Computational Physics: Modeling and Simulation

Dr. Victor Odari, Department of Physics, Masinde Muliro University of Science and Technology. vodari@mmust.ac.ke

Materials Research Society of Kenya https://mrsk.or.ke/

The African School of Fundamental Physics and Applications

and Biennial African Conference of Physics

ABOUT MASINDE MULIRO UNIVERSITY OF SCIENCE & TECHNOLOGY

- MMUST is a public university, located in Kakamega town in Western Kenya, about 400 km North-west Kenya's capital Nairobi and 50 km north of Kisumu city
- In the locality of Kakamega forest- a tropical rain forest unique of indigenous trees, avifauna and several other animals. Also famous of the "crying stones"

Learning outcomes for the session

• Become familiar with the SCOUT software.

- Learn how to simulate optical properties of materials from experimental data using SCOUT software.
- Learn how to simulate electrical properties of materials from experimental data using SCOUT software.

• Become familiar with the crystallography software and database.

- Be familiar with crystallography database
- Learn how to analyse data from an X-Ray Diffractometer.

• Become familiar with SCAPS software.

• Simulate solar cell paramemeters using SCAPS software.

	Modeling	Simulation
Definition	Creating simplified representations or abstractions of physical systems using mathematical equations, rules, or conceptual frameworks.	The process of using a model to compute the behavior of a system over time or under different conditions by executing the model on a computer.
Purpose	Describe, understand, and predict the behavior of a physical system. Models can range from simple mathematical equations (e.g., Newton's laws of motion) to complex theoretical frameworks (e.g., quantum field theory).	Mimic the behavior of a real-world system in a virtual environment. It allows physicists to study complex systems, conduct experiments that are impractical or impossible in reality, and make predictions.
Examples	Using a mathematical model to describe the motion of planets in the solar system or the behavior of particles in a quantum system	Molecular dynamics simulations to study the behavior of atoms and molecules, computational fluid dynamics to model airflow around objects, or cosmological simulations to understand the evolution of the universe.

Importance of modeling and simulation in Physics

- 1. Understanding Complex Systems
- 2. Predictive Power
- 3. Hypothesis Testing
- 4. Education and Communication
- 5. Cost and Safety
- 6. Exploration of New Phenomena
- 7. Interdisciplinary Applications

The 8th African School of Fundamental Physics and Applications, ASP2024.

Software for simulation and modeling

- Scout software
- Crystallography software
- DFT codes
- SCAPS software

SCOUT downloads | WTheiss Hardware and Software

Spectrum interpretation by simulation

written by W.Theiss

W. Theiss – Hard- and Software for Optical Spectroscopy Dr.-Bernhard-Klein-Str. 110, D-52078 Aachen, Germany Phone: + 49 241 5661390 Fax: + 49 241 9529100 e-mail: <u>theiss@mtheiss.com</u> web: <u>www.mtheiss.com</u>

- The goal of optical spectroscopy is :
 - >determination of microscopic quantities such as resonance frequencies of oscillating atoms,

impurity concentrations

> thin film thicknesses from macroscopic experiments.

 This is possible if the microscopic phenomena are coupled to the electric fields of the probing radiation (*the dielectric function* or its square root, the *complex refractive index* - both quantities are more generally called *'optical constants*').

Software, hardware, problem solving for

• Optics	Research
Optical Spectroscopy	 Thin film analysis by spectrum simulation techniques
Material Science	Advanced models for optical constants
 Product Design 	 Spectral ray-tracing investigations
Production Control	• Direct determination of optical constants
The 8th African School of Eur	 Realistic modeling of diffuse reflectance spectra

Software, hardware, problem solving for

	Design		Production Control
•	Design of thin film systems with customized optical properties	•	Thin film analysis by automatic spectrum simulation
•	Architectural and car glass coatings	•	Online monitoring
•	Optimization of coatings for solar applications	•	Thickness and composition determination of thin films
٠	Design and analysis of optical setups by high-level ray-tracing	•	Optical inspection networks for large coating lines
•	Prediction of the optical appearance of color prints and paints	•	OLE automation servers for external control (LabView or other high level programming languages)

The 8th African School of Fundamental Physics and Applications, ASP2024.

SCOUT Software: Required steps for developing optical models

Define the optical constants of all relevant materials

Define the structure of the layer stacks

Define which type of spectra are to be simulated and compared to experiments

Select the fit parameters

Fit of the model (manual, visual, automatic)

SCOUT Software: Required steps for developing optical models

	Define the optical c	onstants of all rele	vant materi	als		tree Define objects rep
	S₂ Materials File New Edit Delete ?	Update Export Import	— 🗆 Database (× Color		(imported from file give you flexibi constants
4	Dielectric function Name Vacuum 2 0% SnO2 3 Glass (KKR)	n model 💽 📉 — . Type Vacuum Dielectric function model KKR dielectric function	<u>↑ ↓</u>			Optical con Drude Extended Drude mo dependent o extended oscilla
		1				extended oscil oscillator m
Fil B	Susceptibilities e New Edit Delete Update Colo the Dielectric background	r ?	Value Decem 1		C X	OJL int Campi-Corias
1 2 3	TLM Faram. Tuc-Lorentz nPos. DM DM Drude model Str. DB Dielectric backş	value ratan. value ratan. 16852.6 Str. 395.06 Damp. 711.7 Damp. 5671.631 2.517 + i 0.000	8251.58 Gap	16167.8		Tauc-Lorent
<	7/16/2024			The 8	Bth African Sch Appli	ool of Fundamental Physics and sations, ASP2024.

Materials are managed in the first branch of the object tree called Materials. Define objects representing fixed optical constants (imported from files) or optical constant models that give you flexibility if you want to adjust optical constants to fit experimental data. Optical constant models present are: Drude model for free carriers Extended Drude model for free carriers with frequency dependent damping harmonic oscillator extended oscillator model suggested by Brendel extended oscillator model suggested by Kim oscillator model suggested by Gervais OJL interband transition model Campi-Coriasso interband transition model Tauc-Lorentz interband transition model user-defined expressions for optical constants

SCOUT Software: Required steps for developing optical models

Define the optical constants of all relevant materials

Define the structure of the layer stacks

S2 Layer stack							- 🗆 X	Each layer
File Edit Delete Check Manipulate Up	date lists Fluctuation	Thin film	- 5	- + +				of layers whi
 Substrates Stacks in this configuration Coatings New single layers 	Type 1 Halfspare 2 Thin film 3 Thin film 4 Thick layer 5 Halfspare	Material Air oxide - air mix My oxide GaAs (Aspnes, Bhat) Air	Thickness 10.0 nm 300.0 nm 0.300 mm	Variation	Superpos	 Materials (this configuration) Materials in database 		For <u>sim</u> incohe
S2 Laye	rstack	nipulate Update lists ?	- 1 -	- <i>P</i>	2	,		A <u>'Thin</u> superpositi incoherent
Subst G G G G G G G G G G C Subst C G C G C G C G C G C C C C C C C C C	ates aAs wafer (FIR) aAs wafer (NIR-Vis-UV) licroscope slide (1 mm) wafer (NIR-Vis-UV) s in this configuration typer stack ags ingle layers	Thin film Type Material 1 Halfspace Vacuum 2 Thin film 0% SnO2 3 Thick layer Glass (KKR) 4 Halfspace Vacuum	Thickness Va 37.7 nm 1.000 mm	riation St	Materials (this Vacuum - 0% SnO2 Glass (KK Materials in di	configuration) R) Itabase	of Fund	coheren implementec
7/16/2 <mark>024</mark>		<		>	- He C	Applicatio	ons, AS	2024.

The tree branch Layer stacks shows the list of layer stacks.

In most cases you will investigate one layer stack only, but SCOUT lets you work with several stacks if you want to (or have to).

Each layer stack may consist of an unlimited number of layers which are again managed in lists, called <u>layer</u> stack.

For <u>simple layers</u> you can select <u>coherent or</u> incoherent superposition of partial waves.

A <u>'Thin film</u>' is always handled with coherent superposition whereas a <u>'Thick layer</u>' is treated with incoherent superposition. For cases in between full coherent or incoherent superposition we have implemented an efficient averaging algorithm for lateral layer thickness inhomogeneities.

SCOUT Software: Required steps for developing

These spectra are collected in the spectra list which is the **Simulated spectra** branch in the treeview. The following types of spectra can be used at present:

- **Reflectance**
- Transmittance
- Absorbance
- <u>ATR</u>
- Layer Mix (computes the average spectrum of a
- patterned sample)
- Ellipsometry
- Ellipsometry stack average
- PL spectrum
 - EL spectrum
 - Layer absorption (computes the absorbed

fraction of incident light intensity in a certain layer in a stack)

• <u>Charge carrier generation</u> (computes the number of photon-generated charge carriers in a layer)

15

		S Fit parameter selection			2 Fit nara	meters						
		A3000: oscillator strength A3000: damping			Ele New	Edit Delete Undate Slider	Fit on arid	Limits from slider	- 2			- ^
		> 43000: distribution width 46000			New New			Limits from sides	5 1			
	SCUU	46000 resonance frequency 45000 possible strength		12			ŤŸ		T 10 10	TTT A 41 - 14		D: 1
		> 46000 damping			Value 1 16852.50	1Name 03 0% SnO2:TI M: reconance fr	201101027	Variation Downhill simpley	0.0000	0.0000	1 0000	Digits
	_ •	48000			2 395.064	7 0% SnO2: TLM: strength	equency	Downhill simplex	0.0000	0.0000	1.0000	4
	ONTICE	> 48000, resonance frequency 48000, oscillator strength			3 8251.58	1 0% SnO2:TLM: damping		Downhill simplex	0.0000	0.0000	1.0000	4
	υριιοί	> 48000; damping			4 16167.84	18 0% SnO2:TLM: gap		Downhill simplex	0.0000	0.0000	1.0000	4
	-	 Head and the second seco			5 711.709	4 0% SnO2:DM: plasma freque	encv	Downhill simplex	0.0000	0.0000	1.0000	4
		> VUV: resonance frequency			6 5671.63	9 0% SnO2:DM: damping	-	Downhill simplex	0.0000	0.0000	1.0000	4
		> VUV. declaration strength > VUV. denping			7 2.5168	0% SnO2:DB: real part		Downhill simplex	0.0000	0.0000	1.0000	4
	Define the optica	> VUV: distribution width			8 0.0000	0% SnO2:DB: imaginary part	t	Downhill simplex	0.0000	0.0000	1.0000	4
		Layers			9 0.0040	Glass (KKR):IB: Mass		Downhill simplex	0.0000	0.0000	1.0000	4
		Layer stack 1 Layer stack 2		1	10 32300.39	06 Glass (KKR):IB: E0		Downhill simplex	0.0000	0.0000	1.0000	4
		Stack 1 Layer 2 Ag model (TL) Layer thickness		1	1 1524.60	1 Glass (KKR):IB: gamma v		Downhill simplex	0.0000	0.0000	1.0000	4
		Layer stack 3 Stack 1 Layer 3 Glass (microscone slide) Vis: Layer	thickness	1	0.0211	Glass (KKR):IB: Ratio gamm	na c/gamma v	Downhill simplex	0.0000	0.0000	1.0000	4
\bigcap	Define the	Layer stack 4		1	316238.5	625 Glass (KKR):IB: Decay		Downhill simplex	0.0000	0.0000	1.0000	4
	Denne the	Spectra		1	14 7358.48	4 Glass (KKR):Abs: resonance	frequency	Downhill simplex	0.0000	0.0000	1.0000	4
\sim		R .		1	15 25.733	Glass (KKR): Abs: oscillator	strength	Downhill simplex	0.0000	0.0000	1.0000	4
		 Noname 		1	16 3862.49	il Glass (KKR):Abs: damping		Downhill simplex	0.0000	0.0000	1.0000	4
· _		> Noname > Noname		1	17 3.5984	Glass (KKR):DB: real part		Downhill simplex	0.0000	0.0000	1.0000	4
\mathcal{X}	Define which type	> Noname		1	18 37.7	Stack 1 Layer 20% SnO2: L	ayer thickness	Downhill simplex	0.0	0.0	1.0000	1
	Denne which type	> Noname > Noname									-	
	con											
\sim		Mastel parameters		×								
		OK Cancel										
\subset				The t	treev	iew branch Fi	t para	ameters	s hold	ds the	e list	of fi
	Sele	ot the fit parameters								<i>c</i>		
\sim				par	rame	ters. These ar	e the	parame	eters	of the	e mo	del
				th	nat a	to ho adjust	tod in	ordor to	roa	ch or	stima	.1
				u	ial a	e to be aujus	ieu iii		lea	on op	uma	1
\sum				aar	eem	ent between s	simula	tion and	d mea	asure	mer	its.
1	Fit of the mode	er (manual, visual, automatic)	J	- J.		- ('()'	•					
				Be	eside	s fitting to exp	perime	ental dai	ta, yo	ou ca	n als	50
				مام	ct a	nodel narame	ator 20	s fit nara	mote	r if v		ant
				3010	ια	nouei parame				у п у	JU W	an
			· · · ·		ombl	te its value by	a use	er-defin	ed fu	nctio	n (w	hich
											<u>,</u>	
			The 8th African Schoo	ol of Pi	ay c	ontain master	parai	neters,	optic	aitur	ICIO	n
	7/16/2024		Annling	tions		a valuo	s ort	he time				
			Аррисс		AJI 202		501					

SCOUT Software: Required steps for developing optical models

3 <u>2</u>	Fit parameters					- L	
File	e New Edit	Delete Update Slider Fit on grid	Limits from sliders	1			
₿	📑 🗕 🗕	— All 🕴 🕈 🕈	-				
	Value	Name	Variation	Low limit	High limit	Factor	Digits
1	16852.5703	0% SnO2:TLM: resonance frequency	Downhill simplex	0.0000	0.0000	1.0000	4
2	395.0647	0% SnO2:TLM: strength	Downhill simplex	0.0000	0.0000	1.0000	4
3	8251.5811	0% SnO2:TLM: damping	Downhill simplex	0.0000	0.0000	1.0000	4
4	16167.8418	0% SnO2:TLM: gap	Downhill simplex	0.0000	0.0000	1.0000	4
5	711.7094	0% SnO2:DM: plasma frequency	Downhill simplex	0.0000	0.0000	1.0000	4
6	5671.6309	0% SnO2:DM: damping	Downhill simplex	0.0000	0.0000	1.0000	4
7	2.5168	0% SnO2:DB: real part	Downhill simplex	0.0000	0.0000	1.0000	4
8	0.0000	0% SnO2:DB: imaginary part	Downhill simplex	0.0000	0.0000	1.0000	4
9	0.0040	Glass (KKR):IB: Mass	Downhill simplex	0.0000	0.0000	1.0000	4
10	32300.3906	Glass (KKR):IB: E0	Downhill simplex	0.0000	0.0000	1.0000	4
11	1524.6011	Glass (KKR):IB: gamma_v	Downhill simplex	0.0000	0.0000	1.0000	4
12	0.0211	Glass (KKR):IB: Ratio gamma_c/gamma_v	Downhill simplex	0.0000	0.0000	1.0000	4
13	316238.5625	Glass (KKR):IB: Decay	Downhill simplex	0.0000	0.0000	1.0000	4
14	7358.4824	Glass (KKR): Abs: resonance frequency	Downhill simplex	0.0000	0.0000	1.0000	4
15	25.7331	Glass (KKR): Abs: oscillator strength	Downhill simplex	0.0000	0.0000	1.0000	4
16	3862.4961	Glass (KKR): Abs: damping	Downhill simplex	0.0000	0.0000	1.0000	4
17	3.5984	Glass (KKR):DB: real part	Downhill simplex	0.0000	0.0000	1.0000	4
18	37.7	Stack 1 Layer 2 0% SnO2: Layer thickness	Downhill simplex	0.0	0.0	1.0000	1

Dielectric permeability

$\boldsymbol{P} = \varepsilon_0 (\varepsilon - 1) \boldsymbol{E}$	(1.1)
$\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$	(1.2)
$N(\omega) = n(\omega) + ik(\omega)$	(1.3)
$\varepsilon = N^2$	(1.4 <i>a</i>)
$\varepsilon_1 = n^2 - k^2$	(1.4b)
$\varepsilon_2 = 2nk$	(1.4c)
$\varepsilon = \chi^{VC} + \chi^{FC} + \cdots$	(1.5)
$R(\omega) = \left[\frac{(n(\omega) - 1)^2 + k^2(\omega)}{(n(\omega) + 1)^2 + k^2(\omega)}\right]$	(1.6)
$n(\omega) = \frac{1 + R(\omega)}{1 - R(\omega)} + \sqrt{\frac{4R(\omega)}{\left(1 - R(\omega)\right)^2}} - \frac{k}{1 - R(\omega)}$	2 (1.7) 8 8th African School of Fundamental Physics and Applications, ASP2024.

Р	Polarization
E	Applied E-Field
ε_0	dielectric constant of free space
Е	the complex dielectric function
ω	Angular frequency
$N(\omega)$	Complex refractive index
n	the real index of refraction
k	the extinction coefficient
χ^{Vc}, χ^{FC}	susceptibilities of the valence electrons,
	the free carriers
$R(\omega)$	the bulk reflection coefficient
$n(\omega)$	refractive index

Determination of optical constants

damping constant for the Drude term. $\mathcal{E} = \mathcal{E}_{\infty} + \chi_{VE} + \chi_{FC}$ (1.8)Г Ω_{TO} resonance frequency, $\Omega_{\rm p}$ oscillator strength, $\chi_{FC} = \frac{\omega_p^2}{\omega^2 + i\omega\Gamma}$ Ω_{τ} damping constant, (1.9)Gauss-Lorentz-switch constant. σ $\omega_p^2 = \frac{ne^2}{m_e \varepsilon_0}$ (1.20) $\sigma = 0$, a Gaussian line shape, $\sigma > 5$, Lorentzian line shape $\chi_{VE} = \frac{\Omega_p^2}{\Omega_{TO}^2 - \omega^2 - i\omega\tau(\omega)}$ (1.21) $\tau(\omega) = \Omega_{\tau} exp \left[-\frac{1}{1+\sigma^2} \left(\frac{\omega - \Omega_{TO}}{\Omega_{\tau}} \right)^2 \right] \quad (1.22)$ $\chi_{\rm Drude} = -\frac{\Omega_P^2}{\widetilde{v}^2 + i\,\widetilde{v}\Omega}$ $n = \frac{4\pi^2 c_0^2 \varepsilon_0 m}{c^2} \Omega_P^2$ $\mu = \frac{e}{\frac{1}{10^{120} e^4}} \frac{1}{\Omega} \qquad \rho = \frac{\Omega 2_{\tau}}{2\pi c \epsilon \Omega^2}$

The 8th African School of Fundamental Physics and Applications, ASP2024.

SCOUT

Sb2S3 model

Optical constant model composed of

- constant

- far UV oscillator (harmonic oscillator)
- 2 OJL interband transitions
- I Kim oscillator

- Drude model

The layer stacks for R and T differ in the thickness of the main Sb2S3 layer. This is of type "Thickness averaging" which means that it averages out interference patterns for slightly different thicknesses. This reduces the amplitude of interference structures in the spectra. Very likely the thickness of your layer differs from positon to position, and within the investigated sample spot there is a thickness distribution rather a constant thickness.

SCOUT Sb2S3 model

In order to reduce the reflectance in the UV one needs to introduces surface roughness (which acts like an antireflection layer at small wavelengths).

Optical constant model composed of - constant - far UV oscillator (harmonic oscillator) - 2 OJL interband transitions - 1 Kim oscillator - Drade model

The layer stacks for R and T differ in the thickness of the main Sb2S3 layer. This is of type "Thickness averaging" which means that it averages out interference patterns for slightly different thicknesses. This reduces the amplitude of interference structures in the spectra. Very likely the thickness of your layer differs from positon to position, and within the investigated sample spot there is a thickness distribution rather a constant thickness.

A small shift in the interference patterns for R and T noticed. Very likely the spectra have not been measured at exactly the same spot on the sample.

SCOUT Sb2S3 model

thickness.

Optical constant model composed of - constant - far UV oscillator (harmonic oscillator) - 2 OJL interband transitions - 1 Kim oscillator - Drude model

The layer stacks for R and T differ in the thickness of the main Sb2S3 layer. This is of type "Thickness averaging" which means that it averages out interference patterns for slightly different thicknesses. This reduces the amplitude of interference structures in the spectra. Very likely the thickness of your layer differs from position to position, and within the investigated sample spot there is a thickness distribution rather a constant

Allowing different thickness values for R and T gives the best solution up to now

		Damping	Carrier			
	Plasma frequency	constant (Ω_{τ}) cm	concentration (n)	Mobility (µ)	Resistivity (p)	Conductivity (o)
Film	(Ω_p) cm ⁻¹	1	cm ⁻³	cm ² /Vs	Ωcm	Ω^{-1} cm ⁻¹
0at%						
Pd:SnO ₂	13809.9639	343585.625	6.38024E+22	5.69E-03	0.1080051	9.258821481
1.88at%						
Pd:SnO ₂	23835.9805	631534.25	1.90072E+23	3.10E-03	0.0666385	15.00633867
3.68at%						
Pd:SnO ₂	23082.4746	456856.8125	1.78245E+23	4.28E-03	0.0514055	19.45316349
5.42at%						
Pd:SnO ₂	97.6613	160.2429	3.19078E+18	1.22E+01	1.0072289	0.992822968
7.10at%						
Pd:SnO ₂	8.6206	1658.2019	2.48615E+16	1.18E+00	1337.6941	0.000747555

Table 1: Calculated values of carrier concentration (n), mobility (μ), resistivity (ρ) and conductivity (σ) of the undoped tin oxide and palladium doped tin oxide films

Enhancing your SCOUT work

- Customizing SCOUT for routine spectroscopy using Views and the toolbar
- Inspecting the influence of model parameters on optical spectra
 - Parameter variation action
- Working with databases
 - Contains materials with pre-defined optical constants and predefined layer stacks.
- Programming SCOUT by OLE automation
 - Create automated reports and batch operations with the Windows Scripting Host (WSH), MS Word, MS Excel, LabView or any other OLE automation controller.

Software for simulation and modeling

- Scout software
- Crystallography software
- DFT codes
- SCAPS software

Crystallography Software

List at least five crystallography software that you are familiar with.

Crystallography Software

List at least five crystallography database that you are familiar with.

Crystallography Software

List at least five crystallography software that you are familiar with. (IUCr) Crystallographic software list

Crystallography Software List at least five crystallography database that you are familiar with. <u>https://www.iucr.org/resources/data/databases</u>

What is a crystallographic database?

- They usually include:
 - Bibliographic data
 - Crystallographic, chemical and experimental information
 - Atomic coordinates
- What makes a crystallographic data special?
 - Standard agreed file format
 - Every published structure is added to the appropriate database
 - There are established curated databases rather than just collections of data with some level of quality control through processing & validation
 - They enable you to learn from the wealth of data they contain

FIZ Karlsruhe

Leibniz Institute for Information Infrastructure

bilbao crystallographic server

BCS: Bilbao Crystallographic Server of crystallographic symmetry information

BMCD: Biological Macromolecule Crystallization Database

Crystallography Open Database: Open-access collection of crystal structures of organic, inorganic, metal-organic compounds and minerals, excluding biopolymers

CSD: Cambridge Structural Database of organic and metal-organic structures tructural science

ICSD: Inorganic Crystal Structure Database

NAKB: Nucleic Acids Knowledge Base (successor to the Nucleic Acid Database NDB)

The Pauling File: Inorganic Materials Database containing Phase Diagram, Crystal Structure and Physical Property entries

PDB: Protein Data Bank

PDF: Powder Diffraction File of the International Centre for Diffraction Data

Refcodes

What is JEKNOC16?

- A CSD Refcode
- A database reference code
- Containing 6-8 characters
- Used to identify entries in the CSD

Refcode families

- The same substances are assigned the *same* 6 letter code plus an additional 2 numbers
 - Polymorphs
 - New determinations or re-refinements of the same substance
 - Determinations at different temperatures/pressures
- Stereoisomers or different solvates, co-crystals, etc are assigned *different* refcode families

Some of my favourite refcodes are: KITTEN, BATMAN, DISNEY, GAUTAM, GLYCIN

ICDD Code: 00-027-1402 Silicon ICSD Code: ICSD:028767 Uranium Oxide

$I_{hkl} \propto |F(hkl)|^2$

CSD deposition workflow looks for the

- _pd_proc_ls_prof_wR_expected
- _pd_proc_ls_prof_R_factor
- _pd_proc_ls_prof_wR_factor

• Powder CIF dictionary: https://www.iucr.org/resources/cif/dictionaries/cif_pd

WHAT INFORMATION IS IN A POWDER PATTERN ?

From: Dinnebeir ISCoC Erice School, 2024

"Total" scattering = elastic incoherent (diffuse) scattering + elastic coherent (Bragg) scattering

HOW TO MODEL A POWDER PATTERN: - THE RIETVELD FORMULA -

From: Dinnebeir ISCoC Erice School, 2024

THE RIETVELD FORMULA

From: Dinnebeir ISCoC Erice School, 2024

Methods for QPA with XRPD

- Two categories:
 - Single peak intensities («traditional methods»)
 - Full profile fitting (Rietveld method)
- Absorption-diffraction method
 - External standard method (Klug equation)
 - Methods where mass absorption coefficient is known or can be determined
- Ispiking method]
- Internal standard method
 - "Reference Intensity Ratio" (RIR) method
 - Generalized, normalized [and with constraints] RIR
- The Rietveld method
 - standardless
 - with internal standard addition
 - with PONKS (Partial Or No Known Crystal Structure)

Some programs for the Rietveld method

Program name	Website
FULLPROF SUITE	www.ill.eu/sites/fullprof/php/downloads.html
GSAS + EXPGUI	subversion.xray.aps.anl.gov/trac/EXPGUI
GSAS-II	subversion.xray.aps.anl.gov/trac/pyGSAS
HIGH SCORE PLUS (\$)	www.malvernpanalytical.com
MAUD	maud.radiographema.eu/
PDXL (\$)	www.rigaku.com
PROFEX (BGMN)	profex.doebelin.org/
QUANTO	www.ba.ic.cnr.it/softwareic/
RIETAN-FP·VENUS	fujioizumi.verse.jp/download/download_Eng.html
SIROQUANT (\$)	www.siroquant.com/
TOPAS ACADEMIC (\$)	www.topas-academic.net/
TOPAS (\$)	www.bruker.com
(\$) = commercial;	Act

Software for Rietveld analysis

FullProf Suite

 The FullProf Suite (for Windows and Linux) is formed by a set of crystallographic programs (FullProf, WinPLOTR, EdPCR, GFourier, etc...) mainly developed for Rietveld analysis (structure profile refinement) of neutron (constant wavelength, time of flight, nuclear and magnetic scattering) or X-ray powder diffraction data collected at constant or variable step in scattering angle 2theta.

https://www.ill.eu/sites/fullprof/

Derivative Difference Minimization Program

- Program for crystal structure analysis from powder diffraction data by making use of either Rietveld or Derivative Difference Minimization (DDM) method
- Does not require the background line modeling
- In the DDM method the refinement is aimed not at minimizing the absolute difference between the experimental and calculated profiles but at minimizing the oscillations (or curvature) of the difference curve.

Maintained by Leonid Solovyov, Institute of Chemistry and Chemical Technology, Krasnoyarsk

https://sites.google.com/site/ddmsuite/home

From: Software available for reitvelde refinement by Peter Tzvetkov

📕 Al1	🞐 Al15.ddm - Notepad								
<u>File E</u> dit	Eile Edit Format View Help								
New C Al151 2 1.54 20 0 10 .00	compour n05(w0 5 2 060 1. 0.10 (0 037E-1 1.00 0000 0.(nd)4)3_Riet 1 0 .54444).50 0.50 3.000 0.0000E+ 0.0 .0000)0	veld.dat 0 0 1 0 0.500 9 0.50 1. 1.000 0 0.0000 0 0.0000 0 0.000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre><- JOB N <- IWP I 000 0.000 000 0.000 00 0.000 00 0.0 00 0.0 00 0.0 00 0.0 00 0.0</pre>	PR NPH NBC PL IPC MAT 0 1.000 1 <- MCYCLE <- NDEC M 0 0.00000 0 0.00 .00000 0 0.00	NEX NSC IN NXT LS1 LS 80.000 0 E EPS RELAX IAXS WDDM C <-DISP[3] .00000 00	S IPR ISZ 2 LS3 LS4 .000 10.0 [4] DDM IWGHT ABSORP[3] 0.00	
90936	0-ICSD	0 0.00	0.00 (0.00 0.0	10 <-	NATOM TEUR	NDPAR PRE	E(hkl) PARS	
P n c All	a Al	0	× 468306 11.00	0.378863 21.00	z 0.246812 31.00	Biso 0.000000 0.00	N A 4.82211 41.0000	nis Adist 0 2.200	
In1	In	0	.468306	0.378863	0.246812	0.00000	3.17789	0 2.200	
w 1	w	0	.250000	0.000000	0.473196	0.000000	4.00000	0 3.000	
w 2	W	0	118221	0.355235	0.394383	0.000000	8.00000	0 2.200	
01	0	0	0.095143	0.135760	0.076048	0.000000	8.00000	0 0.000	
02	0	0	1.132780	0.069468	0.366380	0.000000	8.00000	0 0.000	
03	0	0	.008207	0.251898	0.319882	0.000000	8.00000	0 0.000	
04	0	0	.334987	0.405567	0.082287	0.000000	8.00000	0 0.000	
05	0	0	.064324	0.479474	0.326895	0.000000	8.00000	0 0.000	
06	0	0	. 302662	0.336590	0.358630	0.000000	8.00000	0 0.000	
. 327	7E-05	2.6965	5	1.00	1.00	0.00	<- Scale,	Overall B	
0.56	1.00 85E+0	2937E-	1 0.7269	9E-2 0.0000	E+0 0.0000	E+0 0.0000E	E+0 <- U	VWZXY	
9.	27953 1.00	12.8131 1.0	0 1 7 9.17	L.00 0 7945 90.00 L.00 0	000 90.00 000 90.00	000 90.000 000 90.000	00)00 0 <- L 00	attice LAUE	
0.	00000	0.0000	0.00			000 <- Pref	.0r[2] Asy	mm[3]	
0.54	35E+0	0.0000E+	ŏ 0.000)E+0		<- P	eak Shape	NA, NB, NC	
0.00	0000000	0.000000	1				<- FWHM	min F₩HMmax I/	ANS
0.00	0.00	U.0000E+ 0.0	0 0.0000	JE+0 0.0000).00 0	E+0 0.0000	E+0 0.0000E	:+0 <- Pre† 00	.Or.Ellips	
0.00	0.000000000000000000000000000000000000	0.0000E+ 0.0	0 0.000)E+0 0.0000).00 0	E+0 0.0000	E+0 0.0000E	+0 <- Anis 00	o-Size	
0.00	00E+0	0.0000E+)E+0 0.0000)000 0.0	E+0 0.0000	E+0 0.0000E	E+O <- Anis	o-Strain	

The General Structure Analysis System

- GSAS is a comprehensive system for the refinement of structural models to both x-ray and neutron diffraction data
- GSAS has been created by Allen C. Larson and Robert B. Von Dreele of Los Alamos National Laboratory
- GUI developed by Brian Toby
- Crystallographic analysis
- Quantitative phase determination
- Texture mapping
- Stress-strain measurements

https://subversion.xray.aps.anl.gov/trac/EXPGUI http://www.aps.anl.gov/Xray_Science_Division/Powder_Diffraction_Cry stallography/

76 C.	/lachiar	/gsas/re	strain/leb	ail/LEI	BAIL.EXP							- 🗆 X
File	o Opti	ons P	owder	Xtal	Graphs	Results	Calc Impo	ort/Exp	port			Help
ехр	nam e	expedt	genles	powp	ref powple	ot Istview	liveplot					
ſĽ	S Contr	ols P	hase [F	listog	ram Scal	ing Profi	le Const	raints	MD P	ref Orient	SH Pref Orient	1
Ph	ase:	Rep	lace				title: Tetra	icyclin	e			
	Add				a 10	.995250	b 12.87	1050	c [10	5.738880	Refine Cell	
P	hase				α 90	.0000	β 90.00	00	y 90	0.0000	Cell damping	0
	* name	type	ref/da	ump	fractio	nal coordi	inates b	ult Or	cupancy	y Viso		
	1 (11	a .	X6 10	-	0.929783	0.422083	0.001289	4	1.0000	0.02754		-
	2 02	0	X6 U0	ō	0.007555	0.371058	0.431458	4	1.0000	0.01643		
	3 03	0	X6 U0	0	0.155148	0.447901	0.125380	4	1.0000	0.01643		
	4 04	0	X6 U0	0	0.755141	0.638623	0.074322	4	1.0000	0.01642		
	5 05	0	X6 U0	0	0.374096	0.719269	0.192949	4	1.0000	0.01642		
	6 0 6	0	X6 U0	0	0.580401	0.597647	0.296329	4	1.0000	0.01642		
	7 07	0	X6 U0	0	0.349220	0.607526	0.352885	4	1.0000	0.01642		
	8 08	0	X6 U0	0	0.169138	0.498296	0.386187	4	1.0000	0.01642		
	9 0 9	0	X6 U0	0	0.663782	0.812645	0.040366	4	1.0000	0.01642		
1	0 N10	н	X6 U0	0	0.746014	0.444100	0.140920	4	1.0000	-0.00035		<u> </u>
	Set refinement options: atoms 1-33 Add New Atoms											
	Refinement Flags: 🔽 X 🔽 U 🧮 F Damping: X 6 🛶 U 0 🛶 F 0 🛶 Xform Atoms											
	[
_							L					

GSAS-II

- Open source Python project that addresses all types of crystallographic studies
- Include pretty much all the functionality of GSAS
- Extends the capabilities of GSAS and EXPGUI
- Area-detector data calibration
- Powder diffraction indexing
- Structure solution

https://subversion.xray.aps.anl.gov/trac/pyGSAS https://www1.aps.anl.gov/Science/Scientific-Software/GSASII

Material Analysis Using Diffraction

- Written in Java can run on Windows, MacOSX, Linux, Unix
- Easy to use, every action is controlled by a GUI
- Ab-initio structure solution integration, from peak finding, indexing to solving
- Microstructure analysis (size-strain, anisotropy, planar defects, turbostratic disorder and distributions included)
- Texture and residual stress analysis
- Thin film and multilayer aware; film thickness and absorption models
- Works with TEM diffraction images and electron scattering
- Very well documented with video tutorials in YouTube

Maintained by Luca Lutterotti, Università degli Studi di Trento.

Bremen Rietveld Analysis and Structure Suite

- It is a suite of programs covering tasks from raw data display over Rietveld refinement
- Structure completion via Fourier and Grid search methods
- Stress/ strain and crystallite size analysis
- Quantitative phase analysis
- Crystal chemical calculations

Maintained by:

Thomas Messner, Johannes Birkenstock, Reinhard Fischer, Michael Wendschuh, Christoph Vogt

http://www.brass.uni-bremen.de/

Last version 2.0 (2006).

JANA

- Jana2006 is a crystallographic program focused to solution, refinement and interpretation of difficult, especially modulated structures
- Built-in charge flipping algorithm
- Commensurate and composite structures
- Transformations for group-subgroup relations and commensuratesupercell relations
- Magnetic structures

Maintained by: Vaclav Petricek, Michal Dusek, Lukas Palatinus

Development of Jana is continuously supported by Grant Agency of the Czech Republic and Academy of Sciences of the Czech Republic. Thanks to this support we can make the program freely available to everybody.

http://jana.fzu.cz/ ; http://www.xrayforum.co.uk/jana

http://wwwba.ic.cnr.it/content/expo

EXPO2014

- Solve crystal structures by powder diffraction data by using reciprocal as well as direct space methods
- Indexing, space group determination, estimation of the integrated intensities, ab-initio and non ab-initio structure solution
- Rietveld refinement
- The EXPO2014 graphical interface has been optimized and made very user friendly

Maintained by Institute of Crystallography, Bari.

http://wwwba.ic.cnr.it/content/expo

BGMN

- Correction of strong and multiple preferred orientation with spherical harmonics
- Pre-defined models for microstructure related line broadening effects
- Phase analysis of disordered layer silicates/clays
- Calculation of amorphous content by an internal standard method
- Structure interpreter language for free definition of new parameters and constraints between parameters

Sep 9 2010 Dr. Joerg Bergmann passed away.

http://www.bgmn.de/

From: Software available for reitvelde refinement by Peter Tzvetkov

Topas (DIFFRAC.SUITE Topas)

- Single Line Fitting
- Indexing (LSI and LP-Search methods)
- Whole Powder Pattern Decomposition
- Ab-initio structure determination in direct space from powder and single crystal data
- Rietveld structure refinement
- Magnetic structure

Written by Alan Coelho for Bruker-AXS.

http://www.bruker.com/


```
Mn1-sint3.inp - Notepad
File Edit Format View Help
r_exp 1.954 r_exp_dash 4.479 r_wp 6.703 r_wp_dash 15.366 r_p 4.900 r_p_dash 14.982 weighted_Durbin_Watson 0.270 gof 3.430
do_errors
xdd "Mn1-sint3-Rietveld.raw"
        r_exp 1.954 r_exp_dash 4.479 r_wp 6.703 r_wp_dash 15.366 r_p 4.900 r_p_dash 14.982 weighted_Durbin_watson 0.270 go
        bkg @ 2014.43544`_4.56687318 -856.414326`_6.97860072 746.486031`_5.60792133 -368.580635`_5.34107938 241.479248`_5.2791
        LP_Factor(0)
        Zero_Error(@, -0.00601`_0.00067)
        Rp 217.5
        Rs 217.5
        slit_width( 0.1)
        Divergence(0.3)
        axial_conv
                filament_length 12
                sample_length 15
                receiving_slit_length 12
                primary_soller_angle 2.3
                secondary_soller_angle 2.3
                axial_n_beta 20
                axial_del 0.0053
        lam
                ymin_on_ymax 0.001
                la 0.653817 lo 1.540596 lh 0.501844
                la 0.346183 lo 1.544493 lh 0.626579
        str
                C5_L(@, 77.49377`_8.13728)
                r_bragg 2.52830135
                scale @ 0.000399799514`_1.8e-006
                phase_name "PbBaFeMnO5-sint3"
                MVW( 2144.869, 485.654679`_0.0191209841, 100.000`_0.000)
                space_group Pnma
                Phase_LAC_1_on_cm( 1735.49463`_0.06833)
                Phase_Density_g_on_cm3( 7.33369`_0.00029)
Out_CIF_STR(Mn1-sint3.cif)
                a @ 5.80033`_0.00012
                b @ 3.91074`_0.00010
                c @ 21.40995`_0.00047
                site Pb1 num_posns 4 x @ 0.04737`_0.00034 y 0.25 z @ 0.57047`_0.00009 occ Pb+2 1 beq @ 1.6037`_0.0572
site Ba1 num_posns 4 x @ 0.55885`_0.00048 y 0.25 z @ 0.68507`_0.00014 occ Ba+2 1 beq @ 1.3530`_0.0691
                site Fe1 num_posns 4 x @ 0.45567`_0.00127 y 0.25 z @ 0.44825`_0.00024 occ Fe+3 1 beq @ 0.4360`_0.1533
                site Fe2 num_posns 4 x @ 0.93408`_0.00124 y 0.25 z @ 0.31408`_0.00037 occ Fe+3 1 beq @ 1.5821`_0.1516
                site 01 num_posns 4 x @ 0.94114`_0.00325 y 0.75 z @ 0.31941`_0.00092 occ 0-2 1 beq 01 1.1450`_0.1980
                site 02 num_posns 4 x @ 0.65434`_0.00366 y 0.25 z @ 0.25725`_0.00105 occ 0-2 1 beg =01; : 1.1450`_0.1980
                site 03 num_posns 4 x @ 0.21275`_0.00331 y 0.25 z @ 0.39240`_0.00107 occ 0-2 1 beg =01; : 1.1450`_0.1980
                site 04 num_posns 4 x @ 0.71715`_0.00331 y 0.25 z @ 0.38431`_0.00104 occ 0-2 1 beq =01; : 1.1450`_0.1980
                site 05 num_posns 4 x @ 0.42105`_0.00382 y 0.75 z @ 0.45658`_0.00086 occ 0-2 1 beg =01; : 1.1450`_0.1980
prm p1 0.00390`_0.01286 min 0.0001
spherical_harmonics_hkl sh
sh_order 6 load sh_Cij_prm {
                              !sh_c00 1.00000
                        V00
                        v20 sh_c20 -5.09477`_16.85446
```

111

Topas academic

- Available to degree-granting institutions
- Academic comprises all the functionality of BRUKER-AXS TOPAS
 operating in Launch mode

http://www.topas-academic.net/

John S.O. Evans, Durham University https://community.dur.ac.uk/john.evans/topas_academic/topas_main .htm

X'pert Highscore Plus

- Automated and semi automated Rietveld analysis
- Pawley and Le Bail fits
- Indexing by Dicvol, Treor, Ito and McMaile
- Integrated charge flipping algorithm and electron density display

• www.panalytical.com

Rietan

http://fujioizumi.verse.jp/download/download_Eng.html

Rietan-GUI http://physonit.jp/en/services/rietan-gui/

SrRietveld

- The program is distributed under the BSD License
- Makes use of the FullProf and GSAS Rietveld refinement engines

http://www.diffpy.org/doc/srrietveld/

From: Software available for reitvelde refinement by Peter Tzvetkov

Profex

- Profex is a graphical user interface for Rietveld refinement of powder X-ray diffraction data with the program BGMN
- Generic support for FullProf.2k as an alternative Rietveld backend to BGMN
- Profex runs on Windows, Linux, and Mac OS X

http://profex.doebelin.org/

Pict Options Pict Options M I bbserved V I colculated V I colculated V I Background V EBackground V EBackground V EPICATE Constant (CuKa with Graphite monochromator) POL-sqr (cos(26.6*p1/180)) pi=2*acos(0) V Polarization (CuKa with Graphite monochromator) POL-sqr (cos(26.6*p1/180)) pi=2*acos(0) V I UF N Monorite V I UF N Maximum Angle (2theta) W MINI-15 W Result list output UIST=lesson6-ex4-file1.lst V Seall list output UIST=lesson6-ex4-file1.lst V Seall parameters for zero point and sample displacement PARAM(1]=EPSI=0-0.010.01 alpha3ratio=0.025 betaratio=0 NTHREADS=2 PROTOKOL=Y SAVE=N Sum=corundum.fluorite+lif GOAL[3]=-liorite.sum GOAL[3]=-l	🔀 💿 File	Edit View Run Ins	Profex - 3.3.0	\odot \odot \otimes
Pict Options @BB Show Scan * Teoretical instrumental function V Iobserved V Icalculated V Iodiference W Coundum,Al203 V Fluorite V Lif V Exection (CuKa with Graphite monochromator) POL=sqr(cos(26.6*pi/180)) J=2*2cos(0) % Havelength W Numma Angle (Ztheta) WHN15 % Result list output UTST=lesson6-ex4-file1.str % Result list output UTST=0.00.4x.file1.str % Measured data WAIL1]=Lesson5-ex4-file1.str % Result list output UTST=0.00.4x.file1.str % Result list output UTST=0.00.4x.file1.str % Bestington 0.00.4x.file1.str % Baston6-ex4-file1.str % Result 0UTPUT=lesson6-ex4-file1.str % Baston6-ex4-file1.str % Dagram output 0TAGRAMM-lesson6-ex4-file1.dta % Global parameters for zero point and sample displacement PARAM[2]=EPS2=00.0140.01 alpha3r			▋ 🔏 📄 🖉 🍣 🛹 🌡 💠 💳 🕑 🕑 📵 🛛 🔍 -	
Show Scan * Theoretical instrumental function V Iobserved V Icalculated V Iobserved V Idfkrence Background * Wavelength V LAMBDA-CU Pol=sar(cos(26.6*pi/180)) pi=2*acos(0) * Phases STRUC[1]=Coundum.str STRUC[2]=Fluorite.str Steared data VAL[1]=lesson5-ex4-file1.xy * Minum Angle (2theta) WMIN=15 * Result list output LIST=lesson6-ex4-file1.lst * Peak list output DIAgram output DIAgram output DIAgram output DIAgram output DIAGRAMM=lesson6-ex4-file1.par * Olagram output DIAGRAMM=lesson6-ex4-file1.par * Diagram output DIAGRAMM=lesson6-ex4-file1.par * Biagram output PARAM[2]=EPS2=000_01^{0.01} PARAM[2]=FS2=00_0_0.01^{0.01} PARAM[2]=Floorite/sum GOAL[1]=corundum/sum GOAL[2]=floorite/sum GOAL[2]=floorite/sum	Plot O	ptions	🔍 lesson6-ex4-file1.dia 😣 lesson6-ex4-file1.sav 😣 lesson6-ex4-file1.lst 😣	
M_{2} M_{2	Show	I observed I calculated I difference Background Corundum_Al2O3 Fluorite LiF	<pre>% Theoretical instrumental function VERZERR=pw1800-fds.geq % Wavelength LAMBDA=CU % Polarization (CuKa with Graphite monochromator) POL=sqr(cos(26.6*pi/180)) pi=2*acos(0) % Phases STRUC[1]=corundum.str STRUC[2]=Fluorite.str STRUC[3]=LiF.str % Measured data VAL[1]=lesson5-ex4-file1.xy % Minimum Angle (2theta) WMIN=15 % Result list output LIST=lesson6-ex4-file1.lst % Peak list output OUTPUT=lesson6-ex4-file1.par % Diagram output DIAGRAMM=lesson6-ex4-file1.dia % Global parameters for zero point and sample displacement PARAM[1]=EPS1=00.01^0.01 PARAM[2]=EPS2=00.01^0.01 alpha3ratio=0.025 betaratio=0 NTHREADS=2 PROTOKOLL=Y SAVE=N sum=corundum+fluorite+lif GOAL[1]=corundum/sum GOAL[2]=fluorite/sum GOAL[2]=fluorite/sum GOAL[2]=fluorite/sum GOAL[3]=lif/sum</pre>	a: 2.009 Å

🚹 R	ietica		×
File	Edit Project Model <u>Rietveld</u> Information <u>H</u> elp		
	🖆 🖬 🖆 🎒 🖾 👗 🛍 🛍 🗠 🖙 🕄 🔡 🎚	🖾 🐝 I 👓 🔤 🗁 📠	
P	- 🛎 🗟 🖬 -		
	lefine		
_S [M Phases	Eile Edit Chart Hele	ĬX
11	Phase1 Phase2		
1	Title: *** CAF2 ***		
R	Space Group: F M 3 M 💌 S.G. I	CAF2 AT ROOM TEMP IN AIR MAY 90 1.5A 1E4 6HB	٦
1	Phase Scale: 0.568946 V Z: 1	2,500 -	
	Atoms:	2,000	
	Atom Label Atom Tupe x v	1,500-	
ī	CA CA 0.00000 🗆 0.00000		
ŕ	F1 F 0.25000 🗖 0.25000		
	🜆 Histograms		-
TL	Histogram1		
10	Neutron CW Data	omial 5th order	
	X-ray Data	6 terms C 12 terms	
	X-ray Calculation	Value 100	
	Neutron CW Calc BO	48.60400	
4	Neutron TOF Calc B1	-0.12747 🔀 d: Phase: hkl:	1
	Zero: 0.105		
	Wavelength 1: 1.5	ded Regions:	
	Start Wavelength 2: 1.5	art Ston A CCP M Ri & A 23.4	11
	http://www.rietica.org	rg/index.html	
Xfit-Koalariet

http://www.ccp14.ac.uk/tutorial/xfit-95/getxfit.htm

DBWS-9807a

 http://www.ccp14.ac.uk/ccp/webmirrors/dbws/downloads/young/download_dbws.html

DBWSTOOL

From: Software available for reitvelde refinement by Peter Tzvetkov

Software for simulation and modeling

- Scout software
- Crystallography software
- DFT codes Prof. Halima Zaari
- SCAPS software

SCAPS-1D (Solar Cell Capacitance Simulator)

simulation programme developed at the Department of Electronics and Information Systems (ELIS) of the University of Gent, Belgium.

Alex Niemegeers, Marc Burgelman, Koen Decock, Stefaan Degrave, Johan Verschraegen

https://scaps.elis.ugent.be/

Research article

59 Ce Press

Numerical study of copper antimony sulphide (CuSbS₂) solar cell by SCAPS-1D

Nancy Obare^{a,*}, Wycliffe Isoe^a, Amos Nalianya^a, Maxwell Mageto^{a,b}, Victor Odari^{a, b}

^a Department of Physics, Masinde Muliro University of Science and Technology, P.O Box 190-50100, Kakamega, Kenya b Materials Research Society of Kenya, P.O. Box 15653-00503, Nairobi, Kenya

Numerical study of lead free CsSn_{0.5}Ge_{0.5}I₃ perovskite solar cell by SCAPS-1D

^a Department of Physics, Masinde Muliro University of Science and Technology, Kakamega 50100, Kenya ^b Department of Chemistry, Masinde Muliro University of Science and Technology, Kakamega 50100, Kenya

Africa Journal of Physical Sciences Vol. 3, pp. 39-54, February 2019 http://journals.uonbi.ac.ke/index.php/ajps/index ISSN 2313-3317

Check for

AFRICA JOURNAL OF PHYSICAL SCIENCES

Device Simulation of Sb₂S₃ Solar Cells by SCAPS-1D Software

ODARI, Victor ^{1,2a*}, MUSEMBI, Robinson ^{1, b} and MWABORA Julius ^{1, c}

¹Department of Physics, School of Physical Sciences, University of Nairobi, P.O. Box 30197-00100 Nairobi, Kenya.

²Department of Physics, School of Natural and Applied Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190-50100 Kakamega, Kenya.

Results in Optics 12 (2023) 100470

Contents lists available at ScienceDirect

Results in Optics

journal homepage: www.sciencedirect.com/journal/results-in-optics

Monolith Cs_{1-x}Rb_xSnI₃ perovskite – silicon 2T tandem solar cell using SCAPS-1D

Emmanuel Akoto^{a,*}, Victor Isahi^a, Victor Odari^{b,c}, Christopher Maghanga^{a,c}, Francis Nyongesa

* Department of Physical and Biological Sciences, Kabarak University, P.O. Box Private Bag-20157, Kabarak, Kenya ^b Department of Physics, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega, Kenya ^c Materials Research Society of Kenya, P.O. Box 15653-00503, Nairobi, Kenya

^d Department of Physics, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya

OghmaNano (Organic and hybrid Material Nano Simulation tool)

https://www.oghma-nano.com/