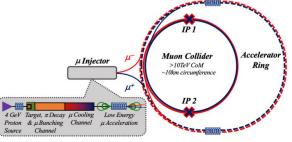
Particle Physics at Colliders III. What Lies Beyond?

Geneva

PS

SPS

Circular Collider


Future

Dave Charlton Marrakesh, July 2024

27 km

100 km

LHC physics with ATLAS and CMS

Very broadly, divide the ATLAS/CMS proton-proton programme into

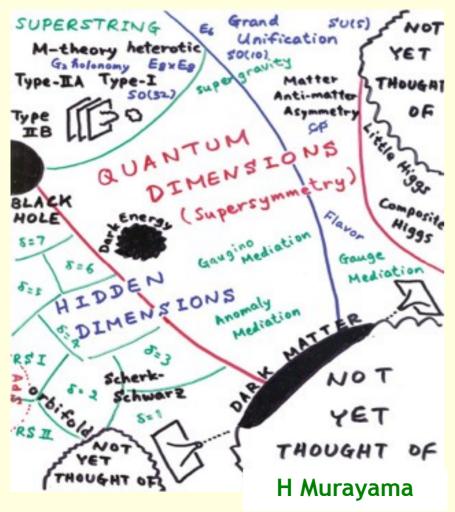
- Measurements (Part II)
 - Make precise measurements of previously known processes in the new LHC energy regime
 - Masses, angular distributions, decay modes, momentum spectra
 - Test parts of SM not tested before e.g. massive electroweak boson self-interactions
 - Now includes the measurements in the Higgs (scalar) sector
- Searching beyond (Part III)
 - Hunt for new physics beyond the Standard Model
 - LHC advantages: high energy, high intensity (integrated luminosity)
 - High energy -> many heavy objects (H, t, W/Z) look for new physics coupling to these
 - Prospects in the HL-LHC era

Lecture 3 will also briefly touch on physics at future colliders, beyond the LHC

I generally show ATLAS results to illustrate, because it is easier for me - <u>CMS has equally good and broad</u> <u>results</u>!!!

Why "Beyond the SM" (BSM)?

SM explains physics beautifully at the 100 GeV energy-scale - the electroweak scale - and below

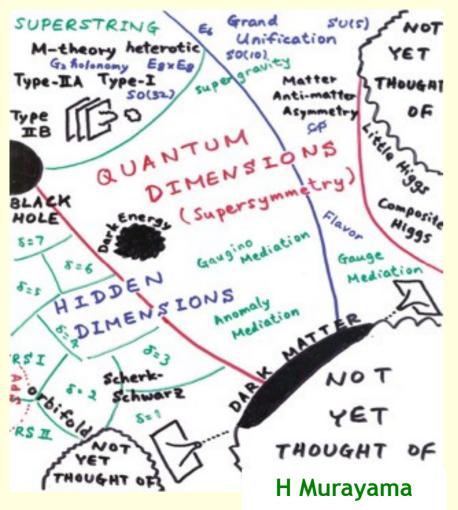

Fundamental questions remain, and must be addressed

- Why is the electroweak scale so much less than the Planck scale (10¹⁹ GeV)?
 - To go 17 orders of magnitude without new physics would be quite unprecedented! (cf. size of an atom vs. size of the earth)
- In the scalar (Higgs) sector...
 - Is the H(125) boson composite?
 - Are their more Higgs bosons?
 - Are there new massive particles coupling with the Higgs?
- Origin of fermion generations, mass values, mixings?
- What is the origin of neutrino mass?
- Why the matter antimatter asymmetry we see in the universe (CP violation)?
- What is the nature of dark matter?

These arguments suggest that new physics will show up in the 0.1-10 TeV range - we must explore this region!

Starts with LHC & HL-LHC, must continue with future colliders

BSM models - and possible signatures


- Many extensions of the SM have been developed over the past decades:
- Supersymmetry
- Extra-Dimensions
- Technicolor(s)
- Little Higgs
- No Higgs
- GUT
- Hidden Valley
- Leptoquarks
- Compositeness
- 4th generation (t', b')
- LRSM, heavy neutrino
- etc...

H Bachacou

1 jet + MET jets + MET 1 lepton + MET Same-sion di-lepton **Dilepton resonance** Diphoton resonance Diphoton + MET Multileptons Lepton-let resonance. Lepton-photon resonance Gamma-jet resonance Diboson resonance Z+MET W/Z+Gamma resonance Top-antitop resonance Slow-moving particles Long-lived particles Top-antitop production Lepton-Jets Microscopic blackholes Dijet resonance

etc....

BSM models - and possible signatures

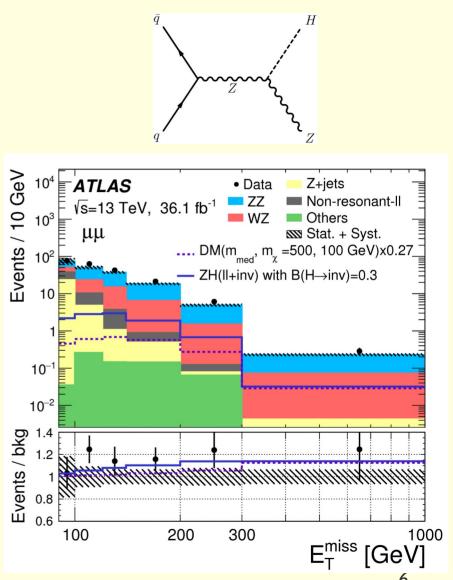
- Many extensions of the SM have been developed over the past decades.
- Supersymmetry
- Extra-Dimensions
- Technicolor(s)
- Little Higgs
- No Higgs
- GUT
- Hidden Valley
- Leptoquarks
- Compositeness
- 4th generation (t', b')²
- IRSM heavy neutrino

1 jet + MET
jets + MET
1 lepton + MET
Same-sign di-lepton
Dilepton resonance
Diphoton resonance
Diphoton + MET
Multileptons
Lepton-jet resonance
Lepton-photon resonance
Gamma-jet resonance
Diboson resonance

- Z+MET
- W/Z+Gamma resonance
- Top-antitop resonance
- Slow-moving particles
- Long-lived particles
- Top-antitop production

I'll give just a few examples...

Invisible Higgs decays?


If the H couples to new BSM particles according to their mass, could give

- Modified H decay branching fractions
- Modified H couplings

E.g: does the H decay to new invisible particles?

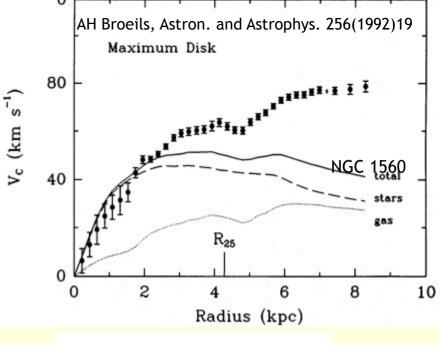
- Can still select events with ZH or WH production, for example, from Z/W decay
- SM allows $H \rightarrow ZZ^* \rightarrow 4\nu$, but $B(H \rightarrow invis.) \sim 0.1\%$

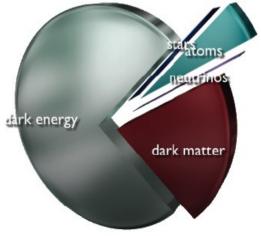
ATLAS combination (full Run-2 data) $B(H \rightarrow invis.) < 10.7\%$ at 95% CL Need much better precision!

Dark Matter (DM)

Evidence for dark matter in the universe from astrophysical, cosmological measurements

- Galactic rotation curves
- Galaxy collisions ("Bullet cluster")
- Early universe models ("ΛCDM")
- Large scale structure of universe (e.g. "BAO")

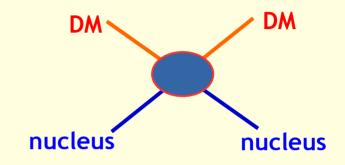

There seems to be a (big) problem - most of the matter in the universe is not identified


If the DM is non-baryonic, weakly interacting massive particles (WIMPs) are an attractive candidate

- models can provide sufficient mass to match the observations, if masses ~ electroweak scale
- Supersymmetry (SUSY) is a natural source

How to observe?

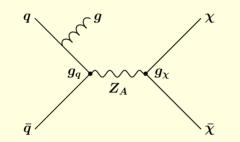
- "Direct detection" (typically underground experiments, no beam)
- Production searches (LHC)



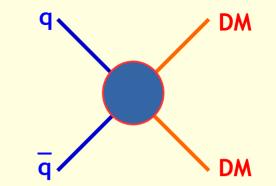
DM direct detection searches

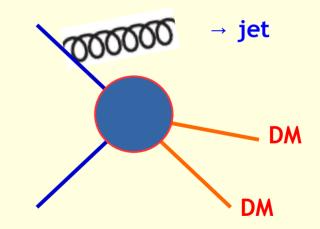
Look to see evidence of dark matter scattering off normal matter

- Rely on "ambient" dark matter in the local vicinity of the solar system
- Similar in nature to neutrino scattering but heavier, slower, invisible particle, no beam
- Techniques to spot low-E nuclear recoil


→ Lectures by Prof Gopolang Mohlabeng on this tomorrow, so I will not discuss further here

LHC DM searches


"Crossed" process: pair production of DM particles


"Physics in the blob" is more important at LHC (especially to compare with direct detection experiments)

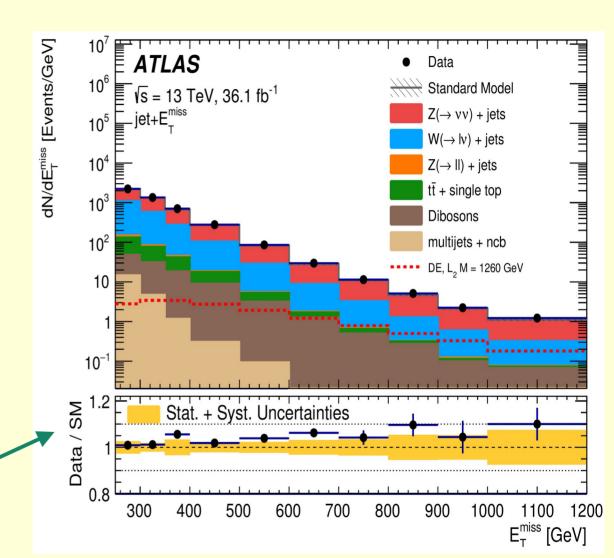
Models typically have at least one unknown "mediator" particle which is "inside the blob", e.g.

There are many searches for DM at the LHC: one very general search looks for an initial-state-radiation jet plus E_T^{miss} from the unobserved DM particles \rightarrow "mono-jets"

"Mono-jet" search

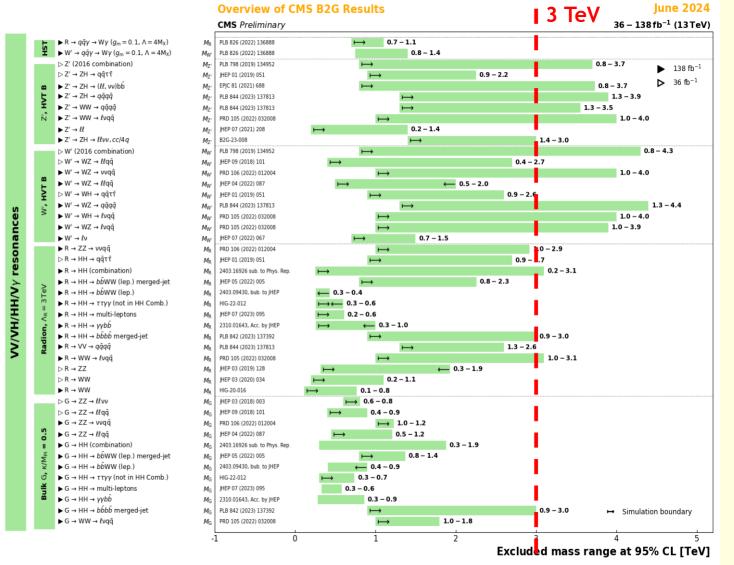
Run: 302393 Event: 738941529 2016-06-20 07:26:47 CEST

, 1


"Mono-jet" search

Nice event!

But there is a Standard Model signal source (and backgrounds):


jet+Z production with $Z \rightarrow vv$

Study of E_T^{miss} in events with an \checkmark energetic jet - no excess seen

Many more searches for new particles

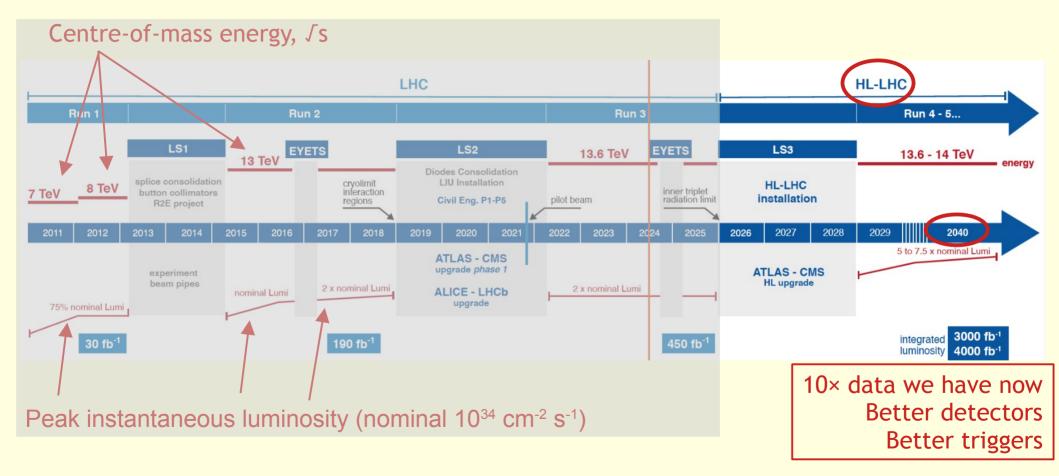
Many favoured scenarios ruled out at TeV scale, and some well beyond

Many more searches for new particles

Many favoured scenarios ruled out at TeV scale, and some well beyond

Changes thinking for the future

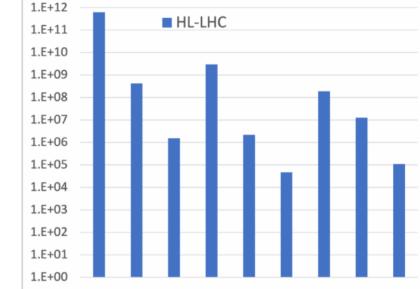
- Feebly interacting particles?
- SUSY with very similar masses ("compressed")?
- Higgs portal models?
- Complex dark sector → "long"-lived new particles?


Searches are refocussing, e.g. using new trigger strategies

	atus: March 2023		arches s† E ^{miss}		5% CL Upper Exc	1		TeV 3.6 – 139) fb ⁻¹	$\sqrt{s} = 13 \text{ TeV}$
Extra dimen.	Model ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD OBH ADD BH multijet RS1 $G_{KK} \to \gamma\gamma$ Bulk RS $G_{KK} \to WW/ZZ$ Bulk RS $g_{KK} \to tt$ 2UED / RPP	$\begin{array}{cccc} 0 \ e, \mu, \tau, \gamma & 1 - \\ 2 \gamma & - \\ - & 2 \\ - & \geq 3 \\ 2 \gamma & - \\ multi-channel \end{array}$	4 j Yes j – 3 j – ≥1J/2j Yes	139 36.7 139 3.6 139 36.1 36.1 36.1 36.1	⁻¹] Lim M _b M _b M _h M _h M _h G _{KK} mass G _{KK} mass G _{KK} mass KK mass	n	8.6 TeV 9.4 TeV	V n = 2 n = 3 HLZ NLO n = 6 $n = 6, M_D = 3 \text{ TeV, rot BH}$ $k/\overline{M}_{PI} = 0.1$ $k/\overline{M}_{PI} = 1.0$ f/m = 15% $\text{Tier (1,1)} \mathcal{B}(A^{(1,1)} \rightarrow tt) = 1$	Reference 2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to t\nu \\ \text{SSM } W' \to \tau\nu \\ \text{SSM } W' \to \tau\nu \\ \text{SSM } W' \to WZ \\ \text{model B} \\ \text{HVT } W' \to WZ \\ \text{model B} \\ \text{HVT } W' \to WW \\ \text{model B} \\ \text{LRSM } W_R \to \mu N_R \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	≥2 J Yes - Yes - Yes ≥1 J - 1 J Yes /BF) Yes 1 J Yes	139 36.1 36.1 139 139 139 139 139 139 139 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass W' mass W' mass W' mass 340 GeV Z' mass We mass		5.1 TeV 2.42 TeV 2.1 TeV 4.1 TeV 6.0 TeV 5.0 TeV 4.4 TeV 4.3 TeV 3.9 TeV 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_f = 0$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.08299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 2207.03925 2004.14636 1904.12679
CI	Cl qqqq Cl ℓℓqq Cl ℓℓq Cl eebs Cl μμbs Cl tttt	$\begin{array}{cccc} - & 2 \\ 2 e, \mu & - \\ 2 e & 1 \\ 2 \mu & 1 \\ \geq 1 e, \mu & \geq 1 b, \end{array}$	b – b –	37.0 139 139 139 36.1	Λ Λ Λ Λ		1.8 TeV 2.0 TeV 2.57 TeV	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
MQ	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac D Pseudo-scalar med. 2HDM+a		4 j Yes	139 139 139 139	m _{med} m _{med} 376 GeV m _{z'}	800 GeV	3.8 TeV 3.0 TeV	$\begin{array}{l} g_q{=}0.25, g_{\chi}{=}1, m(\chi){=}10 \; {\rm TeV} \\ g_q{=}1, g_{\chi}{=}1, m(\chi){=}1 \; {\rm GeV} \\ {\rm tan} \beta{=}1, g_Z{=}0.8, m(\chi){=}100 \; {\rm GeV} \\ {\rm tan} \beta{=}1, g_{\chi}{=}1, m(\chi){=}10 \; {\rm GeV} \end{array}$	ATL-PHYS-PUB-2022-036 2102.10874 2108.13391 ATLAS-CONF-2021-036
70	Scalar LQ 1 st gen Scalar LQ 2 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen Vector LQ 3 rd gen	$\begin{array}{c c} 2 \ e & \geq 2\\ 2 \ \mu & \geq 2\\ 1 \ \tau & 2\\ 0 \ e, \mu & \geq 2 \ j, \\ \geq 2 \ e, \mu, \geq 1 \ \tau \geq 1 \ j, \\ 0 \ e, \mu, \geq 1 \ \tau & 0 - 2\\ \text{multi-channel} \geq 1 \ j, \\ 2 \ e, \mu, \tau & \geq 1 \end{array}$	2 j Yes b Yes ≥2 b Yes ≥1 b - j, 2 b Yes ≥1 b Yes	139 139 139 139 139 139 139 139	LQ mass LQ mass LQ ² mass LQ ² mass LQ ² mass LQ ³ mass LQ ³ mass LQ ³ mass	1.24 1.4		$\begin{array}{l} \beta = 1 \\ \beta = 1 \\ \beta (LQ_3^o \rightarrow b\tau) = 1 \\ \mathcal{B}(LQ_3^o \rightarrow t\tau) = 1 \\ \mathcal{B}(LQ_3^o \rightarrow t\tau) = 1 \\ \mathcal{B}(LQ_3^o \rightarrow b\tau) = 1 \\ \mathcal{B}(LQ_3^o \rightarrow b\tau) = 1 \\ \mathcal{B}(LQ_1^o \rightarrow t\mu) = 1, \text{Y-M coupl.} \end{array}$	2006.05872 2006.05872 2303.01294 2004.14060 2101.11582 2101.12527 ATLAS-CONF-2022-052 2303.01294
Vector-like fermions	$ \begin{array}{l} VLQ \ TT \rightarrow Zt + X \\ VLQ \ BB \rightarrow Wt_1Zb + X \\ VLQ \ T_{5/3} \ T_{5/3} T_{5/3} \rightarrow Wt + X \\ VLQ \ T \rightarrow Ht/Zt \\ VLQ \ Y \rightarrow Wb \\ VLQ \ B \rightarrow Hb \\ VLL \ \tau' \rightarrow Z\tau/H\tau \end{array} $	$\begin{array}{c c} 2e/2\mu/\geq 3e,\mu \geq 1 \text{ b},\\ \text{multi-channel}\\ 2(SS)/\geq 3e,\mu \geq 1 \text{ b},\\ 1e,\mu \geq 1 \text{ b},\\ 1e,\mu \geq 1 \text{ b},\\ 0e,\mu \geq 2b,\geq\\ \\ \text{multi-channel} \geq 1 \end{array}$	≥1 j Yes ≥3 j Yes ≥1 j Yes 1j, ≥1J -	139 36.1 36.1 139 36.1 139 139	T mass B mass T _{5/3} mass T mass Y mass B mass r' mass	1.34	6 TeV TeV 1.64 TeV 1.8 TeV 1.85 TeV 2.0 TeV	$\begin{array}{l} {\rm SU(2) \ doublet} \\ {\rm SU(2) \ doublet} \\ {\mathcal B}(T_{5/3} \to Wt) = 1, \ c(T_{5/3}Wt) = 1 \\ {\mathcal SU(2) \ singlet, \ \kappa_T = 0.5} \\ {\mathcal B}(Y \to Wb) = 1, \ c_R(Wb) = 1 \\ {\mathcal SU(2) \ doublet, \ \kappa_B = 0.3} \\ {\rm SU(2) \ doublet} \end{array}$	2210.15413 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018 2303.05441
Exctd ferm.	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton τ^*	$ \begin{array}{cccc} - & 2 \\ 1 \gamma & 1 \\ - & 1 b, \\ 2 \tau & \geq 2 \end{array} $	j – 1j –	139 36.7 139 139	q* mass q* mass b* mass τ* mass		6.7 TeV 5.3 TeV 3.2 TeV 4.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 4.6 \text{ TeV}$	1910.08447 1709.10440 1910.08447 2303.09444
Other	Type III Seesaw LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow W^{\pm}W^{\pm}$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Multi-charged particles Magnetic monopoles	$\begin{array}{ccc} 2,3,4 \ e, \mu & \geq 2 \\ 2 \mu & 2 \\ 2,3,4 \ e, \mu (SS) & vario \\ 2,3,4 \ e, \mu (SS) & - \\ - & - \\ - & - \\ \sqrt{s} = 13 \ \text{TeV} & \sqrt{s} \end{array}$	j –	139 36.1 139 139 139 34.4	№ mass 350 GeV H ^{±+} mass 350 GeV H ^{±±} mass multi-charged particle mass monopole mass	910 GeV 1.08 Te	3.2 TeV 7 59 TeV 2.37 TeV	$\begin{split} m(W_R) &= 4.1 \text{TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production} \\ \text{DY production}, g = 5e \\ \text{DY production}, g = 1g_D, \text{spin } 1/2 \end{split}$	2202.02039 1809.11105 2101.11961 2211.07505 ATLAS-COMF-2022-034 1905.10130
*On		artial data fu	ull data	s or pher	10 ⁻¹		1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).


The future at the LHC - "High-Lumi LHC", HL-LHC

HL-LHC is a Higgs factory (and a W, Z, top, etc. factory)

Huge statistical power for heavy particles

- Number of particles produced for each of ATLAS & CMS with 3,000 fb⁻¹ at $\sqrt{s} = 14$ TeV
 - ▶ ~600,000,000,000 W bosons
 - ► ~3,000,000,000 *tī* pairs
 - ~190,000,000 Higgs bosons
 - ► ~120,000 HH pairs
- Gives access to "rare" processes
 - ▶ ~50,000 *tttt*

www

ttW

tttt

Expected number of events produced

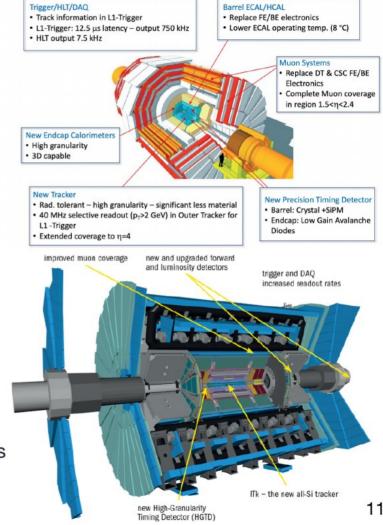
▶ exotic Higgs decays down to BF ~10⁻⁵ – 10⁻⁶ (e.g. $H \rightarrow aa \rightarrow \mu\mu\tau\tau$) + extremely rare Z or top decays

• HL-LHC allows exploration at both energy frontier and intensity frontier

• **Challenges:** high pileup (μ = 200 vs. 34 in Run 2) and high radiation doses

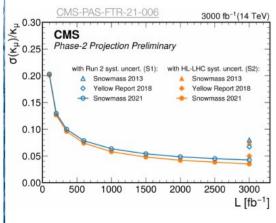
S Willocq / LHCP2024

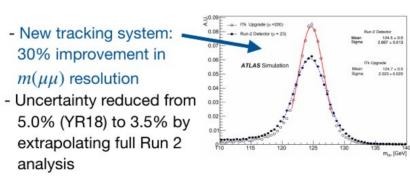
H VBF HH

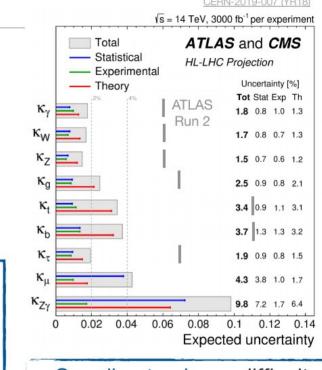

ATLAS and CMS detector upgrades for HL-LHC

• ATLAS and CMS Phase-II upgrades for Runs 4, 5 & 6

• Challenge: pileup $\mu = 200$

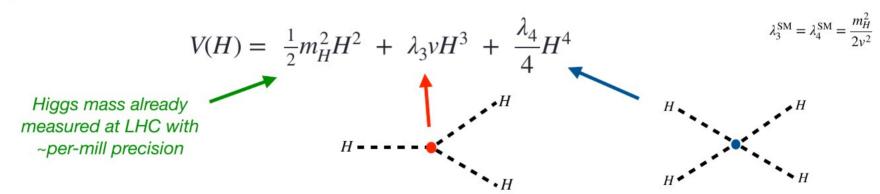

data acquisition rates 10x higher than LHC maintain or lower trigger thresholds


- Significant enhancement to sensitivity with
 - ▶ higher-resolution tracking systems (extending to $|\eta| = 4$)
 - improved calorimetry
 - increased muon coverage
 - enhanced trigger capability
 - novel timing systems
- Aggressive R&D in trigger, software and computing
 - exploit AI/ML techniques online and offline
 - develop software for heterogeneous computing technologies

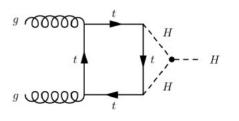


Higgs couplings @HL-LHC

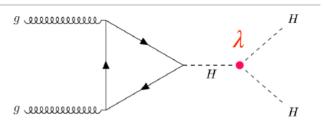
- Combination of ATLAS and CMS measurements extrapolated from (early) Run 2 analyses for YR18
- Precision on tree-level coupling modifiers (κ_i)
 - 1.5 1.8% for couplings to bosons (γ , W, Z)
 - ° 1.9 4.3% for couplings to fermions (μ , τ , b, t)
 - Access to couplings to 2nd generation fermions via $H \rightarrow \mu^+\mu^-$ Given $B(H \rightarrow \mu\mu) = 2 \times 10^{-4}$, statistics dominate even with 3,000 fb⁻¹



• Coupling to charm difficult due to $B(H \rightarrow c\bar{c}) = 2.9 \%$, large background and c-tagging performance $\kappa_c < 1.75$ (95% CL)

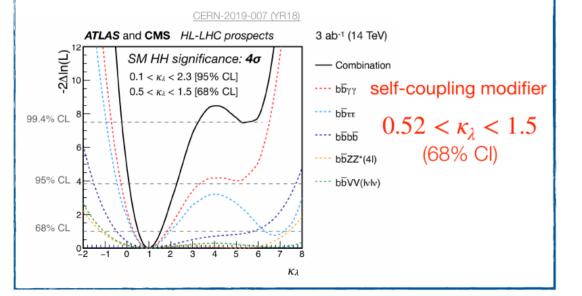

Higgs potential EW phase transition resp. for baryon asymmetry? Vacuum stable?

- Measurement of Higgs potential a science driver for HL-LHC, largely unconstrained so far
- Shape of potential key to understand
 EW phase transition in early universe
- Shape of potential determines vacuum stability



- Cubic (aka tri-linear) coupling λ ($\equiv \lambda_3$) via Higgs pair production
- Single Higgs measurements sensitive to λ via higher-order corrections

Higgs self-coupling @HL-LHC

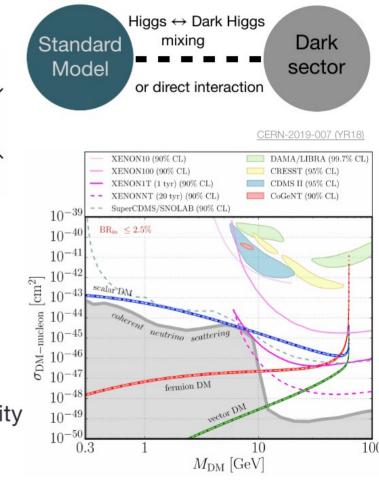

- Tri-linear coupling λ directly accessible via Higgs pair production
- $pp \rightarrow HH$ cross section 3 orders of mag. lower than single Higgs
- Improved trackers and ML key for HH studies (e.g. b tagging)

destructive interference with box diagram

• ATLAS+CMS Yellow Report 2018

 $pp \rightarrow HH$ significance = 4.0 σ (4.5 σ stat only)

Estimates of HL-LHC sensitivity here are a bit old – latest numbers suggest we can get to 5σ observation of HH production


Constraints on the self-coupling, but need more precision \rightarrow future colliders, long-term

BSM: Higgs portal @HL-LHC

- Higgs portal to dark sector of new particles and interactions
 - Lowest-dimension operator $H^{\dagger}H \mathcal{O}_{\mathrm{DS}}$
 - Search for $H \rightarrow$ invisible in VBF and ZH production SM rate: $B(H \rightarrow ZZ^* \rightarrow \nu \overline{\nu} \nu \overline{\nu}) \simeq 0.1 \%$

- Model-independent $B(H \rightarrow \text{inv}) < 2.5 \%$ (95% CL ATLAS+CMS)
- $\circ\,$ HL-LHC sensitivity exceeds direct detection expts in minimal Higgs portal model for $m_{\rm DM} \lesssim$ 30 GeV
- Significant gains in BSM with low XS or BF from large luminosity
 - Electroweak SUSY, compressed spectra
 - Feeble interactions, dark sector portals, long-lived particles

Beyond the LHC

A few clear priorities:

- Improve measurements of Higgs properties and couplings
 - Higgs total width probe for unobserved decay modes, visible or invisible
 - Higgs self-coupling
- Go an order of magnitude beyond LHC E scale to probe for BSM physics ("10 TeV partonic CM energy" / "10 TeV pCM")
 - Look for new higher energy processes and higher mass particles
 - Especially whether Higgs is a portal to new physics
- Understand / discover dark matter this is a shared endeavour, colliders just one prong
 - "All" we know about dark matter is that it has (gravitational) mass
 - Won't it couple to the Higgs, as that generates fundamental particle masses in SM?
 - Why should DM be a single particle?
 - When something found, we want to explore the dark sector

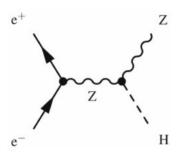
Future colliders

• 1	Next pri	ority:	e⁺e⁻ H	liggs fa	ctory	Depends on	↑ °	irect Searches		Snow	mass EF rep	ort		
	Collider	Type	\sqrt{s}	$\mathcal{P}[\%] = e^{-}/e^{+}$	$egin{array}{c} \mathcal{L}_{\mathrm{int}} \ \mathrm{ab}^{-1} /\mathrm{IP} \end{array}$	collider environment	5		Future	、 、				
	HL-LHC	рр	14 TeV		3	Σ			multi-TeV colliders)				
ь [ILC & C^3	ee	$250~{\rm GeV}$	$\pm 80/\pm 30$	2	Coupling to SM								
5			$350~{ m GeV}$	$\pm 80/\pm 30$	0.2	ng	Higgs		More		• L	onge	r term:	
inear ee			$500~{\rm GeV}$	$\pm 80/\pm 30$	4	ildu	Factory		Energy		n	oulti-	TeV co	ollic
Ξ			$1 { m TeV}$	$\pm 80/\pm 20$	8	00	$ \setminus \rangle$	2				iara		////
	CLIC	ee	$380~{ m GeV}$	$\pm 80/0$	1			More						
	CEPC	ee	M_Z		50			E E						
			$2M_W$		3									
			$240~{\rm GeV}$		10			Mass Scale				*		
			$360~{\rm GeV}$		0.5				Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{ ext{int}}$	ſ
	FCC-ee	ee	M_Z		75				Comuci	-5P0	(TeV)	e^{-}/e^{+}	ab^{-1}/IP	1
5			$2M_W$		5				HE-LHC	pp	27	,	15	ń
			$240~{\rm GeV}$		2.5				FCC-hh	pp	100		30	đ
U			$2 M_{top}$		0.8				SPPC	pp	75-125		10-20	đ
1	μ -collider	$\mu\mu$	$125~{\rm GeV}$		0.02				LHeC	ер	1.3		1	ń
							FCC-eh	-1	3.5		2	1		
Different \sqrt{s} : e ⁺ e ⁻ at Z, WW, ZH, tt, up to 1 TeV						CLIC	ee	1.5	$\pm 80/0$	2.5	ĺ			
			11-00	llider at	H nole	(Ebeam sprea	d challenge	a)			3.0	$\pm 80/0$	5	

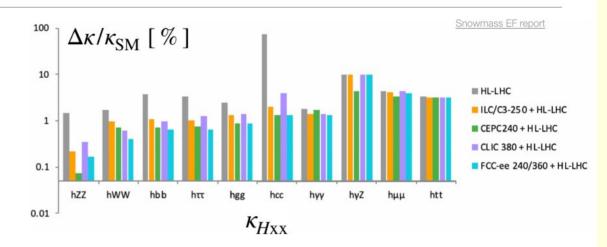
µ-collider at H pole (E_{beam} spread challenge) (e+e- perhaps at H pole also)

1

10

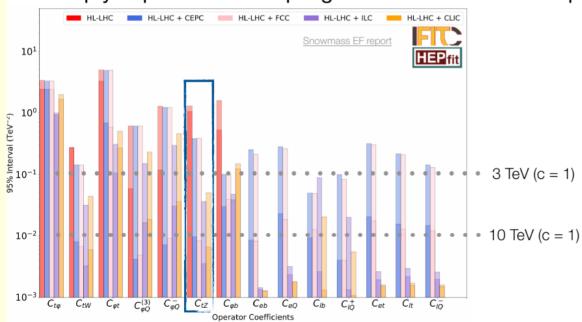

 μ -collider $\mu\mu$

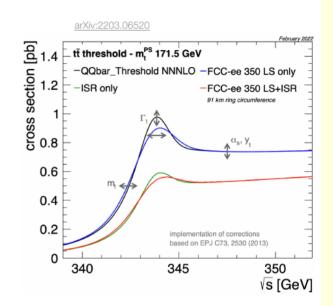
3


10

e+e- : Higgs boson

 Fully inclusive Higgs sample via recoil mass in ZH production (~1 M events)


- **Absolute** measurement of g_{HZZ} with 0.05% statistical precision reachable
 - Allows to translate cross-section ratios from HL-LHC into model-independent coupling measurements



- Sharp improvement wrt HL-LHC for Higgs coupling to Z, W, b, c, τ (factor 10 for Z or H_{inv})
- Higgs width precision
 - 1% combining e+e- with HL-LHC
 - 1.7% direct measurement via line-shape at μC
- FCC-ee exploring running at $\sqrt{s} = 125$ GeV to measure coupling to electrons

e+e-: Top quark

- Top quark: key role in SM
 - Yukawa coupling $y_t \simeq 1$, quadratic corr^s to m_H , vacuum stability
 - Only quark that does not hadronize before decay
- Expect ~2M $t \bar{t}$ events w/ clean environment + ability to scan \sqrt{s}
- Top-mass precision: 40-75 MeV from scan
- Sharply improved *ttZ* coupling + EFT constraints on top couplings

e⁺e⁻ : Precision Electroweak

S Willocq /	LHCP2024
-------------	----------

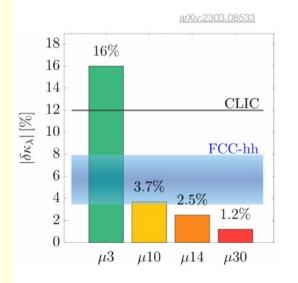
Snowmass EF report

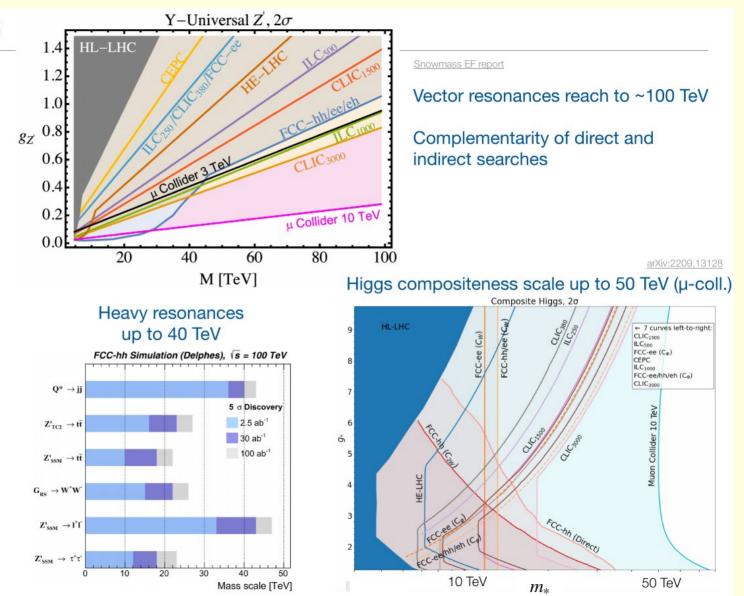
- Giga-Z (ILC) & Tera-Z (FCC-ee, CEPC) runs: up to 6 x 10¹² Z bosons -> 5+ orders of magn. more than LEP
 - Reduced statistical uncertainties by factor up to ~500
 - Requires theory calculations at next order or higher
 + improved α_s, α_{EM}, m_t
- WW threshold: 2 x 10⁸ WW boson pairs

—> 3 orders of magn. more than LEP

ILC250 Quantity ILC-GigaZ FCC-ee CEPC CLIC380 current $\Delta \alpha(m_Z)^{-1}$ (×10³) 17.8^{*} 17.8^{*} 3.8(1.2) 17.8^{*} Δm_W (MeV) 0.25(0.3) 12^{*} 0.5(2.4)0.35(0.3) Δm_Z (MeV) 0.7(0.2)0.20.005(0.1) 2.1^{*} 0.004(0.1) 2.1^{*} Δm_H (MeV) 170^{*} 142.5(2)5.978 $\Delta \Gamma_W$ (MeV) 42^{*} 21.2(0.3)1.8(0.9) $\Delta \Gamma_Z$ (MeV) 1.5(0.2)0.120.004(0.025) 2.3^{*} 2.3^{*} 0.005(0.025) $\Delta A_e \ (\times 10^5)$ 190^{*} 14(4.5)1.5(8)0.7(2)1.5(2)60(15) ΔA_{μ} (×10⁵) 1500^{*} 82(4.5)3(8)2.3(2.2)3.0(1.8)390(14) ΔA_{τ} (×10⁵) 550(14) 400^{*} 86(4.5)3(8)0.5(20)1.2(20) $\Delta A_b \ (\times 10^5)$ 9 (50) 2.4(21) 2000^{*} 53(35)3(21)360(92) $\Delta A_c \ (\times 10^5)$ 20(37) 2700^{*} 140(25)20(15)6(30)190(67) $\Delta \sigma_{\rm had}^0$ (pb) 37^{*} 0.035(4)0.05(2) 37^{*} $\delta R_e (\times 10^3)$ 0.5(1.0)0.004(0.3)0.003(0.2)2.5(1.0) 2.4^{*} 0.2(0.5) $\delta R_{\mu} (\times 10^3)$ 1.6^{*} 0.5(1.0)0.2(0.2)0.003(0.05)0.003(0.1)2.5(1.0) $\delta R_{\tau} \ (\times 10^3)$ 2.2^{*} 0.6(1.0)0.2(0.4)0.003(0.1)0.003(0.1)3.3(5.0) $\delta R_b (\times 10^3)$ $0.0014 \ (< 0.3)$ 0.005(0.2)1.5(1.0) 3.1^{*} 0.4(1.0)0.04(0.7) $\delta R_c(\times 10^3)$ 0.6(5.0)0.2(3.0)0.015(1.5)2.4(5.0) 17^{*} 0.02(1)

Stat. (exp. syst.) uncertainties improve by up to factors of 20-50

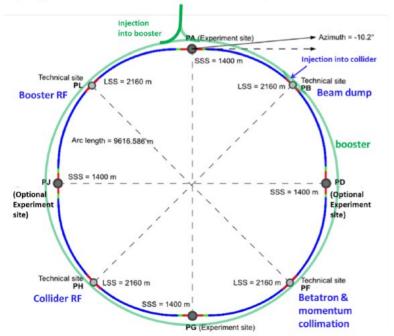

 $^{\circ}$ W mass and width from line shape —> δm_W = 0.4 MeV, $\delta \Gamma_W$ = 1.2 MeV

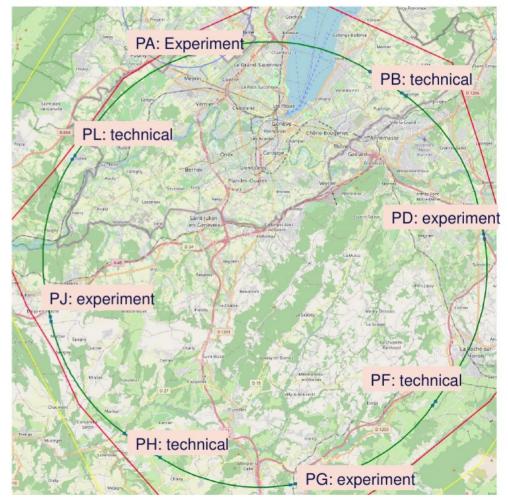

W.W.

• EFT study w/ dim-6 operators for Higgs + EW: indirect BSM sensitivity up to 70 TeV (Tera-Z)

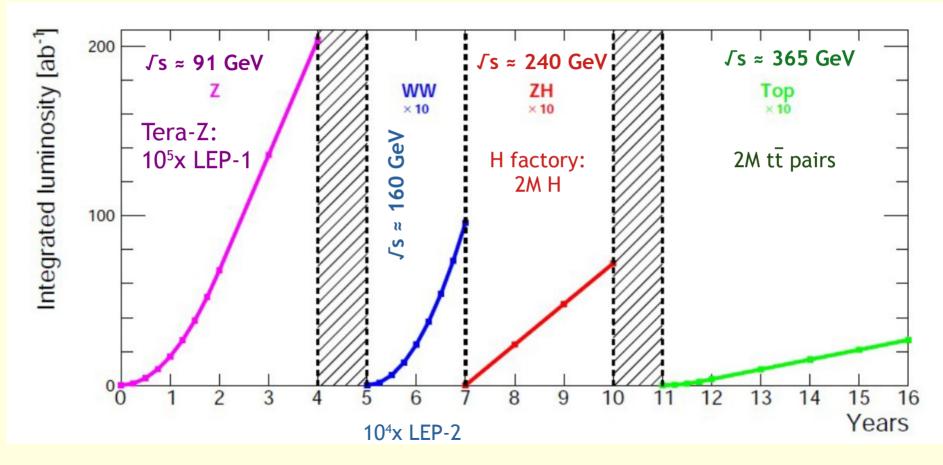
Multi-TeV colliders

 Higgs potential via self-coupling precision of ~5% (100 TeV hh) ~4% (10 TeV µC)


FCC Ring Parameters and Placement


Manfred Kramme

Layout chosen out of ~ 100 initial variants, based on **geology** and **surface constraints** (land availability, access to roads, etc.), **environment,** (protected zones), **infrastructure** (water, electricity, transport), **machine performance** etc.


Overall lowest risk baseline: 90.7 km ring, 8 surface points < 40 ha of land needed and < 4 km of additional roads

Whole project has been adapted to this placement

FCC-ee possible operation sequence

Year-0? CERN realistic schedule says 2045-2048 (with HL-LHC ending 2041)

FCC-hh main machine parameters

parameter	FCC-hh	HL-LHC	LHC	
collision energy cms [TeV]	84 - 120	14		
dipole field [T]	14 - 20	8.3	33	
circumference [km]	90.7	26	5.7	
arc length [km]	76.9	22	2.5	
beam current [A]	0.5	1.1	0.58	
bunch intensity [10 ¹¹]	1	2.2	1.15	
bunch spacing [ns]	25	25		
synchr. rad. power / ring [kW]	1100 - 4570	7.3	3.6	
SR power / length [W/m/ap.]	14 - 58	0.33	0.17	
long. emit. damping time [h]	0.77 – 0.26	12	2.9	
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	~30	5 (lev.)	1	
events/bunch crossing	~1000	132	27	
stored energy/beam [GJ]	6.3 - 9.2	0.7	0.36	
Integrated luminosity/main IP [fb ⁻¹]	20000	3000	300	

With FCC-hh after FCC-ee: significantly more time for high-field magnet R&D aiming at highest possible energies

Realistic start date around 2070(?)

Formidable challenges:

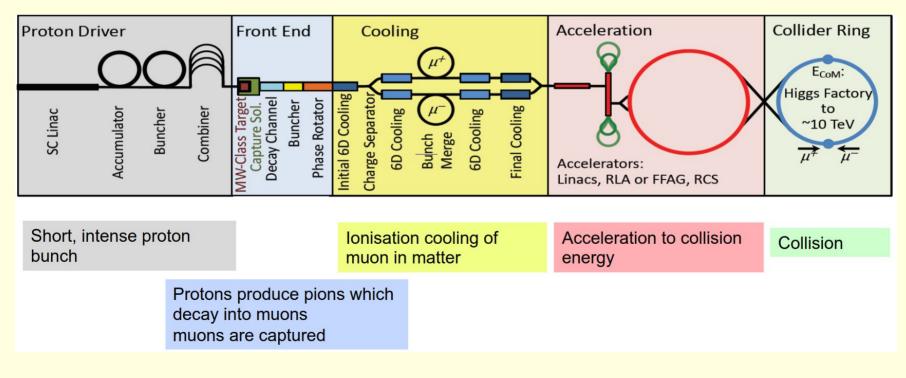
FUTURE

CIRCULAR COLLIDER

- high-field superconducting magnets: 14 20 T
- □ power load in arcs from synchrotron radiation: 4 MW → cryogenics, vacuum
- □ stored beam energy: ~ 9 GJ \rightarrow machine protection
- □ pile-up in the detectors: ~1000 events/xing
- \Box energy consumption: 4 TWh/year \rightarrow R&D on cryo, HTS, beam current, ...

Formidable physics reach, including:

- Direct discovery potential up to ~ 40 TeV
- Measurement of Higgs self to ~ 5% and ttH to ~ 1%
- High-precision and model-indep (with FCC-ee input) measurements of rare Higgs decays (γγ, Ζγ, μμ)
- Final word about WIMP dark matter

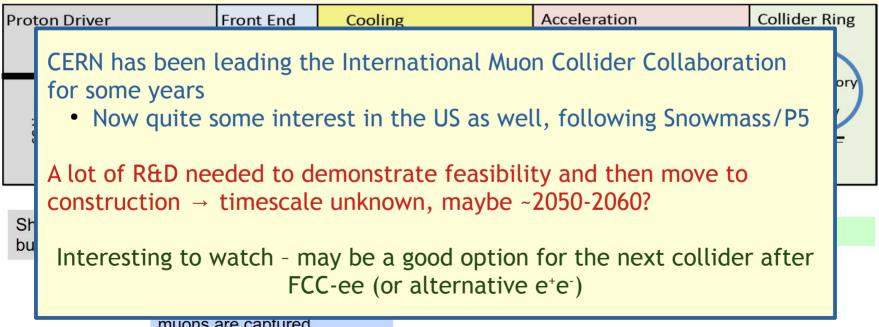

F. Gianotti

Muon collider

MInternational UON Collider Collaboration

Concept is to make a muon collider ring at high energy

- Advantage that muons radiate much less synchrotron radiation than electrons \rightarrow much smaller ring to achieve $~\sqrt{s}$ ~ 10 TeV
- Disadvantage that muons decay with (restframe) lifetime τ -2.2 µs!



Muon collider

MInternational UON Collider Collaboration

Concept is to make a muon collider ring at high energy

- Advantage that muons radiate much less synchrotron radiation than electrons \rightarrow much smaller ring to achieve $~\sqrt{s}$ ~ 10 TeV
- Disadvantage that muons decay with lifetime $\tau\text{-}2.2~\mu\text{s}!$

Final words

Through these lectures, we have seen

- The physics need for large colliders, both the LHC and future machines
- The huge physics range of these facilities
- The exciting prospects beyond the LHC

In the medium term (10y), (HL-)LHC will be the world's forefront collider

- There is a huge amount of frontier physics to be done!
- Completely international collaborations, especially in terms of member nationalities!

There are lots of good ideas what to do after the LHC - currently FCC gaining traction

• All options are expensive (€10 billion-scale)

Final words

Through these lectures, we have seen

- The physics need for large colliders, both the LHC and future machines
- The huge physics range of these facilities
- The exciting prospects beyond the LHC

In the medium term (10y), (HL-)LHC will be the world's forefront collider

- There is a huge amount of frontier physics to be done!
- Completely international collaborations, especially in terms of member nationalities!

There are lots of good ideas what to do after the LHC - currently FCC gaining traction

• All options are expensive (€10 billion-scale)

All the best to all of you with your studies and research - I hope to see some of you working at the LHC!