 µ
Observed x0 = 10.0. 

µ
∆ = 12

–2 ln L (µ)

µ



Recall example of non=3 
successes in ntot=10 trials.  

Minimum –2 ln L (ρ) = 2.64.
Obtain interval from 
–2 ln L (ρ) = 2.64 + 1 = 3.64

⇒ likelihood-ratio interval 
[ρ1,ρ2] = [0.17, 0.45]

Also recall: 
Copper-Pearson [ρ1,ρ2] = [0.14, 0.51]
Wilson                 [ρ1,ρ2] = [0.18, 0.46] 
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–2 ln L (ρ)

ρ

Binomial Likelihood-Ratio Interval example

∆ = 12



Poisson Likelihood-Ratio Interval example
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Approx “68% C.L.” likelihood-
ratio interval for Poisson 
process with n=3 observed:

 L (µ) = µ3 exp(-µ)/3!
Recall maximum at µ = 3.
–2 ln L (3) = 2.99

∆2lnL  = 12  yields LR interval 
[µ1, µ2] = [1.58, 5.08]

Neyman construction central 
(Garwood):
[µ1, µ2] = [1.37, 5.92]

–2 ln L (µ)

∆ = 12

µ
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Recall 3 methods of  interval construction for binomial param ρ

Bayesian and likelihood 
intervals: Bi(non | ntot , ρ)  
is evaluated only at     
observed non=3.  
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Recall 3 methods of  interval construction for binomial param ρ

Bayesian and likelihood 
intervals: Bi(non | ntot , ρ)  
is evaluated only at     
observed non=3. 

Confidence intervals 
use, in addition,  
probabilities for values 
of non not observed.

This distinction turns 
out to be a huge deal!



In both Bayesian methods and likelihood-ratio based methods, 
the probability (density) for obtaining the data at hand is used 
(via the likelihood function), but probabilities for obtaining 
other data are not used!
In contrast, in typical frequentist calculations (confidence 
intervals, p-values), one also uses probabilities of data that 
could have been observed but that was not observed.
The assertion that only the former is valid is captured by the 
Likelihood Principle*: 
If two experiments yield likelihood functions that are 
proportional, then Your inferences from the two experiments 
should be identical.

*There are various versions of the L.P.,  strong and weak forms etc. See Stuart99 and 
book by Berger and Wolpert.

Bob Cousins, Stats in Theory, Africa 2024 141

Likelihood Principle



Likelihood Principle (cont.)
L.P. is built into Bayesian inference (except e.g., when Jeffreys 
prior leads to violation).  
L.P. is violated by p-values and confidence intervals.
Jeffreys (Theory of Probability, 1961, p. 385) still seems to be 
unsurpassed in his ironic criticism of tail probabilities, which 
include probabilities of data more extreme than that observed:
“What the use of [the p-value] implies, therefore, is that a 
hypothesis that may be true may be rejected because it has not 
predicted observable results that have not occurred.”     

Although practical experience indicates that the L.P. may be too 
restrictive, it is useful to keep in mind.  When frequentist results 
“make no sense” or “are unphysical”, in my experience the 
underlying reason can be traced to a bad violation of the L.P.
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Likelihood Principle Example #1
The “Karmen Problem”

– You expect background events sampled from a Poisson 
distribution with mean b=2.8, assumed known precisely.  

– For signal mean µ, the total number of events n is then 
sampled from Poisson mean µ+b.  

– So P(n) = (µ+b)n exp(-µ-b)/n! 
– Then you observe no events at all! I.e., n=0.
– L(µ) = (µ+b)0 exp(-µ-b)/0!  = exp(-µ) exp(-b)
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Likelihood Principle Example #1
The “Karmen Problem”

– You expect background events sampled from a Poisson 
distribution with mean b=2.8, assumed known precisely.  

– For signal mean µ, the total number of events n is then 
sampled from Poisson mean µ+b.  

– So P(n) = (µ+b)n exp(-µ-b)/n! 
– Then you observe no events at all! I.e., n=0.
– L(µ) = (µ+b)0 exp(-µ-b)/0!  = exp(-µ) exp(-b)

Note that changing b from 0 to 2.8 changes L(µ) only by the 
constant factor exp(-b).  This gets renormalized away in any 
Bayesian calculation, and is irrelevant for likelihood ratios.      
So for zero events observed, likelihood-based inference about 
signal mean µ is independent of expected b.
For essentially all frequentist confidence interval constructions, 
the fact that n=0 is less likely for b=2.8 than for b=0 results in 
narrower confidence intervals for µ as b increases.                
Clear violation of the L.P.
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Likelihood Principle Example #2
Binomial problem, famous among statisticians, translated to HEP 
You want to measure the efficiency ε of some trigger selection. 
You count until reaching ntot =100 zero-bias events, and note that  
of these, m=10 passed selection.                                                   
The probability for m is binomial with binomial parameter ε : 

Bi(m | ntot 
, ε) = ntot!

m! (ntot−m)! ε
m (1 − ε)(ntot −

 
m)

Estimate ε = 10/100, compute binomial confidence interval for ε.
Also, plugging in the observed data, the likelihood function is

L(ε) = 100!
10! 90! ε

10 (1 − ε)90
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Likelihood Principle Example #2 (cont.)
Your colleague in a different experiment counts zero-bias events 
until m=10 have passed her trigger. She notes that this requires 
ntot =100 events (a coincidence).  
Intuitively, ε =10/100 over-estimates ε because she stopped just 
upon reaching 10 passed events, and indeed an unbiased 
estimate of ε and confidence  interval will be slightly different 
from the binomial case.            
Relevant distribution here is (a version of) the negative binomial:

NBi(ntot 
| m, ε) = (ntot−1)!

(m−1)!  εm (1 − ε)(ntot −
 
m)

Also, plugging in the observed data, the likelihood function is

L(ε) = 99!
9! 90! ε10 (1 − ε)90
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Likelihood Principle Example #2 (cont.)
So both you and your friend observed 10 successes out of 100 
trials, but with different stopping rules.
Your likelihood function is based on binomial distribution:

L(ε) = 100!
10! 90! ε

10 (1 − ε)90

Your friend’s is based on negative binomial distribution:

L(ε) = 99!
9! 90! ε10 (1 − ε)90

The two likelihoods differ by (only) a constant factor, so the 
(strong) LP says that inferences should be identical.
In contrast, frequentist inferences use probabilities of data not 
obtained, and result in different confidence intervals and            
p-values for the different stopping rules.
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Likelihood Principle Example #2 (cont.) 
The two efficiency measurements had a different stopping rules: 
one stopped after ntot events, and the other stopped after m 
events passing the trigger. 
Frequentist confidence intervals depend on the stopping rule; 
the likelihood function did not (except for an overall constant).
So Bayesians will get the same answer in both cases, unless the 
prior depends on the stopping rule. 
Amusing sidebar: the Jeffreys prior is indeed different for the 
two distributions, so use of Jeffreys prior violates (strong) L.P.
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Stopping Rule Principle
The strong L.P. typically implies, as in this example, that the 
inference is independent of the stopping rule!  This irrelevance 
has been elevated to the “Stopping Rule Principle”.
(It is sometimes amusing to ask a recent Bayesian convert if 
they know that they just bought the Stopping Rule Principle.)
Concepts that average/sum over the sample space, such as bias 
and tail probabilities, do not exist in pure Bayesian framework.
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Stopping Rule Principle (cont.)
Famous quote by L.J. (Jimmie) Savage, early subjective 
Bayesian advocate: 

“...I learned the stopping-rule principle from Professor Barnard, 
in conversation in the summer of 1952. Frankly, I then thought it 
a scandal that anyone in the profession could advance an idea 
so patently wrong, even as today I can scarcely believe that 
some people resist an idea so patently right." 
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L.J. Savage et al., 
The Foundations of Statistical Inference: A Discussion
Methuen & Co., London, 1962
Scans of “The Complete Savage Forum” on D. Mayo’s web site, 
http://www.phil.vt.edu/dmayo/PhilStatistics/supplementary_articles.htm 

http://www.phil.vt.edu/dmayo/PhilStatistics/supplementary_articles.htm


Summary of Three Ways to Make Intervals
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Bayesian 
Credible

Frequentist 
Confidence 

Likelihood Ratio

Requires prior pdf? Yes No No

Obeys Likelihood 
Principle?

Yes (exception re 
Jeffreys prior)

No Yes

Random variable in 
“P(µt ∈ [µ1, µ2])”:

µ t µ 1, µ 2 µ 1, µ 2 

Coverage guaranteed? No Yes (but over-
coverage…)

No

Provides 
P(parameter|data)?

Yes No No

Frequentist intervals map to frequentist hypothesis tests, as 
previously discussed.
Bayesian approach to hypothesis testing is also called model 
selection, and is a whole other “can of worms” (J.O. Berger).



68% intervals for Poisson mean with n=3 observed
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Frequentist intervals over-cover due to discreteness of n.

Adapted from R. Cousins,  Am. J. Phys. 63 398  (1995)



68% intervals for Poisson mean with n=3 observed
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Bayesian lower limits with 1/µ prior are identical to frequentist 
lower limits.

Adapted from R. Cousins,  Am. J. Phys. 63 398  (1995)



68% intervals for Poisson mean with n=3 observed
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Bayesian upper limits with flat prior are identical to frequentist 
upper limits.

Since upper limits dominate our field, this is why flat prior for 
Poisson mean became so well established: it is probability 
matching prior for upper limits, and when background is 
added, becomes conservative.



Bayesian Hypothesis Testing  (Model Selection)
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Typically follows Chapter 5 of Harold Jeffreys’s book:
Bayes’s Theorem is applied to the models themselves after 
integrating out all parameters, including parameter of interest!

Presented too often as “logical” and therefore simple to use, 
with great benefits such as automatic “Occam’s razor”, etc.



Bayesian Hypothesis Testing  (Model Selection)
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Typically follows Chapter 5 of Harold Jeffreys’s book:
Bayes’s Theorem is applied to the models themselves after 
integrating out all parameters, including parameter of interest!

Presented too often as “logical” and therefore simple to use, 
with great benefits such as automatic “Occam’s razor”, etc.

In fact, it is full of subtleties. E.g., Jeffreys and followers use 
different priors for integrating out a parameter in model 
selection than for the same parameter in parameter estimation.

Here I mainly just say: Beware!  There are posted/published 
applications HEP that lack foundation, in particular by Bayesian 
standards. 
 An example in PRL provoked me to write a Comment: 
https://arxiv.org/abs/0807.1330 .

https://arxiv.org/abs/0807.1330
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In asymptotic limit of lots of data, your answer (e.g. probability 
H0 is true, or an odds ratio called the Bayes Factor) remains 
proportional to the prior pdf of parameter of interest. 

This is totally different behavior compared to interval 
estimation, where the effect of prior becomes negligible.

For testing H0: µ = µ0 vs H1: µ ≠ µ0 , improper priors for µ that 
work fine for estimation become a disaster; adding cutoff to 
make them proper just gives (typically arbitrary) cutoff 
dependence.  

Bayesian Hypothesis Testing  (Cont.)
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For a review and comparison to p-values in discovery of Higgs 
boson, see my paper:

 “The Jeffreys-Lindley Paradox and Discovery Criteria in High 
Energy Physics” 

(Published in Synthese – long story) 
https://arxiv.org/abs/1310.3791 . 

Bayesian Hypothesis Testing  (Cont.)

https://arxiv.org/abs/1310.3791


1D parameter space, 2D observation space
Until now we have considered 1 parameter and 1 observation. 
Adding a second observation adds surprising subtleties.
As before, µ is parameter (often called θ by statisticians)
An experiment has two observations x1, x2 .  These could be:

– two samples from same p(x|µ), or 
– samples of two different quantities from joint density 

p(x1,x2 |µ) .

Neyman construction: 
For each µ, use an ordering principle on the sample space 
(x1,x2) to select an acceptance region A(µ) in the sample space 
(x1, x2) such that P((x1,x2) ∈ A(µ)) = C.L.
In fact, this was the illustration in Neyman’s original paper.
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Original paper has one unknown parameter 
θ1 on vertical axis and horizontal planes for 
2D vectors of observables E = (x1,x2).

Prior to experiment, acceptance regions 
A(θ1) in E-space planes are determined for 
each θ1 (needs ordering principle) with 
P(E∈A(θ1)) = C.L.

E′ is data actually observed in expt.
Upon obtaining E′, confidence interval for 
θ1 consists of all values of θ1 for which E′ is 
in A(θ1).
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Recall from Initial Discussion of Probability

For probabilities to be well-defined, the “whole space” needs to 
be defined. Can be hard for both frequentists and Bayesians!
[...]
Furthermore, it is widely accepted that restricting the “whole 
space” to a relevant (“conditional”) subspace can sometimes 
improve the quality of statistical inference.  The important topic 
of such “conditioning” in frequentist inference will be 
discussed in detail later.

“Later” is now!



Restricting the Sample Space Used by Frequentists
In Neyman’s construction in the 2D sample space (x1,x2), the 
probabilities P((x1,x2) ∈ A(µ)) associated with each acceptance 
region A(µ) are unconditional probabilities with respect to the 
“whole” sample space of all values of (x1,x2).
In contrast, Bayesian inference is based on a single point in this 
sample space, the observed (x1,x2), per the Likelihood Principle.
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Restricting the Sample Space Used by Frequentists
In Neyman’s construction in the 2D sample space (x1,x2), the 
probabilities P((x1,x2) ∈ A(µ)) associated with each acceptance 
region A(µ) are unconditional probabilities with respect to the 
“whole” sample space of all values of (x1,x2).
In contrast, Bayesian inference is based on a single point in this 
sample space, the observed (x1,x2), per the Likelihood Principle.
There can be a middle ground in frequentist inference, in which 
the probabilities P((x1,x2) ∈ A(µ))  are conditional probabilities 
conditioned on a function of (x1,x2), in effect restricting the 
sample space to a “recognizable subset” depending on the 
observed data.
The function of (x1,x2) used for conditional probabilities 
typically carries information on the uncertainty in the point 
estimate �µ, but no information on �µ itself: called an ancillary 
statistic.
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Restricting the Sample Space Used by Frequentists (cont.)
Restricting the sample space in this way is known as 
conditioning (on an ancillary).  Two famous examples:
1) A somewhat artificial example of Welch where the 

conditioning arises from mathematical structure
2) A more physical example of Cox where the argument for 

conditioning seems “obvious”
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Let p(x|µ) = { 

Two values x1,x2 are observed. 
�µ = �x = (x1+x2)/2 (Only for n=2! See Backup)
What is 68% C.L. central confidence interval for µ?
Neyman construction: Define acceptance region A(µ) 
containing 68% of unit square of (x1,x2) centered on µ.            

P(x|µ)

µ µ+½µ−½
x

Famous example of B.L. Welch (1939)

What to use?
Centrality implies symmetry.      
Need something else to rank 
points in the plane.  
N-P Lemma gives most powerful 
ranking, but first let’s think 
about some examples.

x1

x2

A(µ) ?

1 if  µ – ½  ≤  x  ≤ µ + ½
0 otherwise.
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L1(µ)

x1

µ

L2(µ)

x2

µ

L1(µ)

x1

µ

L2(µ)

x2

µ

“Lucky” sample with |x1–x2| close to 1.  
L(µ) = L1(µ) × L2(µ) very narrow.  

Reasonable to expect small uncertainty in �µ ?

“Unlucky” sample, |x1–x2| close to 0.  
L(µ) full width close to 1;                     
Second observation added no useful info.
Expect 68% C.L. conf. interval 0.68 long?
Guess reasonable answer:  conf. interval    
centered on �µ with length 0.68(1-|x1-x2|)
        



Bob Cousins, Stats in Theory, Africa 2024 167

Seems reasonable for post-data 
uncertainty to depend on |x1–x2|.  
|x1–x2| is classic example of an ancillary 
statistic A: has info on uncertainty on µ 
estimate, but no info on µ itself.   
Idea dating to Fisher and before: divide the 
full “unconditional” sample space into 
“recognizable subsets” and report probs 
using the “relevant” subset rather than the 
whole space.              

L1(µ)

x1

µ

L2(µ)

x2

µ

L1(µ)

x1

µ

L2(µ)

x2

µ

See backup slides: Confidence intervals �µ ± 0.34(1-|x1-x2|), as 
thought reasonable! Known as “conditioning” on ancillary 
statistic A: Post-data, proceed as if A had been fixed, rather than 
randomly sampled!...even though less power!



Brad Efron’s talk at PhyStat-2003 gave similar example using 
Cauchy distribution, where ancillary statistic is curvature of L(µ).          
He called conditional answer “correct”. 
(http://www.slac.stanford.edu/econf/C030908/papers/MOAT003.pdf )

Summary: conditioning on an ancillary statistic A means:  
Even though A was randomly sampled in the experimental 
procedure, after data is obtained proceed as if A had been fixed 
to the value observed.  Ignore sample space with all those other 
values of A that you could have obtained, but did not.
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http://www.slac.stanford.edu/econf/C030908/papers/MOAT003.pdf


For measuring the mean µ with Gaussian resolution, one of two 
devices is selected randomly with equal probability:

• Device #1 with σ1 
• Device #2 with σ2 ≪ σ1 . 

So in my notation, x1 is the index (1 or 2) chosen randomly and 
specifying device, and x2 is the single sample from the selected 
Gaussian measurement. 
In Behnke13 (p. 122) Luc Demortier gives an example in HEP:   
µ is mass of decaying particle with probability ph to decay 
hadronically (mass resolution σ1 ) and probability 1-ph to decay 
leptonically with mass resolution σ2 ).  Thus the “measuring 
machine” chosen randomly is the detector used to measure the 
decay mode chosen by QM.
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Famous “weighing machine” example of D.R. Cox (1958)



• Device #1 with σ1 
• Device #2 with σ2 ≪ σ1 . 

x1 is the index (1 or 2) chosen randomly and specifying device; 
x2 is the single sample from the selected measurement. 
So �µ = x2.  What is the confidence interval?
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Example of D.R. Cox (cont.)



• Device #1 with σ1 
• Device #2 with σ2 ≪ σ1 . 

x1 is the index (1 or 2) chosen randomly and specifying device; 
x2 is the single sample from the selected measurement. 
So �µ = x2.  What is the confidence interval?
The index x1 is an ancillary statistic (gives info on uncertainty 
but not on point estimate), and it is reasonable (obvious?)  to 
condition on it.  I.e., we report confidence interval giving 
correct coverage in subspace of measurements that used the 
same device we used. 
So 68% C.L. confidence interval:

• �µ ± σ1 if Device #1 randomly selected
• �µ ± σ2 if Device #2 randomly selected

As in Welch example, it turns out that more powerful tests 
(confidence intervals shorter on average!) can be found.  
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Example of D.R. Cox (cont.)



Demortier gives details on how average length of intervals 
optimized in the unconditional sample space is shorter in the 
HEP example. See backup for details of Cox’s example.
In both cases, the idea is to undercover badly (~38% coverage 
for 68% C.L. intervals) when Device #1 is used, and overcover 
(~100% coverage) when Device #2 is used.  The smaller σ of 
Device #2 means that average length of interval goes down, 
when averaging over the entire unconditional sample space.
One gives up power with Device #1 and uses it in Device #2.

Cox: “If, however, our object is to say `what can we learn from 
the data that we have’, the unconditional test is surely no good.”

The Welch and Cox (and Efron)  examples reveal a real conflict 
between N-P optimization for power and conditioning to optimize 
relevance.
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Example of D.R. Cox (cont.)



The assertion that inference should be conditioned on an 
ancillary in the Welch example (where it comes out of the math) 
is often called the “Conditionality Principle”. 
Conditioning in the Cox example (a “mixture experiment” 
where the ancillary has physical meaning about which 
experiment was performed) is then the “Weak Conditionality 
Principle”. 
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Conditionality Principle



But note: in sufficiently complicated cases (for example if there 
is more than one ancillary statistic), the procedure is less clear.
In many situations, ancillary statistics do not exist, and it is not 
at all clear how to restrict the “whole space” to the relevant part 
for frequentist coverage. 
The Bayesian answer: restrict the whole space to the point 
observed!  But the price is giving up coverage.
When there are “recognizable subsets” with varying coverage, 
Buehler has discussed how a “conditional frequentist” can win 
bets against an “unconditional frequentist” – see Backup.
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Conditionality Principle (cont.)



Conditioning in HEP
A classic example is a measurement of the branching fraction of 
a particular decay mode when the total number of decays N can 
fluctuate because the experiment design is to run for a fixed 
length of time.  Then N is an ancillary statistic.
You perform an experiment and obtain N total decays, and then 
do a toy M.C. of repetitions of the experiment. Do you let N 
fluctuate, or do you fix it to the value observed? 
It may seem that the toy M.C. should include your complete 
procedure, including fluctuations in N.
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Conditioning in HEP
A classic example is a measurement of the branching fraction of 
a particular decay mode when the total number of decays N can 
fluctuate because the experiment design is to run for a fixed 
length of time.  Then N is an ancillary statistic.
You perform an experiment and obtain N total decays, and then 
do a toy M.C. of repetitions of the experiment. Do you let N 
fluctuate, or do you fix it to the value observed? 
It may seem that the toy M.C. should include your complete 
procedure, including fluctuations in N.
But the above arguments would point toward conditioning on 
the value of the ancillary statistic actually obtained. So your 
branching fraction measurement is binomial with trials N. 
(Originally discussed in HEP by F. James and M. Roos,         
Nucl. Phys. B 172 (1980) 475.  For more complete discussion, 
see Cousins, Hyme, Tucker, https://arxiv.org/abs/0905.3831 )
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Review: Conditioning and the Likelihood Principle
We have seen that unconditional frequentists compute 
probabilities with respect to the whole sample space.
Post-data, conditional frequentists try to refer to a relevant 
subset of the whole sample space (typically not easy).
We also saw that pure Bayesians refer only to the probability of 
the data observed (L.P.).  This is literally the ultimate extreme in 
conditioning, conditioning (in the continuous case) on a point 
of measure zero! (You can’t get any more “relevant”.)
This is why coverage is not built into Bayesian answers.
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Conditioning and the Likelihood Principle (cont.)
It is not surprising that Bayesians argue for the importance of 
relevance of the inference, and criticize frequentists for danger 
of irrelevance (and difficulty of diagnostic of irrelevance). 
And it is not surprising that frequentists argue for the 
importance of a useful measure of “error rates”, in the sense of 
Type 1 and Type 2 errors, coverage, etc., which may at best be 
estimates if L.P. is observed.
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(Finally!) More than One Parameter
Generalize to two parameters µ1 and µ2, true values unknown. 
Let data x be a multi-D vector, so the model is p(x|µ1,µ2).
Observed vector value is x0 .
First consider the desire to obtain a 2D confidence/credible  
region in the parameter space (µ1,µ2).  All three methods 
discussed for intervals handle this in a straightforward              
(in principle) generalization:

– Bayesian: put observed data vector x0 into p(x|µ1,µ2) to 
obtain the likelihood function L(µ1,µ2).  Multiply by prior 
pdf p(µ1,µ2) to obtain 2D posterior pdf p(µ1,µ2|x0) .            
Use posterior pdf to obtain credible regions, etc., in (µ1,µ2).
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(Finally!) More than One Parameter
Generalize to two parameters µ1 and µ2, true values unknown. 
Let data x be a multi-D vector, so the model is p(x|µ1,µ2).
Observed vector value is x0 .
First consider the desire to obtain a 2D confidence/credible  
region in the parameter space (µ1,µ2).  All three methods 
discussed for intervals handle this in a straightforward              
(in principle) generalization:

– Bayesian: put observed data vector x0 into p(x|µ1,µ2) to 
obtain the likelihood function L(µ1,µ2).  Multiply by prior 
pdf p(µ1,µ2) to obtain 2D posterior pdf p(µ1,µ2|x0) .            
Use posterior pdf to obtain credible regions, etc., in (µ1,µ2).

– Confidence intervals: perform Neyman construction:      
Find acceptance regions for x as a function of (µ1,µ2).     
The 2D confidence region is union of all (µ1,µ2) for which 
x0 is in acceptance region.
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(Finally!) More than One Parameter
Generalize to two parameters µ1 and µ2, true values unknown. 
Let data x be a multi-D vector, so the model is p(x|µ1,µ2).
Observed vector value is x0 .
First consider the desire to obtain a 2D confidence/credible  
region in the parameter space (µ1,µ2).  All three methods 
discussed for intervals handle this in a straightforward              
(in principle) generalization:

– Bayesian: put observed data vector x0 into p(x|µ1,µ2) to 
obtain the likelihood function L(µ1,µ2).  Multiply by prior 
pdf p(µ1,µ2) to obtain 2D posterior pdf p(µ1,µ2|x0) .            
Use posterior pdf to obtain credible regions, etc., in (µ1,µ2).

– Confidence intervals: perform Neyman construction:      
Find acceptance regions for x as a function of (µ1,µ2).     
The 2D confidence region is union of all (µ1,µ2) for which 
x0 is in acceptance region.

– Likelihood regions: recall 1D method 2lnL(�µ) - 2lnL(µ) ≤ Z2…
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Likelihood ratio regions in ≥ 2D
(Recall: differences in lnL correspond to ratios of likelihoods)
Find global maximum of L(µ1,µ2), yielding point estimates (�µ1,�µ2).
Find contour bounded by 2∆lnL = 2lnL(�µ1,�µ2) − 2lnL(µ1,µ2) ≤ C, 
where C comes from Wilks’s Theorem, tabulated in PDG RPP:

As in 1D, Wilks’s Theorem is asymptotic (large N) result, with 
various “regularity conditions” to be satisfied.
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http://pdg.lbl.gov/2018/reviews/rpp2018-rev-statistics.pdf
µ1

µ2

2D joint ≈68% C.L.
2∆lnL = 2.3

×  =  (�µ1,�µ2) 

×



Nuisance Parameters
Frequently one is interested in considering one parameter at a 
time, irrespective of the value of other parameter(s).                 
The parameter under consideration at the moment is called the 
“parameter of interest” and the other parameters (at that 
moment) are called “nuisance parameters”. 
E.g., if µ1 is of interest and µ2 and is a nuisance, one seeks a 2D 
confidence region that is a vertical “stripe” in the (µ1,µ2) plane.
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µ1

µ2

µ1

µ2

µ1

µ2

2D joint ≈68% C.L. 
confidence region 
for (µ1,µ2)

2D region to get 1D 
≈68% C.L. interval for µ1
(µ2 is nuisance)

2D region to get 1D 
≈68% C.L. interval for µ2
(µ1 is nuisance)

How to construct?



Aside: Systematic Uncertainties as Nuisance Parameters

I have begun with just one parameter of interest and one 
nuisance parameter.  Analyses in HEP can have hundreds or 
even thousands of nuisance parameters.
A  typical measurement in HEP has many subsidiary 
measurements of quantities not of direct physics interest, but 
which enter into the calculation of the physics quantity of 
particular interest.
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Aside: Systematic Uncertainties as Nuisance Parameters

I have begun with just one parameter of interest and one 
nuisance parameter.  Analyses in HEP can have hundreds or 
even thousands of nuisance parameters.
A  typical measurement in HEP has many subsidiary 
measurements of quantities not of direct physics interest, but 
which enter into the calculation of the physics quantity of 
particular interest.
E.g., if an absolute cross section is measured, one will have 
uncertainty in the integrated luminosity L, in the background 
level b, the efficiency e of detecting the signal, etc.  In HEP, we 
call these systematic uncertainties, but statisticians (for the 
obvious reason) refer to L, b, and e as nuisance parameters.
Each of the three main classes of constructing intervals 
(Bayesian, Neyman confidence, likelihood ratio) has a “native” 
way to incorporate the uncertainty on the nuisance parameters.     
But this remains a subject of frontier statistics research.
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Nuisance Parameters I: Bayesian Credible Intervals
Construct a multi-D prior pdf p(parameters) for the space 
spanned by all parameters. 
Multiply it by L(data|parameters) for the data obtained to yield 
multi-D posterior pdf. 
Integrate over the full subspace of all nuisance parameters 
(marginalization). 
Thus obtain posterior pdf for the parameter of interest.           
Math is reduced to the case of no nuisance parameters.
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Nuisance Parameters I: Bayesian Credible Intervals
Construct a multi-D prior pdf p(parameters) for the space 
spanned by all parameters. 
Multiply it by L(data|parameters) for the data obtained to yield 
multi-D posterior pdf. 
Integrate over the full subspace of all nuisance parameters 
(marginalization). 
Thus obtain posterior pdf for the parameter of interest.           
Math is reduced to the case of no nuisance parameters.
Problems: The multi-D prior pdf is a problem for both subjective 
and non-subjective priors.  In HEP there has been little use of 
the favored non-subjective priors (reference priors of Bernardo 
and Berger). The high-D integral can be a technical problem, 
more and more overcome by Markov Chain Monte Carlo.  
As with all Bayesian analyses, how to interpret probability if 
default priors are used?
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Nuisance Parameters II: Neyman Construction
For each point in the subspace of nuisance parameters, treat 
them as fixed true values and perform a Neyman construction 
for multi-D confidence regions in the full space of all 
parameters.  Project these regions onto the subspace of the 
parameter of interest.
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Nuisance Parameters II: Neyman Construction
For each point in the subspace of nuisance parameters, treat 
them as fixed true values and perform a Neyman construction 
for multi-D confidence regions in the full space of all 
parameters.  Project these regions onto the subspace of the 
parameter of interest.
Problem: Typically intractable and causes overcoverage, and 
therefore rarely attempted.  
Tractability can sometimes be recovered by doing the 
construction in the lower dimensional space of the profile 
likelihood function, obtaining approximate coverage.              
(This is one way to interpret the Kendall and Stuart page on 
likelihood ratio test with nuisances.)
Typically “elimination” is done in a way technically feasible, 
including parametric bootstrap later in lectures, and the 
coverage is studied with toy Monte Carlo. 
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Many of us raised on MINUIT MINOS read F. James, 
“Interpretation of the Shape of the Likelihood Function around 
Its Minimum,” Computer Physics Communications 20 (1980) 29.
Whereas 2D region has m=2 and hence 2∆lnL = 2.3 from PDG 
RPP table, for 1D interval on µ1, we first make 2D contour with 
m=1 value, 2∆lnL = 1 (black dashed), and then find extrema in µ1:
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µ1

µ2

2D joint ≈68% C.L.
2∆lnL = 2.3

µ1

µ2

2D region to get 1D 
≈68% C.L. interval for µ1
2∆lnL = 1 (dashed)

× ×

× = (�µ1,�µ2) 

...and then at the 
Fermilab Confidence 
Limits Workshop in 
2000, statistician 
Wolfgang Rolke 
expressed the 
construction a 
different way: 
  

Nuisance Parameters III: Likelihood Ratio intervals



�µ2

�µ2

�µ2

Profile Likelihood Function
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µ1

µ2

2D region to get 1D 
68% C.L. interval for µ1
2∆lnL = 1 (dashed)

× = (�µ1,�µ2) 
×

Red curve is path (µ1,�µ2)
along which profile L  is 
evaluated

For each µ1, find the value �µ2 that 
minimizes −2lnL(µ1,�µ2), shown in red.
Make 1D plot vs µ1 of this “profile 
likelihood function” (of only µ1). 
Use the m=1 threshold on 2∆lnLprofile .
One obtains the exact same interval as 
“MINOS” on the left?  Can you see why?
Since 2000, the “profile” terminology 
has permeated HEP. The notation is also 
used in the “Kendall and Stuart” page 
that I showed re F-C.
Warning: Combining profile likelihoods 
from two experiments is unreliable.  
Apply profiling after combining full 
likelihoods.



Likelihood Ratio intervals (cont.)
Problems: 
Coverage is not guaranteed, particularly at low N.  By using 
best-fit value of the nuisance parameters corresponding to each 
value of the parameter of interest, this has an (underserved?) 
reputation for underestimating the true uncertainties.  
In Poisson problems, this is partially compensated by effect due 
to discreteness of n, and profile likelihood (MINUIT MINOS) 
gives good performance in many problems. See Rolke et al., 
NIM A551 (2005) 493.
In some cases (for example when there are spikes in L ), 
marginalization may give better frequentist performance, 
according to statisticians.
Later I will talk about the parametric bootstrap to construct 
more accurate intervals.
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In more general notation, let µ be the parameter of interest and ν be a 
vector of nuisance parameters, so the profile likelihood function of µ is 
          L(µ,��𝝂𝝂), also written as: 𝐬𝐬𝐬𝐬𝐬𝐬

𝝂𝝂
 L(µ,ν) .

A useful quantity for hypothesis testing (and hence for confidence 
interval construction) is this profile likelihood function divided by the 
global maximum likelihood, thus obtaining the profile likelihood ratio 
test statistic, 
        Λ= L(µ,��𝝂𝝂) / L(�µ,�ν).
We frequently use −2lnΛ as a test statistic.
A Bayesian-inspired alternative to the profile likelihood function, 
discussed later, is the “ integrated” (or “marginalized”) likelihood, 
∫ L(µ,ν) π(ν) dν, 
where π(ν) is a weight function in the spirit of a prior pdf for ν. 

Aside: Profile Likelihood Ratio (PLR) test statistic
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Evaluation of coverage with toy MC
For a single parameter of interest µ, after elimination of nuisance 
parameters by some approximate method and construction of 
intervals perhaps involving more approximations, one reports as 
usual the confidence interval [µ1, µ2] at some C.L.
It is important to check that the approximations in the whole 
procedure have not materially altered the claimed coverage:

P(µt ∈ [µ1, µ2])  =  C.L. = 1 – α.  (Definition of coverage)

Typically the performance is evaluated with toy MC.  
First I describe the most thorough check (very CPU intensive), 
and then some approximations.
In frequentist statistics, the true values of all parameters are 
typically fixed but unknown. A complete, rigorous check of 
coverage considers a fine multi-D grid of all parameters, and for 
each multi-D point in the grid, generates an ensemble of toy MC 
pseudo-experiments, runs the full analysis procedure, and finds 
the fraction of intervals covering µt used for that ensemble, i.e.,  
P(µt ∈ [µ1, µ2] , and compares to C.L.
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Evaluation of coverage with toy MC (cont.)
Thus a thorough check of frequentist coverage includes: 
1) Fix all parameters (of interest and nuisance) to a single set of 

true values.  For this set, 
a) Loop over “pseudo-experiments”
b) For each pseudo-experiment, loop over events, generating 

each event with toy data generated from the statistical 
model with parameters set equal to the fixed set.

c) Perform the same analysis on the toy events in the pseudo-
experiment as was done for the real data.  

d) Find that fraction of the pseudo-experiments for which 
parameter(s) of interest are included in stated confidence 
intervals or regions.

2) Repeat for a various other fixed sets of all parameters.  
But...the ideal of a fine grid is usually impractical.

So the issue is what selection of “various other fixed sets” is 
adequate
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Evaluation of coverage with toy MC (cont.)
The ideal of a fine grid is usually impractical.
So the issue is what selection of “various other fixed sets” is 
adequate.  
Obviously one should check check coverage if the set of true 
values is equal to the global best-fit values.
Just as obviously, this may not be adequate.  Some exploration 
is needed, particularly in directions where uncertainty on a 
parameter depends strongly on the parameter.  One can start by 
varying a few critical parameters by one or two s.d., trying 
parameters near boundary, and seeing how stable coverage is.
A Bayesian-inspired approach is to calculate a weighted average 
of coverage over a neighborhood parameter sets for the 
nuisance parameters.  This  requires a choice of multi-D prior 
(Recall problems.)  Instead of fixing the true values of nuisance 
parameters during the toy-tossing, one samples the true 
parameters from the posterior distribution.
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Constructing the intervals with toy MC:                    
the parametric bootstrap

This approach is very common at the LHC. It generally improves 
on the profile likelihood ratio intervals described above. I think 
that it is best explained using the nested-hypothesis-test view in 
the duality of hypothesis tests and confidence intervals.
So, we consider the test of a particular value of the parameter of 
interest µ, and for that fixed value (and using the data observed), 
we find the best-fit values of all of the nuisance parameters.
We generate toy MC  with these fixed values, and construct the 
distribution of the test statistic (typically a profile likelihood 
ratio).  For a given C.L. = 1−α, we see if the µ being tested is 
rejected or not. By testing various values of µ, we construct the 
confidence interval for µ.
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Hybrid Techniques: Introduction to Pragmatism

Given the difficulties with all three classes of interval estimation, 
especially when incorporating nuisance parameters, it can 
sometimes be useful to relax foundational rigor and:

– Treat nuisance parameters in a Bayesian way 
(marginalization)  while treating the parameter of interest in 
a frequentist way.                                                                
Virgil Highland and I were early advocates of this for lumi 
uncertainty in upper limit calculation (NIM A320 (1992) 331).  
Kyle Cranmer exposed problems when used for 
background mean in 5σ discovery context.                        
For review of background case and connection to Box’s 
semi-Bayesian “prior predictive p-value”, see NIM A595 
(2008) 480, https://arxiv.org/abs/physics/0702156
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Introduction to Pragmatism (cont.)

– Use the Bayesian framework (even without the priors 
recommended by statisticians), but evaluate the 
frequentist performance.  In effect (as in profile likelihood) 
one gets approximate coverage while respecting the L.P. 
In fact, the statistics literature going back to 1963 has 
attempts to find prior pdfs that lead to posterior pdfs with 
good frequentist coverage: probability matching priors. 
(At lowest order in 1D, it is the Jeffreys prior!)
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Studies of coverage with toy MC
Numerous studies have been done for elimination of nuisances 
parameters in the test statistic, many concluding that results are 
relatively insensitive to profiling vs marginalization, so that 
choice can be made based on CPU time. 
See for example John Conway’s talk and writeup at PhyStat-2011, 
https://indico.cern.ch/event/107747/timetable/#all.detailed

Anecdotally, the choice for toys is more important than the choice 
for test statistic.
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Looks at the statistics literature on nuisances

Almost 20 years ago, Luc Demortier and I both looked in the 
statistics literature regarding nuisance parameters – I thought 
my note was fairly thorough until I read his!  Our writeups:
R.D. Cousins, Treatment of Nuisance Parameters in High Energy 
Physics, and Possible Justifications and Improvements in the 
Statistics Literature, with response by statistician Nancy Reid,
http://www.physics.ox.ac.uk/phystat05/proceedings/default.htm
Luc Demortier, P Values: What They Are and How to Use Them, 
https://www-cdf.fnal.gov/~luc/statistics/cdf8662.pdf (2007)
See also his chapter in Behnke13.

Recently, statistician Larry Wasserman and I posted an informal 
review of marginalizing vs profiling: 
https://arxiv.org/abs/2404.17180 
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Priors for nuisance parameters 
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It used to be (unfortunately) common practice to express, 
say, a 50% systematic uncertainty on a positive quantity as a 
Gaussian with 50% rms. Then “truncate” Gaussian by not 
using non-positive values.
In Bayesian calculation, interaction of uniform prior for 
Poisson mean and “truncated Gaussian” for systematic 
uncertainty in efficiency leads to integral that diverges if 
truncation is at origin…evaluating integral numerically will 
not even notice!    Luc Demortier exposed this:  
http://www.ippp.dur.ac.uk/old/Workshops/02/statistics/proceedings//demortier.pdf

Recommendation: Use log-normal or (certain) Gamma 
distributions instead of truncated Gaussian. Recipes at 
http://www.physics.ucla.edu/~cousins/stats/cousins_lognormal_prior.pdf

http://www.ippp.dur.ac.uk/old/Workshops/02/statistics/proceedings/demortier.pdf
http://www.physics.ucla.edu/%7Ecousins/stats/cousins_lognormal_prior.pdf


“State of the Art” in HEP

All three main classes of methods are commonly used on the 
parameter of interest.

– Both marginalization and profiling are used to treat 
nuisance parameters. At present, I think that profiling is 
much more common at the LHC. 

– As mentioned, the parametric bootstrap is common.
– Many people have the good practice of checking 

coverage.
– Too little attention is given to priors.  But flat prior for 

Poisson mean is “safe” for upper limits (only!).
A serious analysis using any of the main methods requires 
coding up the likelihood function. 

– Doing this (once!) with RooFit modeling language gives 
access to RooStats techniques for all three classes of 
calculations, mix-match nuisance parameter treatments.
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ATLAS and CMS Conventions

For many years, ATLAS and CMS physicists have collaborated 
on statistics tools (the RooStats software), and attempted to 
have some coherence in methods so that results could be 
compared, and (when worth the effort) combined.
An important development was the paper by Cowan, Cranmer, 
Gross and Vitells, https://arxiv.org/abs/1007.1727 , that 
extended asymptotic formulas to a number of cases where 
Wilks’s theorem was not valid.  
As the CCGV asymptotic formulas applied to the “fully 
frequentist” treatment of nuisances parameters, for 
consistency we tended to use that in many cases at small N as 
well.  Toy MC is thus done in a frequentist manner (parametric 
bootstrap).
For upper limits, there was a lot of discussion without 
convergence, and the two physics coordinators in 2010 
decreed that CLs be used in most cases. (See below.)
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ATLAS and CMS Conventions (cont.)

The ATLAS/CMS Higgs results followed these trends. A jointly 
written description is, “Procedure for the LHC Higgs boson 
search combination in Summer 2011,” http://cds.cern.ch/record/1379837.
Many issues were further discussed and described in the 
ATLAS-CMS combination papers for mass and couplings, 
https://arxiv.org/abs/1503.07589 and https://arxiv.org/abs/1606.02266 . In 
particular, a lot of attention was paid to correlations.
In the last few years, Feldman-Cousins starts to be used more, 
without my pushing.  (Initially some at the LHC were very 
opposed, evidently because it could return two-sided interval 
not including zero when they really wanted a strict upper limit.)
CMS recently submitted documentation of its publicly available 
software, “The CMS statistical analysis and combination tool: 
COMBINE”, https://arxiv.org/abs/2404.06614 .
For ATLAS statistics software tools, see backup slide.
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Downward fluctuations in searches for excesses
Classic example: Upper limit on mean µ of Gaussian pdf for x. 
Frequentist UL construction if µ≥0 in model (σ=1) :
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Frequentist 1-sided 95% C.L. 
Upper Limits, for α = 1–C.L. = 5%. 
As observation x becomes 
increasingly negative, standard 
frequentist upper limit becomes 
small and then null.
For x < −1.64 σ,  the confidence 
interval is the null set!µ = 0



Downward fluctuations in searches for excesses
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Issue acute 20-30 years ago in expts to measure νe mass in 
(tritium β decay): several measured mν

2 < 0.

This is a very long story; see my “virtual talk” 
http://www.physics.ucla.edu/~cousins/stats/cousins_bounded_gaussian_virtual_talk_12sep2011.pdf 

and related post https://arxiv.org/abs/1109.2023 . 

Contains intro to “Buehler’s betting game”, related to 
conditioning.

http://www.physics.ucla.edu/%7Ecousins/stats/cousins_bounded_gaussian_virtual_talk_12sep2011.pdf
https://arxiv.org/abs/1109.2023


Bayes, Fisher, Neyman, 
Neutrino Masses, and the LHC

Bob Cousins
Univ. of California, Los Angeles

 Virtual Talk
12 September 2011
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1) 1960’s and beyond:                                  
UL = max(x, 0) + 1.64 σ  

2) 1979 “PDG” (real 1986 PDG) and beyond:                
Bayesian with uniform prior

3) 1997: Alex Read et al. (LEP)                   
CLS

4) 1997: Feldman and Cousins (NOMAD)      
Unified Approach

5) 2010: Power Constrained Limits;   
Cowan, Cranmer, Gross, Vitells (ATLAS): 
UL = max(0, max(x, xPCL) + 1.64 σ) 

Five methods used for bounded Gaussian mean problem



CLS
The unfortunately named CLS is the traditional frequentist one-
tailed p-value for upper limits divided by another tail probability 
less than 1. The limits are thus (intentionally) conservative.
Definition, discussion, references in PDG RPP, Section 40.4.2.4 
https://pdg.lbl.gov/2024/reviews/rpp2024-rev-statistics.pdf .

A few more notes/history are in my arxiv post on these lectures.
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CLS inherits all issues of p-values
• What is new (non-standard statistics) in CLS is combining 

the two p-values into 1 quantity.  
– This step is called “the CLS criterion” in CMS papers.

• The p-values themselves have long existed in the statistics 
literature and should be designated that way (and not with 
the names that the inventor of named CLS gave them).  All 
the issues of p-values (choice of test statistic, how to 
eliminate nuisance parameters) of course still exist.

• LEP, Tevatron, and LHC Higgs combination groups differ in 
choices (!)
– What specific likelihood ratio used in test statistic
– Treatment of nuisance parameters
– Ensembles used for “Toy M.C.” used to get distribution of 

test statistic under H0 (no Higgs) and H1 (SM with Higgs)
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Statistics in practice on July 4, 2012: Imagine being in the 
audience for the talks on the discovery of the Higgs boson

Incandela and Gianotti slides are at https://indico.cern.ch/event/197461/ 
See arxiv writeup for links to journal papers following shortly thereafter.

https://indico.cern.ch/event/197461/


Example of Statistics in Practice

As already mentioned, description by ATLAS and CMS is 
“Procedure for the LHC Higgs boson search combination in 
Summer 2011,” http://cds.cern.ch/record/1379837, which you can look at 
for the math details.
The best decay modes for discovering the Higgs boson turned  
out to be (story too long for today): H → γ γ and H →  ZZ*, when 
the Z and Z* decay to either e+ e− or to µ+ µ− (total of 4 leptons).  
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http://cds.cern.ch/record/1379837


Invariant mass of γγ final states.
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First, consider where we do *not* see evidence for a bump. 
Consider each mass m separately. 
Form profile likelihood function with signal cross section as the 
parameter of interest, divide by global ML as function of all 
parameters.
With this PLR as test statistic, calculate 95% C.L. upper limit 
(using CLs) on ratio of cross section to SM cross section at m.



Invariant mass of 4-lepton final states.
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Repeat for 4-lepton final states: e+ e− e+ e−; e+ e− µ+ µ−; µ+ µ− µ+ µ− .
Then, at each mass m, perform one grand combination of all 
likelihood functions, and compute combined profile likelihood 
ratio, and 95% C.L. upper limit on cross section ratio.

Repeat for each mass m separately.
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Combined upper limits for each experiment

The jagged black curves, based on observed data, are the upper 
limits (UL) on the cross section ratio as function of m.
The SM Higgs boson is “excluded” at 95% C.L. at masses where 
the curve drops below 1 (i.e., not in a range below 130 GeV).
The dotted black curves show the exclusion if the data had been 
equal to the expected background, without any fluctuations.
The green and yellow (“Brazilian flag”) bands are quantiles of 
the expected distribution of ULs if expected background has 
statistical fluctuations, given no signal. (Not uncertainties!)



Signal searches in invariant mass of γγ and 4 leptons
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For each final state, start over, again consider each mass m. 
Form profile likelihood ratio of 
H0: background only vs. 
H1: SM H, except cross section floating (parameter of interest).
From observed counts at mass m, obtain “ local” p-value for H0.
Then obtain local p-value from PLR using grand combination of 
likelihood functions of γγ and ZZ* states, convert to Z-values.
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Local p-value plots vs mass 

In the combinations of H → γ γ and H →  ZZ* channels, each 
experiment had minimum local p-values corresponding to 5σ.
(CMS also combined channels with less sensitivity, got 4.9 σ.)
This does not yet account for the bias because one scanned a 
range of masses to look for the smallest p-value. 
Correcting for this  “look-elsewhere effect” (with somewhat 
arbitrary choice of range of masses) yielded “global p-values” 
corresponding to about 4.1 to 4.3 σ. 
See LLE references in backup.



My advocacy for >15 years:
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Have in place tools to allow computation of results using a 
variety of recipes, for problems up to intermediate complexity:

– Bayesian with analysis of sensitivity to prior
– Profile likelihood ratio (Minuit MINOS)
– Frequentist construction with approximate treatment of 

nuisance parameters
– Other “favorites” such as LEP’s CLS  (an HEP invention)

The community can (and should) then demand that a result 
shown with one’s preferred method also be shown with the other 
methods, and sampling properties studied.

When the methods all agree, we are in asymptopic nirvana.
When the methods disagree, we are reminded that the results are 
answers to different questions, and we learn something! E.g.:

– Bayesian methods can have poor frequentist properties
– Frequentist methods can badly violate likelihood principle
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Unsound statements you can now avoid*
• “It makes no sense to talk about the probability density of a 

constant of nature.”
• “Frequentist confidence intervals for efficiency measurements 

don’t work when all trials give successes.”
• “We used a uniform prior because this introduces the least bias.” 

Or “a noninformative prior since it contained no information.”
• “The total number of events could fluctuate in our experiment, so 

obviously our toy Monte Carlo should let the number of events 
fluctuate.”

• We used Delta-likelihood contours so there was no Gaussian 
approximation.”

• “A five-sigma effect constitutes a discovery.”
• “The confidence level tells you how much confidence one has that 

the true value is in the confidence interval.”
• “We used the tail area under the likelihood function to measure the 

significance.”
• “Statistics is obvious, so I prefer not to read the literature and just 

figure it out for myself.”

*Taken from real life

Bob Cousins, Stats in Theory, Africa 2024 220



Thanks again!
Thanks to many in HEP (Frederick James, Gary Feldman, Louis 
Lyons, Luc Demortier, + numerous others) from whom I learned...
... And many statisticians that Louis invited to PhyStat meetings. 
For Bayesian statistics, that was especially Jim Berger (multiple 
times), Michael Goldstein, and David van Dyk (multiple times).
...and to CMS Statistics Committee (Olaf Behnke, Igor Volobouev, 
et al.) for many discussions and comments on earlier versions of 
the slides...
...and to the authors of numerous papers from which I learned, 
including early (1980s) Bayesian papers by Harrison Prosper...
...and to Diego Tonelli of the LHCb experiment for encouragement 
and comments on an earlier version of these sides.
This work was partially supported by the U.S. Department of 
Energy under Award Number DE–SC0009937.
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References Cited in Talk Slides
Behnke13: O. Behnke et al., Data Analysis in High energy Physics, Wiley-VCH, 

2013.
James06: Frederick James, Statistical Methods in Experimental Physics, 

World Scientific, 2006.
Stuart99: A. Stuart, K. Ord, S. Arnold, Kendall’s Advanced Theory of Statistics, 

Vol. 2A, 6th edition, 1999; and earlier editions by Kendall and Stuart.
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Recommended reading
Books: I usually recommend the following progression, reading the first three 

cover-to-cover, and consulting the rest as needed:
1) Philip R. Bevington and D.Keith Robinson, Data Reduction and Error 

Analysis for the Physical Sciences (Quick read for undergrad-level review)
2) Glen Cowan, Statistical Data Analysis (Solid foundation for HEP)
3) Frederick James, Statistical Methods in Experimental Physics, World 

Scientific, 2006. (This is the second edition of the influential 1971 book by 
Eadie et al., has more advanced theory, many examples)

4) A. Stuart, K. Ord, S. Arnold, Kendall’s Advanced Theory of Statistics, Vol. 
2A, 6th edition, 1999; and earlier editions of this “Kendall and Stuart” 
series.  (Comprehensive old treatise on classical frequentist statistics; 
anyone contemplating a NIM paper on statistics should look in here first!)

5) George Casella and R.L. Berger, Statistical Inference, 2nd, Ed. 2002. A more 
modern, less dense text on similar topics as Kendall and Stuart.

6) Recent book by HEP “experts”: O. Behnke et al., Data Analysis in HEP, 2013
PhyStat conference series: From Confidence Limits Workshops in 2000, links: 

https://phystat.github.io/Website/ . (Click on past Workshops). See also other links.
My Bayesian reading list is the set of citations in my Comment, Phys. Rev. 

Lett. 101 029101 (2008), especially refs 2, 8, 9, 10, 11; 7 for model selection)
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Jim Berger:
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New Era for non-subjective Bayesian priors in HEP?
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So far, use in HEP has been limited.



Robert Kass’s Questions for Classifying Kinds of Bayesians*
1. Is it important for Bayesian inferences to have good frequentist 

operating characteristics? 
2. Does the Bayesian paradigm do anything more than produce candidate 

procedures, to be judged according to frequentist criteria? 
3. Is there a useful role for default (a.k.a. “objective”) Bayesian inferences 

as representing approximately subjective inferences?
4. Is it possible to interpret default Bayesian inference as anything other 

than approximately subjective? 
5. Assuming that the data analyst has done a thorough and careful job, is 

it appropriate to interpret default Bayesian inferences as representing, 
approximately, what any reasonable person ought to think given the 
data and appropriate background information? 

6. Is there any useful meaning to the word “objective,” beyond signifying 
such overwhelming evidence that reasonable people will be forced to 
agree.

7. Is the word “objective” so easy to misunderstand that its utility in the 
context of Bayesian inference is, on average, negative? 

8. Is it important to distinguish scientific inference from decision-making?
9. Are there scientific settings in which formal elicitation procedures are 

useful?

* “Kinds of Bayesians (Comment on articles by Berger and by Goldstein)”, Bayesian Analysis 1 437 (2006)
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E.g. 95% C.L. central interval for p if 
10/10 successes/trials:  (0.69,1.0)Bob Cousins, Stats in Theory, Africa 2024 228

Inner corners of the steps give 
the intervals; traditional to draw 
the curved “belts” connecting 
them, but only evaluated at the 
integers. Tricky to draw, read!
(See next slide for details.)

Discreteness of x typically 
requires horizontal acceptance 
intervals to contain more than 
95% probability, so there is  
over-coverage in the vertical 
confidence intervals.

Clopper and Pearson’s construction
x = number of successes (here, integer 0-10 out of 10 trials)
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Partial details of construction:

Blue lines are two of the 
acceptance intervals having 
central 95% or more probability, 
at continuous ρ.

Note data x is discrete, so 
graph is only read at discrete x.

If you stare at it long enough, 
you will see connection 
between upper/lower limits and 
central intervals, for discrete 
data.

Clopper and Pearson’s construction (cont.)
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Luc Demortier and Louis Lyons, 
“Testing Hypotheses in Particle Physics: Plots of p0 versus p1”

Test of point null vs point
alternative, two Gaussians 
with same σ, peak 
separation ∆µ.

At a glance can see that 
contours of constant λ01 
are completely different 
topology from contours of 
e.g. p0.

For rest of plot, you will 
have to read their paper or
stare at it for a long time.
http://arxiv.org/abs/1408.6123

http://arxiv.org/abs/1408.6123


Classical Hypothesis Testing: Duality
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“There is thus no need to derive optimum properties separately 
for tests and for intervals; there is a one-to-one correspondence 
between the problems as in the dictionary in Table 20.1” 
Stuart99, p. 175.

Test µ=µ0 at α ↔ Is µ0 in conf. int. for µ with C.L. = 1- α 

Referred to as “inverting a test” to obtain intervals; vice versa.



Approximate Confidence Regions Using ∆(-lnL) 
(included in appendix to MINUIT users guide)
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Let p(x|µ) = { 

Two values x1,x2 are observed. 
�µ = �x = (x1+x2)/2 (Only for n=2! See Backup)
What is 68% C.L. central confidence interval for µ?
Neyman construction: Define acceptance region A(µ) 
containing 68% of unit square of (x1,x2) centered on µ.            

P(x|µ)

µ µ+½µ−½
x

Famous example of B.L. Welch (1939)

What to use?
Centrality implies symmetry.      
Need something else to rank 
points in the plane.  
N-P Lemma gives most powerful 
ranking, but first let’s think 
about some examples.

x1

x2

A(µ) ?

1 if  µ – ½  ≤  x  ≤ µ + ½
0 otherwise.
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L1(µ)

x1

µ

L2(µ)

x2

µ

L1(µ)

x1

µ

L2(µ)

x2

µ

“Lucky” sample with |x1–x2| close to 1.  
L(µ) = L1(µ) × L2(µ) very narrow.  

Reasonable to expect small uncertainty in �µ ?

“Unlucky” sample, |x1–x2| close to 0.  
L(µ) full width close to 1;                     
Second observation added no useful info.
Expect 68% C.L. conf. interval 0.68 long?
Guess reasonable answer:  conf. interval    
centered on �µ with length 0.68(1-|x1-x2|)
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Seems reasonable for post-data 
uncertainty to depend on |x1–x2|.  
Classic example of an ancillary statistic A: 
has info on uncertainty on µ estimate, but 
no info on µ itself.   
Idea dating to Fisher and before: divide the 
full “unconditional” sample space into 
“recognizable subsets” and report probs 
using the “relevant” subset rather than the 
whole space.              

L1(µ)

x1

µ

L2(µ)

x2

µ

L1(µ)

x1

µ

L2(µ)

x2

µ
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Acceptance regions partitioned by |x1-x2|
Partition full sample space via ancillary 
statistic A= |x1-x2|  (blue lines)

x1

x2
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Acceptance regions partitioned by |x1-x2|
Partition full sample space via ancillary 
statistic A= |x1-x2|  (blue lines)
Within each partition, choose central 
68% prob acceptance region

x1

x2
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Acceptance regions partitioned by |x1-x2|

x1

x2

Partition full sample space via ancillary 
statistic A= |x1-x2| (blue lines)
Within each partition, choose central 
68% prob acceptance region (red fill) 

16%

16%
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Acceptance regions partitioned by |x1-x2|

x1

x2

Partition full sample space via ancillary 
statistic A= |x1-x2| (blue lines)
Within each partition, choose central 
68% prob acceptance region (red fill) 
We are thus using conditional 
probabilities (still frequentist) p(x|A,µ)    
in Neyman construction, with desired 
prob 68% within each partition.
Resulting A(µ) fills 68% of square, so 
correct unconditional probability as well.

16%

16%
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Acceptance regions partitioned by |x1-x2|
Partition full sample space via ancillary 
statistic A= |x1-x2| (blue lines)
Within each partition, choose central 
68% prob acceptance region (red fill) 
We are thus using conditional 
probabilities (still frequentist) p(x|A,µ)    
in Neyman construction, with desired 
prob 68% within each partition.*
Resulting A(µ) fills 68% of square, so 
correct unconditional probability as well.

x1

x2

⇒ Confidence intervals �µ ± 0.34(1-|x1-x2|), as thought reasonable!
Known as “conditioning” on ancillary statistic A: Post-data, 
proceed as if A had been fixed, rather than randomly sampled!
N.B. A set of measure zero has zero prob even if non-zero pdf, so in general care needed 
in conditioning on exact value of continuous A in p(x|A,µ).

16%

16%



x1

x2

16%

16%

A(µ)
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Interval length indep of |x1–x2| 
⇒ �µ ± 0.22 at 68% C.L.

x1

x2

16%

16%

A(µ)

Now the catch: one can find acceptance regions A(µ)              
that correspond to hypothesis tests with more power                 
(lower Type 2 error prob β) in the unconditional sample space!  
These have 100% coverage in the subspace where |x1–x2| ≈ 1 
(narrow likelihood), while badly undercovering when x1 ≈ x2. 

Most powerful?



In fact Welch’s 1939 paper argued against conditioning because 
it is less powerful in the unconditional sample space! 
Neyman’s position is not completely clear but he seems to have 
been against conditioning on ancillaries (which was Fisher’s 
idea) when it meant an overall loss of power.*
Most modern writers use this example as an “obvious” 
argument in favor of conditioning, unless one is in “industrial” 
setting where unconditional ensemble is sampled repeatedly 
and the result for an individual sample is not of much interest.

*See J.O. Berger, https://projecteuclid.org/euclid.ss/1056397485 and

E.L. Lehmann, http://www.jstor.org/stable/2291263 (also discussion of Cox example).
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https://projecteuclid.org/euclid.ss/1056397485
http://www.jstor.org/stable/2291263


Demortier gives details on how average interval length is shorter 
in the HEP example. Here I give Cox’s discussion.
E.g., if one is testing µ=0 vs µ=µ1 , with µ1 roughly the size of σ1      
(the larger σ ), consider the following 68% CL intervals:

�µ ± (0.48)σ1 if Device #1 used (covers true µ in 37% of uses)
�µ ± 5σ2 if Device #2 used (covers true µ nearly 100% of uses)

So true µ is covered in (37/2 + 100/2)% = 68% of all intervals! 
Unconditional (full sample space) coverage is correct, but 
conditional coverage is not. 
Due to the smallness of σ2 , average length of all intervals is 
smaller conditional intervals with independent coverage.
One gives up power with Device #1 and uses it in Device #2.
Cox: “If, however, our object is to say `what can we learn from 
the data that we have’, the unconditional test is surely no good.”
These examples reveal a real conflict between N-P optimization 
for power and conditioning to optimize relevance.
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Example of D.R. Cox (cont.)



Look-Elsewhere Effect
In these lectures, I did not have time for the LEE.  
A starting point for self-study is the discussion in:

Louis Lyons, “Comments on ‘Look Elsewhere Effect’ ”.
 https://users.physics.ox.ac.uk/~lyons/LEE_feb7_2010.pdf .

See also Section 9.2 of my paper on the Jeffreys-Lindley 
Paradox, https://arxiv.org/abs/1310.3791 . 

An important paper is
Eilam Gross, Ofer Vitells, “Trial factors for the look elsewhere 
effect in high energy physics,” https://arxiv.org/abs/1005.1891 
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https://arxiv.org/abs/1310.3791
https://arxiv.org/abs/1005.1891


Sufficiency, Conditionality, Likelihood Principles
There is a lot more to the Likelihood Principle than I had time to 
discuss. I omitted the important (frequentist) concept of a 
“sufficient statistic”, due to Fisher.  This is a way to describe 
data reduction without loss of relevant information.  E.g., for 
testing a binomial parameter, one needs only the total numbers 
of successes and trials, and not the information on exactly 
which trials had successes.  See Stuart99 for math definitions. 
The Sufficiency Principle says (paraphrasing – there are strong 
and weak forms) that if the observed values of the sufficient 
statistic in two experiments are the same, then they constitute 
equivalence evidence for use in inference.
Birnbaum famously argued (1962) that the Conditionality 
Principle and the Sufficiency Principle imply the Likelihood 
Principle.  Controversy continues. For recent discussion, see   
D. Mayo (2014), https://projecteuclid.org/euclid.ss/1408368565#toc , 
with comments by six statisticians and rejoinder.
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Point Estimation
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Point Estimation
Most of these slides are about intervals – I have not yet much  
about what to quote as the “measured value”.  Statisticians call 
this the “point estimate”.
• There is a huge literature on point estimation – see e.g. Ch. 7 

and 8 in James06.  
• If you are an expert on interval estimation, one approach is 

to use that machinery to get a point estimate.  
– E.g., one might take the mid-point of (say) your 68% C.L. 

central interval. But a better approach is probably to let 
the C.L. go to 0, so that your interval gets shorter and 
shorter, and use the limiting point.  E.g. for likelihood 
ratio intervals, this results in the Maximum Likelihood 
estimate.

• But to give you an idea of how rich the subject is, I show a 
few interesting things from James06.
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Point Estimation: Traditional Desiderata
• Consistency: Estimate converges toward true value as 

number of observations N increases 
• Unbiasedness: Expectation value of estimate is equal to the 

true value.
• Efficiency: Estimate has minimum variance
• Minimum loss of information: (technical definition)
• Robustness: Insensitivity to departures from the assumed 

distribution
One can add:
• Simplicity: transparent and understandable
• Minimum computer time: still relevant in onlline applications, 

less relevant otherwise
• Minimum loss of physicist’s time (how much weight to put 

on this?)
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Bias and consistency are independent properties
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BUT (!) Other desired properties can be impossible to 
achieve simultaneously

• How to choose?  A thorough analysis requires further input: 
what are the costs of not incorporating various desiderata?  
Then formal decision theory can be used to choose estimator.

• In practice in HEP, Maximum Likelihood estimates are often 
used (even though they are typically not unbiased).
– Consistent
– Other excellent asymptotic properties (estimate is 

asymptotically normal)
– For finite N, works well in so-called exponential family 

(includes Poisson, Gaussian, binomial)
– Invariant under reparameterization
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Simple example illustrating diversity of point 
estimators (James06, p. 209)

• If p(x|µ) = f(x-µ), where f is some pdf, then µ is called a 
location parameter.  Common examples are:
– Normal: p ~ exp(-(x-µ)2/2σ2)
– Uniform:  p = constant for |x-µ|<a; p=0 otherwise
– Cauchy: p ~ 1/(a2 + (x-µ)2)
– Double exponential: p ~ exp( -a |x-µ| )

• These examples are all symmetric about µ:                       
p(µ+y) = p(µ-y)

• Suppose you are given N=11 values of x randomly sampled 
from p(x|µ).  What estimator (function of the 11 values) gives 
you the “best” estimate of µ ?

• If by “best” you mean minimum variance, it is the M.L. 
estimate, resulting in a different formula for each!
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Minimum Variance Location Estimator

Normal Sample mean (L2)

Uniform Midrange: mean of extreme values  (L∞)

Cauchy M.L. estimate (no simple formula)

Double-
exponential

Median: middle value (L1)
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Three of the four are special cases of Lp , the estimator that 
minimizes the sum over the observations of  |xi - µ|p .
Different values of p put different emphasis on observations in 
the tails.
If true distribution departs from that assumed, estimate of 
location is no longer optimal. Sensitivity is in tails!
See nice discussion of asymptotic variance and robustness in 
James06, pp. 211 ff.



ATLAS statistics software tools
Many thanks to Kyle Cranmer for compiling this list of the individual tools in use in the 
ATLAS Collaboration for the different tasks and stages:
RooFit: (core modelling)
https://inspirehep.net/literature/621398 

RooStats: (statistical testing)
https://inspirehep.net/literature/868303 

HistFactory: (specific modelling for histogram based analyses)
https://inspirehep.net/literature/1236448 

HistFitter: (sits on top of HistFactory offers top-level steering functionality more like 
CMS’s Combine)
https://inspirehep.net/literature/1320562 

There is also TRexFitter that is like HistFitter and widely used, but no paper currently.

More recently, there is the python based implementation of HistFactory, which also has 
a different format for saving results, which is being used by HEPData. This is now fairly 
widely used.
pyhf: https://inspirehep.net/literature/1845084 

And there is also the python-based approach to tools like HistFitter/TRexFitter called 
Cabinetry.
https://inspirehep.net/literature/1911802 
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