

Mohammed V university, Faculty of sciences Rabat Laboratoire de Matière Condensés et Sciences Interdisciplinaires

Density Functional Theory: Theoretical concept and application

Pr: ZAARI Halima

8th Biennial African School of Fundamental Physics and Applications (ASP 2024)

Team-work:

- Solar Energy Solar Material Energy Storage Magnetic, Optical and Electronic Materials Wind Energy Hydrogen and storage Energy Efficiency Energy Harvesting
- Computational and modeling materials and applications • 2D-Materials
- Nanostructure and nanomaterials
- Smart Grids
- Complex Systems
 Complex fluid in Microfluidic
 Networks and Traffic
- Laser
- Laser
- Spectroscopy
- Medicinal plant chemistry -

- Software engineering
 Quantum cryptography
 Thermal and energy efficiency
 Physics of Surface and interface

Density Functional Theory: Theoretical concept and application

Problems

Role of science in solving these problems??

2

Solution: **Renewable Energy**

4

Share of Modern Renewable Energy 2009, 2019 and 2020

Solution: Materials sciences

Semi-conductor, insulator, metals Magnetic, or non magnetic...

Solution: Materials sciences

Material sciences : Application

Battery or Energy storage

Photocatalysis-Photovoltaic

Organic contaminants + 'O2- (or OH ') → CO2 + H2O

Spintronic

□ Magnetocaloric Effect

aurabh Shukla, Ramsha Khan, Achlesh Daverey, Synthesis and characterization of magnetic nanoparticles, and their applications in wastewater treatment: A review, Environmental Technology & Innovation, Volume 24, 2021, 101924, ISSN 2352-1864, https://doi.org/10.1016/j.eti.2021.101924.

2. Theoretical approach

How to predict the physical properties without experience??

Decribe the physical properties: optical, transport, magnetic ...

Density Functional Theory

*the choice of Exchange-correlation (XC) functional :LDA or GGA

*wave function (e.g. Gaussian basis functions,

plane wave expansion) and the formalism like pseudopotential or Full potential

$$\rho(\mathbf{r}) = \sum_{i} |\psi_{i}(\mathbf{r})|^{2}$$

$$\frac{-\tilde{\hbar}^{2}}{2m} \nabla^{2} + V_{ion}(\mathbf{r}) + V_{H}(\mathbf{r}) + V_{XC}(\mathbf{r}) \bigg| \psi_{i}(\mathbf{r}) = \varepsilon_{i} \psi_{i}(\mathbf{r})$$

3. Application:

Material sciences : Application

□ 1. Photovoltaic and photocatalysis

UV/solar light irradiation e⁻e⁻e⁻ Conduction Band (CB) Photocatalyst Valence Band (VB) h⁺ h⁺ h⁺

Organic contaminants + 'O2- (or OH ') → CO2 + H2O

2. Magnetocaloric Effect

P

Potential Problems

- Stability
- > The perovskite is not stable

- Toxicity
- > By eliminating the toxicity we lose in efficiency

9

Photocatalysis-Photovoltaic

How can we mitigate the iodine vacant site ?

Band structure of MAPbI₃ and MAPb $_{0.5}$ Sn $_{0.25}$ Ge $_{0.25}$ I₃ in the pure and defective phase

26

Photocatalysis-Photovoltaic

Interaction of water molecule with the hybride perovskite

Pb(50%)Sn(25%)Sn(25%)

Sites	Calculated Adsorption energy (eV)				
	MAPbl ₃	$MAPb_{0.5}Sn_{0.25}Ge_{0.25}I_3$			
CH ₃	-0.40	-0.19			
NH ₃	-0.70	-0.70			
T	-0.24	-0.14			
Pb	-0.56	-0.54			
Ge		-0.48			
Pb(V _{I1} or V _{I3})	-0.54	-0.50			
Pb(V _{I2} or V _{I4})	-0.49	-0.44			

✓ Enhancement of stability

✓ **Reduction of toxicity**

Short-circuit current density of FAPbX₃

and FAPb_{0.5}Sn_{0.25}Ge_{0.25}X_{3.}

Power conversion efficiency

• Power conversion efficiency:

$$\eta = \frac{V_{oc} \times J_{sc} \times FF}{P_{in}} \times 100$$

The calculated bandgap E_g , short-circuit current density J_{sc} , open circuit voltage V_{oc} and power conversion efficiency η of $FAPb_{0.5}Sn_{0.25}Ge_{0.25}X_3$ structures.

Compounds	E_{g}	V _{oc}		J _{sc}	η %	
		E _{loss} (0.7 eV)	E _{loss} (0.5 eV)		E _{loss} (0.7 eV)	E _{loss} (0.5 eV)
FAPb _{0.5} Sn _{0.25} Ge _{0.25} I ₃	0.98	0.28	0.48	31.5	6.17	12
FAPb _{0.5} Sn _{0.25} Ge _{0.25} Br	1.22	0.52	0.72	29	12	17.5
3						
FAPb _{0.5} Sn _{0.25} Ge _{0.25} Cl	1.7	1	1.2	18	15.8	19.3
3						
FAPbl ₃	1.5	0.8	1	20.3	14	17.8
FAPbBr ₃	1.67	0.97	1.17	17.3	14.6	18
FAPbCl ₃	2.14	1.44	1.64	9.6	12.5	14.3

Magnetocaloric effect:

Multiferoic Systems:

Feibig, J. Phys. D 38, R123 (2005) Eerenstein, et al., Nature 442, 759 (2006) Ramesh & Spaldin, Nature Mater. 6, 21 (2006) Cheong & Mostovoy, Nature Mater. 6, 13 (2006)

Hamiltonian : H=-J.Si.Sj – h....

FZ Kassimi, H Zaari, A Benyoussef, A Rachadi, A El Kenz Journal of Superconductivity and Novel Magnetism 35 (9), 2493-2503

Multiferoic system: Magnetocaloric properties

FZ Kassimi, H Zaari, A Benyoussef, A Rachadi, M Balli, A El Kenz Journal of Magnetism and Magnetic Materials 543, 168397

Multiferoic system: Magnetocaloric properties

FZ Kassimi, H Zaari, A Benyoussef, A Rachadi, M Balli, A El Kenz Journal of Magnetism and Magnetic Materials 543, 168397

Photocatalysis

- •Step 1: Absorption of a photon with energy greater than 1.23 eV.
- •Step 2: Excitation of electrons and holes and separating them to migrate to the surface.
- •Step 3: The adsorbed species (water) are reduced and oxidized by electrons and holes.

Selection criteria for the choice of catalyst materials

• The valence and conduction band edge were computing by the following equation:

$$E_{CB}^{0} = \chi(S) - E^{0} - \frac{1}{2}E_{g} \quad (1),$$
$$E_{VB}^{0} = E_{CB}^{0} + E_{g} \quad (2)$$

Selection criteria for the choice of catalyst materials

Optical properties and Photocatalysis

*F. Mezzat & al., Effect of metal and non metal doping of TiO₂ on photocatalytic activities: ab initio calculations, Opt. Quant. Electron. 53 (86) (2021).

Density Functionnel Theory :DFT?? More details

Density Functionnel Theory

First approximations

- Adiabatic (or Born-Openheimer)
 - Electrons are much lighter, and faster
 - Decoupling in the wave function

$\Psi(R_i,r_i) = \theta(R_i).\phi(r_i)$

Nuclei are treated classically

• They go in the external potential

Density Functionnel Theory

Density-functional theory based on Hohenberg-Kohn theorem (1964):

First statement:one-to-one correspondence $\rho_0 \Leftrightarrow v_{ext}$ Second statement:variational principle for ground-state energy: $E[\rho_0] \leq E[\rho]$

Kohn-Sham formalism (1965 – 50 year anniversary!):

Interacting system is mapped onto a fictitious system of non-interacting electrons.

Non interacting electrons: Same Density

=> Back to wave functions, but simpler this time (a lot more though)

(KS1)
$$\left(-\frac{\hbar}{2m}\nabla^{2}+V_{eff}\right)\varphi_{i}(\mathbf{r}) = \varepsilon_{i}.\varphi_{i}(\mathbf{r})$$

(KS2) $V_{eff}(\mathbf{r}) = V(\mathbf{r}) + \int \frac{\rho(\mathbf{r}')}{|\mathbf{r}-\mathbf{r}'|}d\mathbf{r}' + \mu_{xc}[\rho](\mathbf{r})$
(KS3) $\rho(\mathbf{r}) = \sum_{i} |\varphi_{i}(\mathbf{r})|^{2}$
NK.S. equations
(ONE particle in a box really)
Exchange correlation potential

Density Functionnel Theory :DFT??

The exchange and correlation energy functional

 LDA: The xc energy density of the inhomogeneous system in r is locally approximated with that of a homogeneous electron gas with density n(r)

$$E_{\rm xc}^{\rm LDA} = \int d\mathbf{r} \, n(\mathbf{r}) \varepsilon_{\rm xc}^{\rm HEG}(n(\mathbf{r}))$$

· GGA: include the dependence on the gradient of the density

$$E_{\rm xc}^{\rm GGA} = \int d\mathbf{r} \, n(\mathbf{r}) \varepsilon_{\rm xc}(n(\mathbf{r}), \nabla n(\mathbf{r})) = \int d\mathbf{r} \, n(\mathbf{r}) \varepsilon_{\rm xc}^{\rm HEG}(n(\mathbf{r})) F_{\rm xc}(n(\mathbf{r}), \nabla n(\mathbf{r}))$$

 Meta-GGA: include the dependency on the laplacian of the density and kinetic energy density

$$E_{\rm xc}^{\rm mGGA} = \int d\mathbf{r} \, n(\mathbf{r}) \varepsilon_{\rm xc}(n(\mathbf{r}), \nabla n(\mathbf{r}), \nabla^2 n(\mathbf{r}), \tau) \qquad \tau = \frac{1}{2} \sum_i |\nabla \psi_i(\mathbf{r})|^2$$

• Hybrid functionals: include a fraction of Fock exchange

$$E_{\rm xc}^{\rm hyb} = (1 - a_0)E_{\rm x}^{\rm DFT} + a_0E_{\rm x}^{\rm HF} + E_{\rm c}^{\rm DFT}$$

https://www.yambo-code.eu/

Solution : corrective approach

https://www.yambo-code.eu/

Density Functionnel Theory :DFT??

WIEN2k: An APW+lo program for calculating the properties of solids.

P. Blaha, K.Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen and L.D. Marks, J. Chem. Phys. 152, 074101 (2020)

Kohn-Sham Formalism

W. Kohn, L.J. Sham, Phys. Rev. 140, A 1133 (1965)

Density Functionnel Theory :DFT??

Pseudopotential ↔ (F)LAPW+Io

Plane-wave pseudopotentials

- Pseudopotentials ...
- ... enable usage of plane-wave basis.
- Basis set mathematically simple!!
- → simple coding,
- → easy to use.
- Basis set complete.
- Pseudization of wave functions.
- Localized states difficult to treat (oxides, *d* states, *f* states).
- No explicit treatment of core states (Frozen-core approximation).

Full all-electron potential use

(F)LAPW+lo

Augmented plane waves.

Complicated basis set!!

- → complex codes,
- ➔ more difficult to use.

Basis can be incomplete or become overcomplete.

• *True* all-electron wave functions.

Localized states efficiently treated (oxides, *d* states, *f* states).

Explicit treatment of core states.

Conclusion

2D /bulk system: Strucure, lattice parameter

. . .

Formalism : Full potential Approximation: GGA, LDA, LDA+U...

Theoretical results

Experimental result:

Comparer les resultas theorique et experimental Chercher une interpretation physique des resultas

DFT: Summary

```
The ground state energy depends only on the electronic density (H.K.)
```

One can formally replace the SE for the system by a set of SE for noninteracting electrons (K.S.)

Everything hard is dumped into E_{xc}

Simplistic approximations of E_{xc} work ! LDA or GGA

k-vector (or k-point)

See X-Ray diffraction for instance

Also, Fourier transform and Bloch theorem

Band structure

