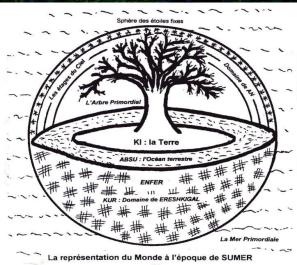
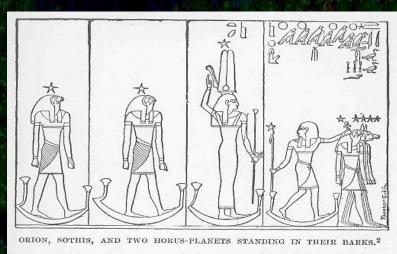
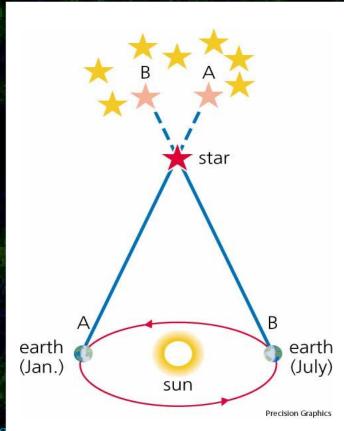

Cosmology – Lecture I – Theory

Mathieu de Naurois
LLR – IN2P3 – CNRS – Ecole Polytechnique
denauroi@in2p3.fr

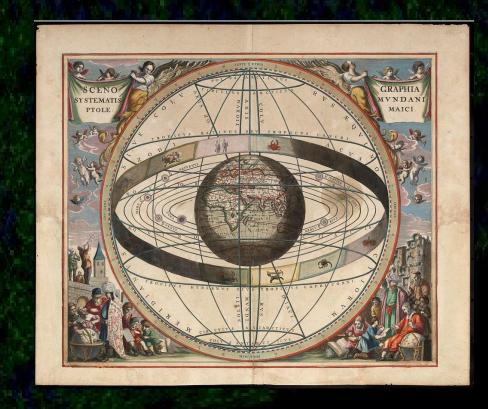




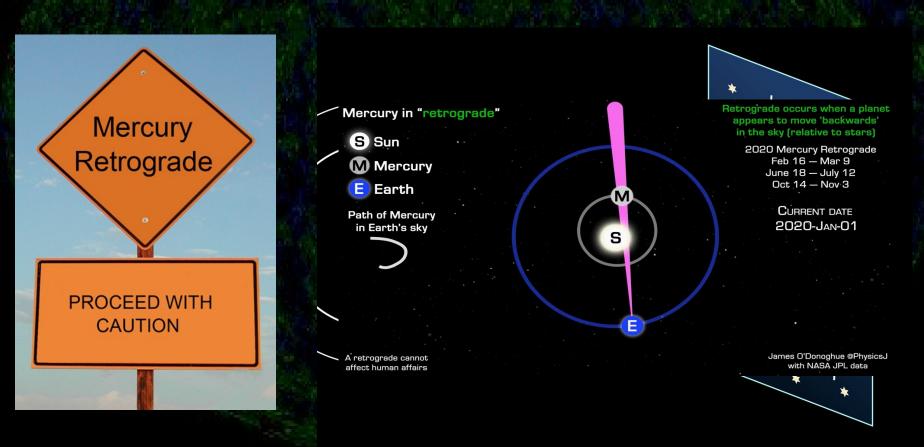
What is Cosmology?


- ☐ Fundamental questions about the origin and destiny of the Universe:
 - ☐ What is the Universe made up of?
 - ☐ How did the matter and structures form in the Universe?
 - ☐ Why is the Universe as we see it?
 - ☐ What is our place in the Universe?
 - □ Did the Universe always exists, and if not, what is its age?
 - ☐ How will the Universe evolve / possibly end?
- Questions that appear in all cultures/religions
- ☐ Many different answers across history

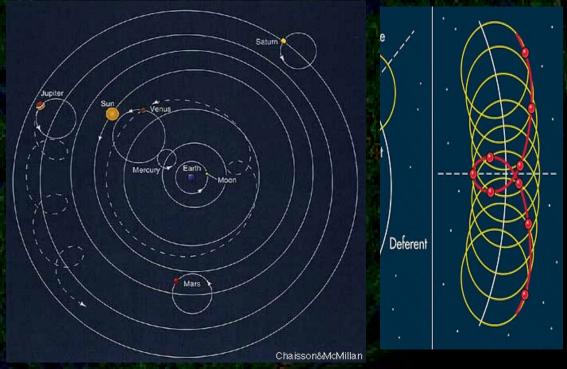
Historical Cosmology


- ☐ Movement of the planets & stars:
 - ☐ During one night
 - ☐ From one night to the other: movement of planets
 - ☐ From one year to the other: apparent movement of stars
 - ☐ From different places on the earth
- ☐ Try to explain all movement in the sky with a consistent model

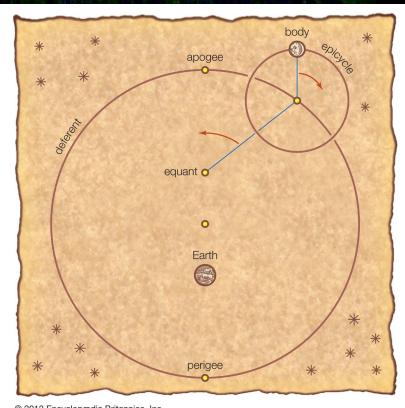
Geocentric Model


- ☐ Ancient Greece (Aristotle)
- ☐ Earth at centre, fixed stars
- "Perfect" orbits: circles around Earth
- □ 10 embedded spheres, last one for stars
- ☐ Was not able to describe the "retrograde motion of planets"

Retrograde motion of planets

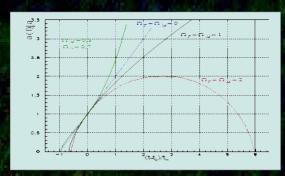

- ☐ Caused by differential orbital velocity, innermost planets orbiting fastest
- ☐ Was important events in astrology!
 - ☐ Avoid signature of contracts during retrograde motion of Mercury
 - Do not by metallic object during retrograde motion of March

Theory of epi-cycles


- ☐ Initiated by Hipparchus (190 120 BC)
- ☐ Complicated movement of planets explained by epi-cycles:
 - ☐ Planets orbit on a circle, whose centre orbits the Earth
 - ☐ Able to describe this retrograde motion

Model of Ptolemy

- □ Refinement of the theory of epi-cycles:
- ☐ Centre of rotation (deferrent circle) shifted with respect to the Earth
 - Accounts for variation of distances (apogee and perigee)
 - ☐ But not for elliptical orbit
- Order of spheres from Earth outward is:
 - 1) Moon
 - 2) Mercury
 - 3) Venus
 - 4) Sun
 - 5) Mars
 - 6) Jupiter
 - 7) Saturn
 - 8) Fixed Stars

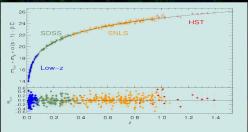

© 2012 Encyclopædia Britannica, Inc.

Major Steps in History

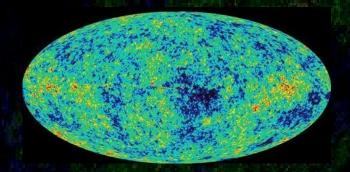
- \Box -3000 : Flat earth, mythological Cosmology (Egypt, ...)
- $\square \sim 100$: Earth at centre (Ptolemy)
- □ 1520 1680 : Sun at centre (Copernic, Newton)
- □ 1917 : Universe is infinite (Einstein)
- □ 1922 : Evolving Universe (Friedman Lemaître)
- ☐ 1964 : Discovery of Cosmological Background. Big Bang model (Penzias & Wilson)
- □ > 2000 : Accelerated expansion (Supernova Ia, ...), modern cosmology

Open questions, observables

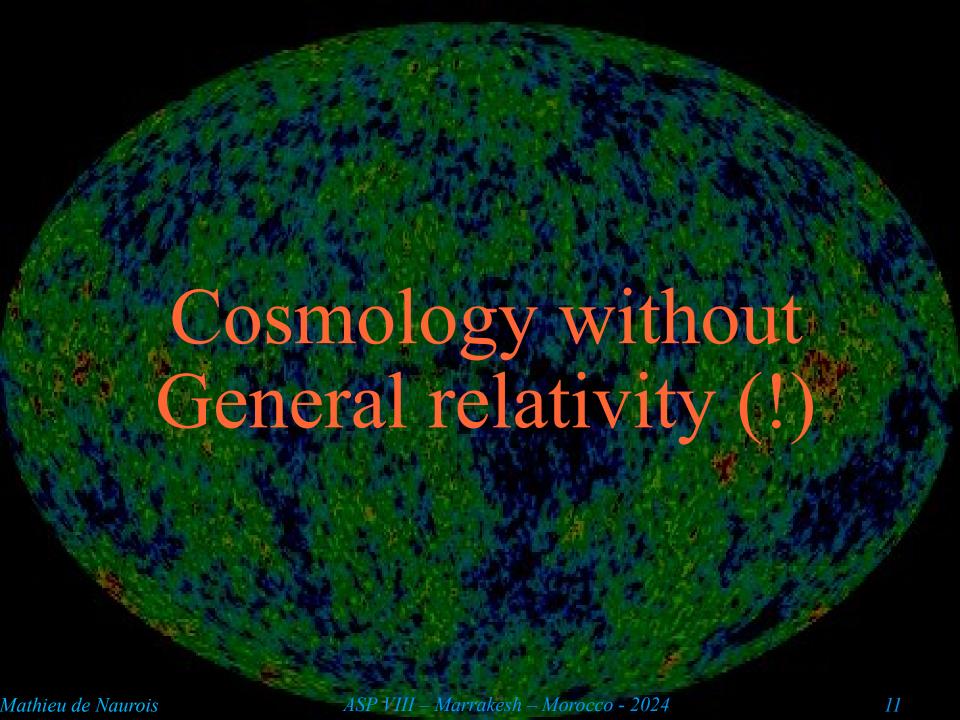
■ Evolution of the Universe

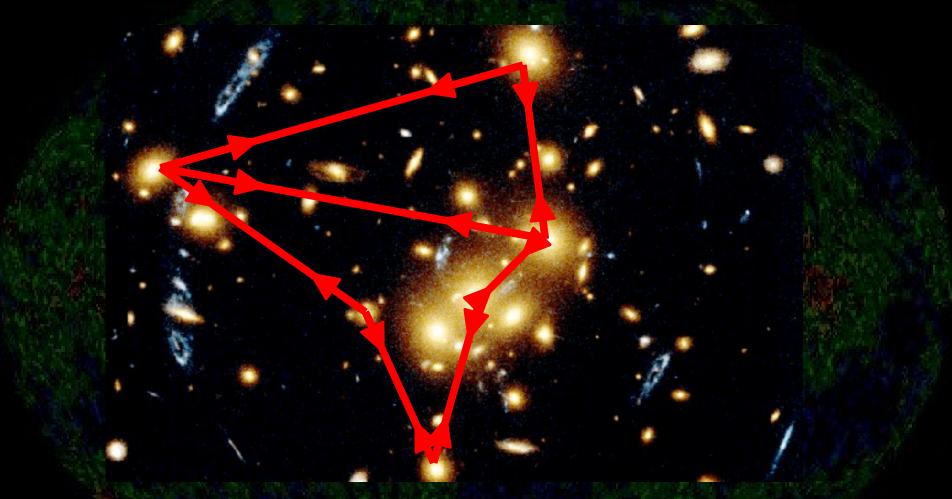


☐ Formation of structures



☐ Big bang Nucleo-synthesis


☐ Supernova 1a: distance versus recession velocity


Cosmological Background

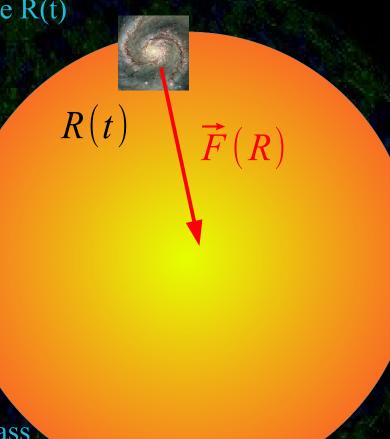
☐ Abundances of light elements

Is a static Universe possible?

- ☐ Take a Universe with many galaxies isotropically distributed
- ☐ Gravity force between each pair of galaxies is attractive
- ☐ Calculate the evolution in a mean gravitational field

Is a static Universe possible?

- \square Consider only one Galaxy at distance R(t)
- Forces:
 - ☐ Radial by symmetry
 - \square Isotropic pressure \rightarrow no net force
 - Radial force due to inner matter (Gauss theorem)


$$\vec{F}(R) = -\frac{GM(R)m}{R^2} \vec{u}_R$$

□ Evolution of a "bubble":

$$\frac{\mathrm{d}^2 R}{\mathrm{d} t^2} = -\frac{G M(R)}{R^2}$$

☐ Matter Universe, conservation of Mass

$$M(R) = \frac{4}{3} \rho_m(t) R^3 = C_{\text{ste}}$$

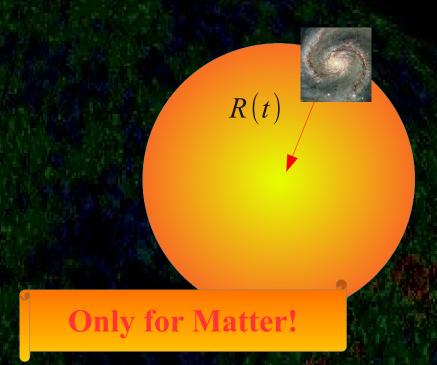
Evolution of a matter Universe

☐ Gravitational force

$$\vec{F}(R) = -\frac{GM(R)m}{R^2} \vec{u}_R$$

☐ Fundamental principle

$$-\frac{\mathrm{d}^2 R}{\mathrm{d} t^2} = -\frac{G M(R)}{R^2}$$


Conservation of mass

$$-M(R) = \frac{4}{3}\rho_m(t)R^3 = C_{\text{ste}}$$

Evolution Equation:

$$\frac{\left(\frac{\ddot{R}}{R}\right)}{\left(\frac{\ddot{R}}{R}\right)} = -\frac{4\pi}{3}\rho_{m}G \quad \Rightarrow \quad \dot{R}\ddot{R} = -\frac{4\pi}{3}(\rho_{m}R^{3})G\frac{\dot{R}}{R^{2}}$$

$$\Rightarrow \quad \left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi}{3}(\rho_{m}R^{3})\frac{G}{R^{3}} + \frac{C}{R^{2}}$$

Evolution of a matter Universe

☐ Evolution Equations:

Velocity

Acceleration

$$\left(\frac{\dot{R}}{R}\right)^2 = M_0 \frac{G}{R^3} + \frac{C}{R^2}$$

$$\left(\frac{\dot{R}}{R}\right)^2 = M_0 \frac{G}{R^3} + \frac{C}{R^2} \qquad q = \left(\frac{\ddot{R}}{R}\right) = -\frac{8\pi G \rho_m}{3} \le 0$$

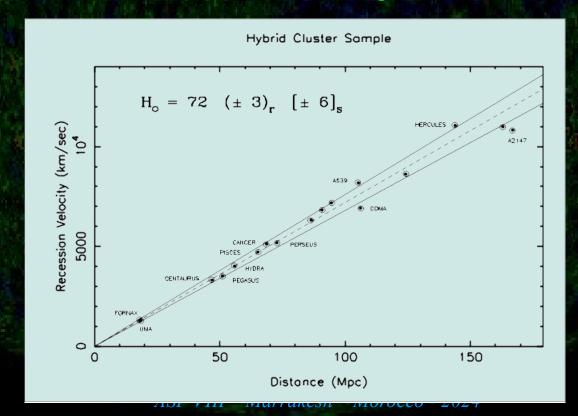
- Expansion of the Universe is decelerated by matter content
- □ C is a constant specific to the Universe (Curvature! see later)
- ☐ This does NOT require general relativity, pure classical mechanics!

NO static matter Universe is possible!!

Interlude – Why no static Universe? Olber's paradox (1758-1840)

- ☐ Imagine a infinite, static Universe existing since ever.
- ☐ Isotropic distribution of Galaxies
- ☐ Light received by a galaxy at distance R scales as 1/R²
- □ Number of galaxies at distance [R, R+dR] scales a R² dR
- ☐ Each slice contribute to ~ same value, integration leads to infinity

The night sky must be White!


Observation – Hubble Law

☐ Galaxies are separating apart at a speed proportional to their distance

$$\frac{\mathrm{d}R}{\mathrm{d}t} = \mathbf{H}_0 R + v_p \quad \Rightarrow \quad \mathbf{H}_0 = \left\langle \frac{\dot{R}}{R} \right\rangle_{t=t_0}$$

Hubble flow

Proper Motion

Evolution of a matter Universe

☐ Rewriting the evolution equations with current value

$$\left(\frac{\dot{R}}{R}\right)^{2} = \frac{8\pi}{3} (\rho_{m} R^{3}) \frac{G}{R^{3}} + \frac{C}{R^{2}} \quad \Rightarrow \quad \mathbf{H}_{0}^{2} = \frac{8\pi}{3} (\rho_{m}^{0} G) + \frac{C}{R_{0}^{2}}$$

- $\square \text{ Critical density } \rho_c = \frac{3 \text{ H}_0^2}{8 \pi G}, \quad \Omega_m = \frac{\rho}{\rho_c}$ Matter

$$\Omega_m = \frac{\rho}{\rho_c}$$

Dimensionless evolution equation:

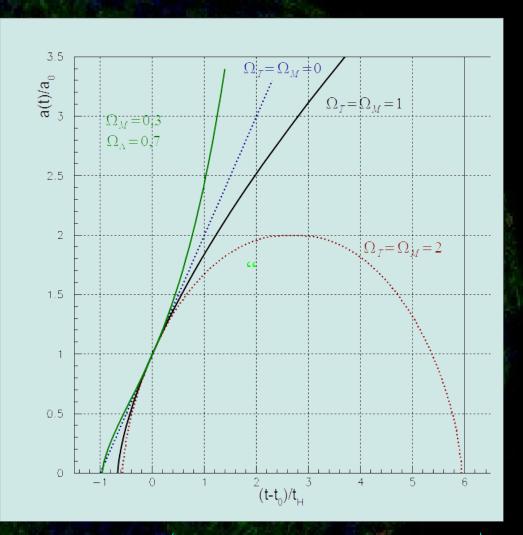
 $\frac{1}{\mathbf{H}_0^2} \left(\frac{\dot{R}}{R} \right)^2 = \left(\Omega_m \left(\frac{R_0}{R} \right)^3 + (1 - \Omega_m) \left(\frac{R_0}{R} \right)^2 \right)$

☐ Slowdown of expansion driven by matter:

$$\left(\frac{\ddot{R}}{R}\right) = -\frac{4\pi G \rho_m}{3} = -\frac{\Omega_m}{2} \mathbf{H}_0^2$$

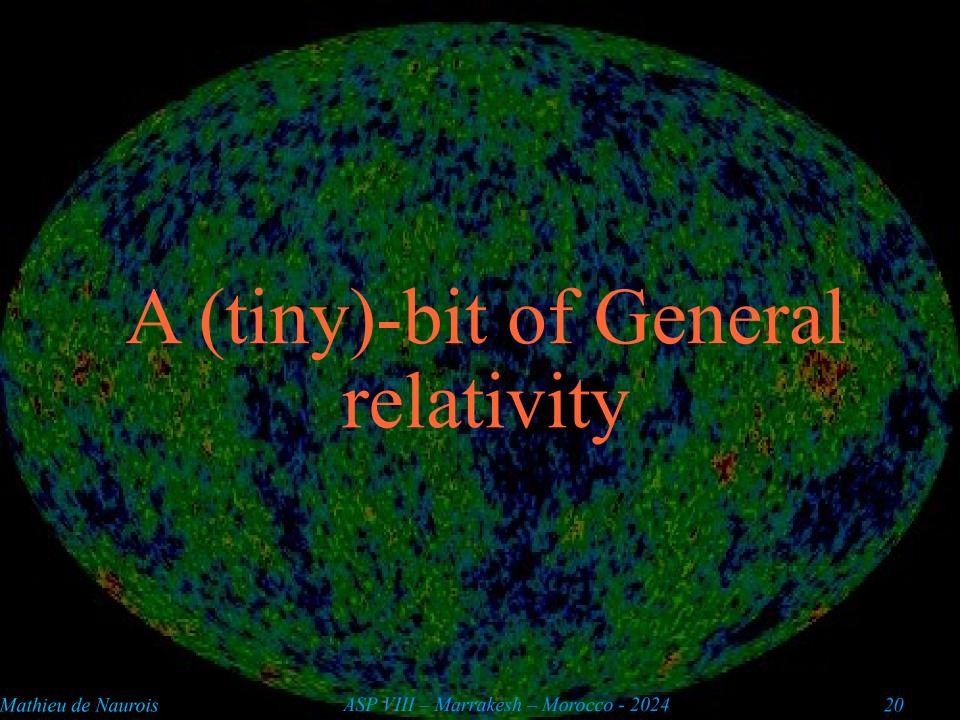
Evolution of a matter Universe

 \square $\Omega_{\rm m}=0$, monotonic expansion


$$R(t) = R_0 \mathbf{H}_0 \times t$$

 $\Omega_{\rm m}=1$ (critical Universe)
Decelerating expansion

$$R(t) = R_0 \left(\frac{3}{2} \mathbf{H_0} \times t\right)^{2/3}$$


 \square $\Omega_{\rm m}$ >1 (over-critical Universe) Collapsing Universe

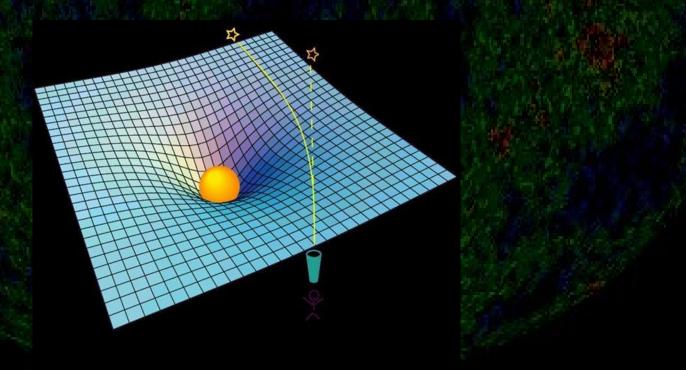
$$R_{max} = R_0 \frac{\Omega_m}{(\Omega_m - 1)}$$

$$\frac{1}{\mathbf{H}_0^2} \left(\frac{\dot{R}}{R}\right)^2 = \left(\Omega_m \left(\frac{R_0}{R}\right)^3 + (1 - \Omega_m) \left(\frac{R_0}{R}\right)^2\right)$$

ASP VIII - Marrakesh - Morocco - 2024

Equivalence Principle - A. Einstein

- ☐ No difference could be found between inertial mass (in acceleration) and gravitational mass (in gravity forces)
 - ⇒ Implies that acceleration of a body in a gravitational field is independent of the nature of the body
 - ☐ Tested extensively in vacuum tower
- ☐ Thus there is no way to distinguish between
 - free-fall movement in gravitational field
 - □ accelerated movement in absence of field
 - ⇒ Gravity can be understood as a property of space and not of the falling body



General Relativity vs Newtonian

- □ Newtonian Gravity: Universe is flat and immutable, trajectories are curved due to a force (non-inertial movement)
- General relativity: Gravity is a geometric property of space, not a force. Trajectories are always inertial (geodesics) in a curved space
- ☐ Major conclusion: massless particles (light) are also affected, confirmed by measure of deflection of stars (Eddington, 1919)

Mathieu de Naurois

22

Evolving Universe – Tensor Algebra

- \Box We consider a space time, in which we have a base of vectors $\{\vec{e}_{\mu}\}$
- ☐ The metric is defined by the cross-product of vectors:

$$g_{\mu\nu} = \vec{e}_{\mu} \cdot \vec{e}_{\nu}$$

Any vector can be decomposed on the base: $\vec{x} = x^{\mu} \vec{e}_{\mu}$ Covariant coordinates

$$dx^{\mu} = \frac{\partial x^{\mu}}{\partial y^{\nu}} dy^{\nu} = \Lambda^{\mu}_{\nu} dy^{\nu}, \quad \vec{e}_{\mu} = \Lambda^{\nu}_{\mu} \vec{f}_{\nu}$$

Tensors are objects of higher rank (2, 3,) which transform in a similar manner

$$T^{\mu\nu} = \Lambda^{\mu}_{\alpha} \Lambda^{\nu}_{\beta} T^{\prime\alpha\beta}$$

Norm & Invariants

□ Scalar are invariant by change of coordinate, for instance:

$$A = U^{\mu} \cdot V_{\mu} = g^{\mu \nu} U_{\mu} V_{\mu}$$

The elementary distance, defining the metric, can be expressed as:

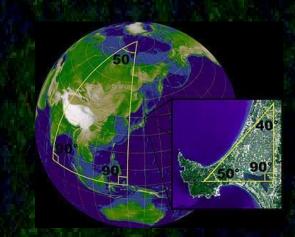
$$ds^2 = dx^{\mu} \cdot dx_{\mu} = g^{\mu\nu} dx_{\mu} dx_{\mu}$$
 Units where $c = 1$!

And is invariant by coordinate changes (such as the scalar product)

Tensor Algebra is the recipe to ensure that equations are Lorentz invariant, i.e. that equivalence principle is satisfied.

Curved Universe

☐ In a flat Universe, the metric can be expressed in a diagonal form. e.g. Minkowski space (flat space-time)

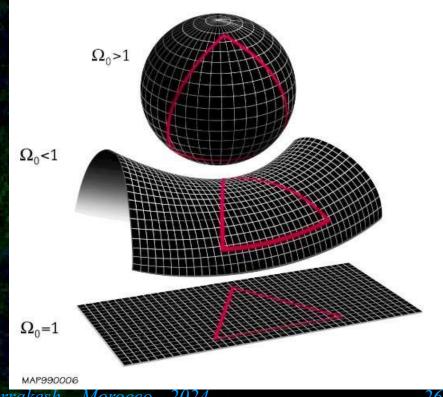

$$g_{\mu\nu} = \begin{pmatrix} 1 & & & \\ & -1 & & \\ & & -1 & \\ & & -1 \end{pmatrix}$$

- ☐ This is not the case any more in curved Universe
- The "curvature" is a mathematical concept that is obtained from derivatives of the metric:
 - Ricci tensor

$$R_{\mu\nu}$$

Scalar curvature $R = g^{\mu\nu} R_{\mu\nu}$

$$R = g^{\mu\nu} R_{\mu\nu}$$



Uniform, Isotropic Universe

A uniform, isotropic universe can be described by the Friedman-Lemaitre-Robertson-Walker metric

$$d s^{2} \equiv d x^{\mu} d x_{\mu} = d t^{2} - a^{2}(t) \left[\frac{d r^{2}}{1 - k r^{2}} + r^{2} d \theta^{2} + r^{2} \sin^{2} \theta d \phi^{2} \right]$$

- a(t) is a "scale factor" giving the size of a bubble of Universe
 - The grid itself is expanding, not the content!
- \blacksquare k = 1: Spherical space (Sum of angles $> \pi$)
- \square k = -1: Hyperbolic space (Sum of angles $< \pi$)
- \square k = 0: Euclidean space (Sum of angles = π)

Einstein Equation – I

- ☐ General idea: find the minimum covariant formalism compatible with Newton gravity
- ☐ Start for the Poisson equation for gravitational potential

Field
$$\nabla^2 \Phi_p = -4\pi \rho_g$$
 Matter Content

☐ Construct a Lorentz-invariant (Covariant) version

$$\left(\frac{\partial^2}{\partial t^2} - \nabla^2\right) A^{\mu} = 4 \pi j^{\mu}$$

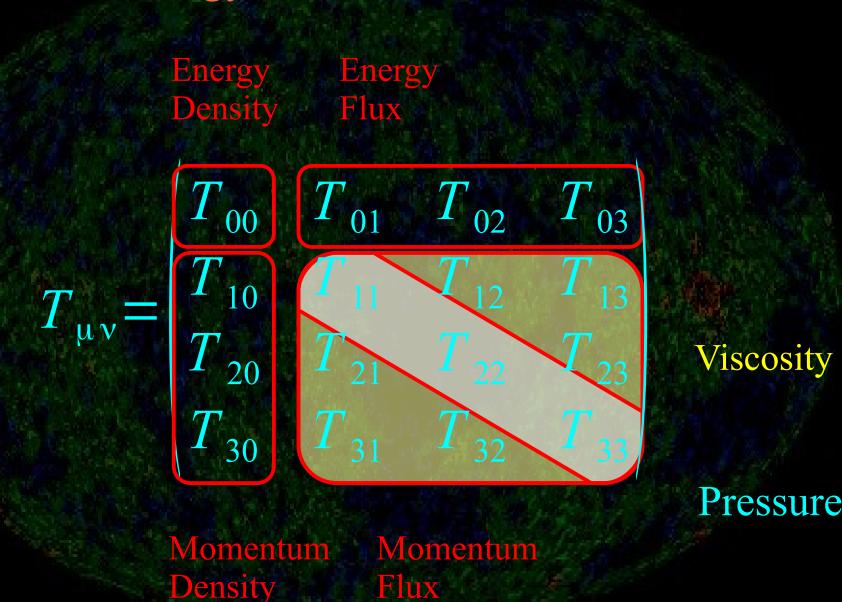
Covariant Derivative $\left(\frac{\partial^2}{\partial t^2} - \nabla^2\right) A^{\mu} = 4\pi j^{\mu}$ (Density is NOT Lorentz invariant)

Energy Momentum Tensor

- □ Need a covariant (Lorentz invariant) formulation of energy conservation
- ☐ In special relativity Energy & Momentum are coupled

$$\frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \vec{v}) = 0 \qquad \qquad \nabla_{\mu} T^{\mu}_{\nu} = 0$$

☐ Energy momentum tensor for a perfect fluid (Lorentz Invariant)


$$T_{\mu\nu} = n(\tilde{x}) \frac{p_{\mu} p_{\nu}}{E} = \rho u_{\mu} u_{\nu} + P(g_{\mu\nu} + u_{\mu} u_{\nu})$$

 u_{μ} is the four velocity

 \square In the rest frame of fluid, $u^{\mu}=(1,0,0,0)$ and thus:

$$T_{\mu\nu} = \begin{vmatrix} \rho(t) \\ -P(t) \\ -P(t) \end{vmatrix}$$

Energy Momentum Tensor

ASP VIII - Marrakesh - Morocco - 2024

Einstein Equation – II

☐ Minimum Covariant Equation

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = 8\pi G T_{\mu\nu}$$

Curvature of Universe

Energy Content

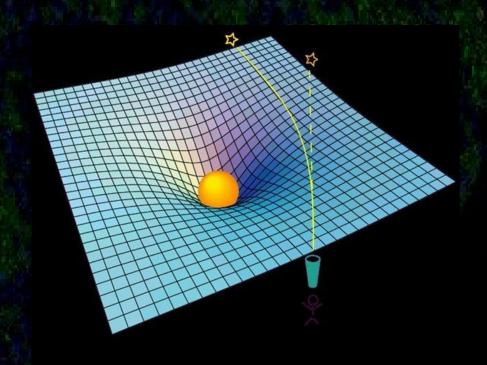
☐ Energy Content:

$$T_{\mu\nu} = \sum_{\text{species}} \left[\rho \, u_{\mu} \, u_{\nu} + P \left(g_{\mu\nu} + u_{\mu} \, u_{\nu} \right) \right]$$

One can add a Cosmological Constant to force a static universe (Compensates for matter), no classical equivalent

$$G_{\mu\nu}+\Lambda g_{\mu\nu}=8\pi G T_{\mu\nu}$$

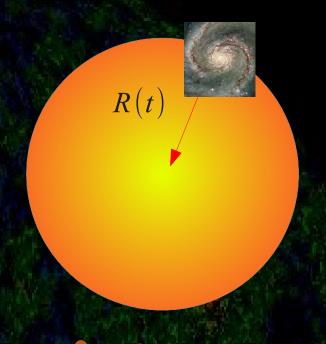
General relativity in Friedman-Lemaitre-Robertson-Walker metric


☐ Einstein Equation (Isotropic Uniform Universe)

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \sum_{i} \rho_i - \frac{k}{a^2}$$

☐ Acceleration

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \sum_{i} (\rho_i + 3 p_i)$$


- ☐ So we still need:
 - Relation between pressure & density (equation of state)
 - Corresponding evolution of density with time

Why pressure?

- ☐ Gravitation depends on energy content
- ☐ But what if the size of the Universe changes?
- ☐ Thermodynamics never lies and says:

$$dE = \delta W = -p dV$$

Volume Increase

???

Decrease of gravitation

Decrease of energy

Decrease of energy density

Thermodynamics – Evolution of density

- ☐ Work of pressure:
- □ Expression of energy:

□ Evolution of density:

- ☐ In particular, constant density:
- ☐ Using equation of state:

$$d E = \delta W = -p d V$$

$$E = \rho V$$

$$\frac{d E}{d t} = \rho \frac{d V}{d t} + V \frac{d \rho}{d t} = -p \frac{d V}{d t}$$

$$\frac{\mathrm{d}\,\rho}{\mathrm{d}\,t} = -(p+\rho)\frac{1}{V}\frac{\mathrm{d}\,V}{\mathrm{d}\,t} = -3\frac{\dot{a}}{a}(p+\rho)$$

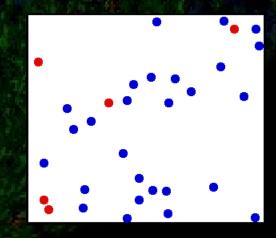
$$\frac{\mathrm{d}\,\rho}{\mathrm{d}\,t} = 0 \iff p = -\rho$$

Negative pressure?

$$P = \mathbf{w} \rho \quad \Rightarrow \quad \rho(t) = \rho_0 \left(\frac{a}{a_0}\right)^{-3(1+\mathbf{w})}$$

Equation of state – Matter (cold)

- □ Normal matter:
 - Energy Density


$$\frac{E}{V} = \rho_m \left(c^2 + \frac{1}{2} v^2 \right) \approx \rho_m c^2$$

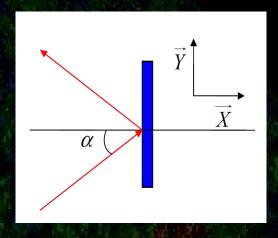
Pressure is related to kinetic energy (internal energy)

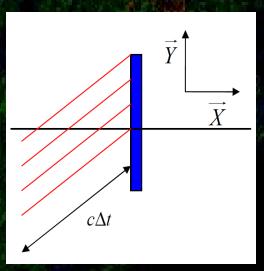
$$P = \frac{nRT}{V} = \frac{2}{3} \frac{\langle E_c \rangle}{V} \approx \frac{2}{3} \frac{\langle v^2 \rangle}{c^2} \times \frac{E}{V} \ll \frac{E}{V}$$

For normal matter kinetic energy is negligible compared to mass energy

$$P=0=w\rho$$
 with $w=0$

Equation of state – Radiation


- ☐ Radiation:
 - ☐ Energy Density


$$\frac{E}{V} = \frac{N}{V} \times pc$$

☐ Simple calculation (reflection of photons with momentum transfer) shows

$$P = \frac{N}{V} \times p c \int \cos^2 \alpha \, d \cos \alpha$$
$$= \frac{1}{3} \frac{E}{V}$$

$$P = w \rho$$
 with $w = \frac{1}{3}$

Equation of state – Cosmological constant

☐ Cosmological constant is characterized by constant density

$$\rho = constant$$

Thus

$$\frac{\mathrm{d}\,\rho}{\mathrm{d}\,t} = -3\frac{\dot{a}}{a}(p+\rho) = 0$$

☐ This implies

$$P = -\rho = w\rho$$
 with $w = -1$

- ☐ Strange fluid with negative pressure!
 - ⇒ Volume increase lead to energy increase

Cosmological Constant

- ☐ Introduced by Einstein to allow for a static Universe (counteracting the mass)
- ☐ Positive energy density, independent of size, implying negative pressure
- ☐ Kind of "vacuum energy"
- ☐ But in 1929 Edwin Hubble showed that the Universe is in expansion

Much later, when I was discussing cosmological problems with Einstein, he remarked that the introduction of the cosmological term was the biggest blunder of his life.

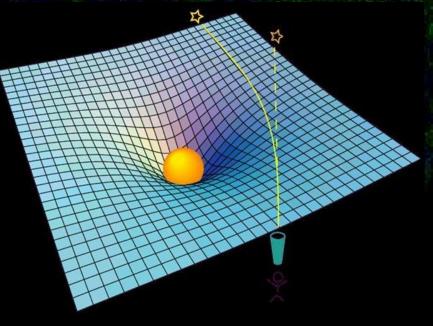
-- George Gamow, My World Line, 1970

General relativity in Friedman-Lemaitre-Robertson-Walker metric

☐ Einstein Equation (Isotropic Uniform Universe)

$$\mathbf{H}^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \sum_{i} \rho_i - \frac{k}{a^2}$$

☐ Acceleration


$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \sum_{i} (\rho_i + 3 p_i)$$

□ Evolution of density

$$\frac{\mathrm{d}\,\rho}{\mathrm{d}\,t} = -(p+\rho)\frac{1}{V}\frac{\mathrm{d}\,V}{\mathrm{d}\,t} = -3\frac{\dot{a}}{a}(p+\rho)$$

☐ Equation of state

$$P = \mathbf{w} \rho \Rightarrow \rho(t) = \rho_0 \left(\frac{a}{a_0}\right)^{-3(1+\mathbf{w})}$$

Matter, radiation, ...

Content	State Equation	W	Dilution Law	Evolution
Cold Matter	$p \approx 0$	0	$ \rho \propto a(t)^{-3} $	$a(t) \propto t^{2/3}$
Hot Radiation	$p = \frac{\rho}{3}$	1/3	$ \rho \propto a(t)^{-4} $	$a(t) \propto t^{1/2}$
Curvature			$\left(\frac{\dot{a}}{a}\right)^2 = -\frac{k}{a^2}$	$a(t) \propto t$
Cosmologic al constant	$p = -\rho$	-1	$\rho = C_{ste} = \frac{\Lambda}{8\pi G_N}$	$a(t) \propto e^{H \times t}$
Generic	$p = w \rho$	W	$\rho \propto a(t)^{-3(1+w)}$	$a(t) \propto t^{1/3(1+w)}$

Evolution of the Universe

$$\left(\frac{\mathbf{H}}{\mathbf{H}_0}\right)^2 = \Omega_m^0 \left(\frac{a_0}{a}\right)^3 + \Omega_r^0 \left(\frac{a_0}{a}\right)^4 + \Omega_\Lambda + (1 - \Omega_{tot}^0) \left(\frac{a_0}{a}\right)^2$$

□ (Cold) Matter:

 $\Omega_m^0(a_0/a)^3$

☐ (Hot) Radiation:

 $\Omega_r^0 (a_0/a)^4$ Dominates in the early Universe

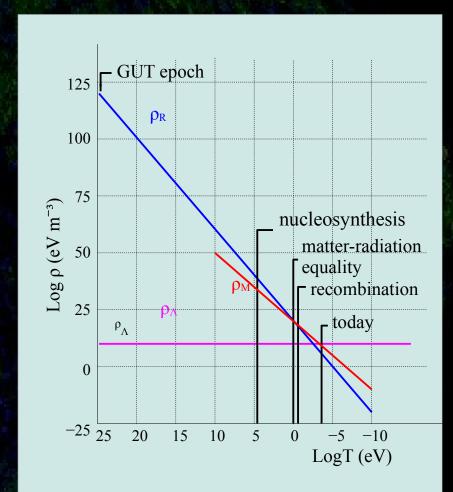
Curvature:

- $(1-\Omega_{tot})(a_0/a)^2$
- Cosmological Constant:
- Ω_{Λ}
- ☐ Were we used dimensionless densities:

$$\Omega_i^0 = \frac{\rho_i^0}{\rho_c} = \frac{8\pi G}{3H_0^2}\rho_i^0, \quad \Omega_k^0 = \frac{-k}{a_0^2H_0^2}$$

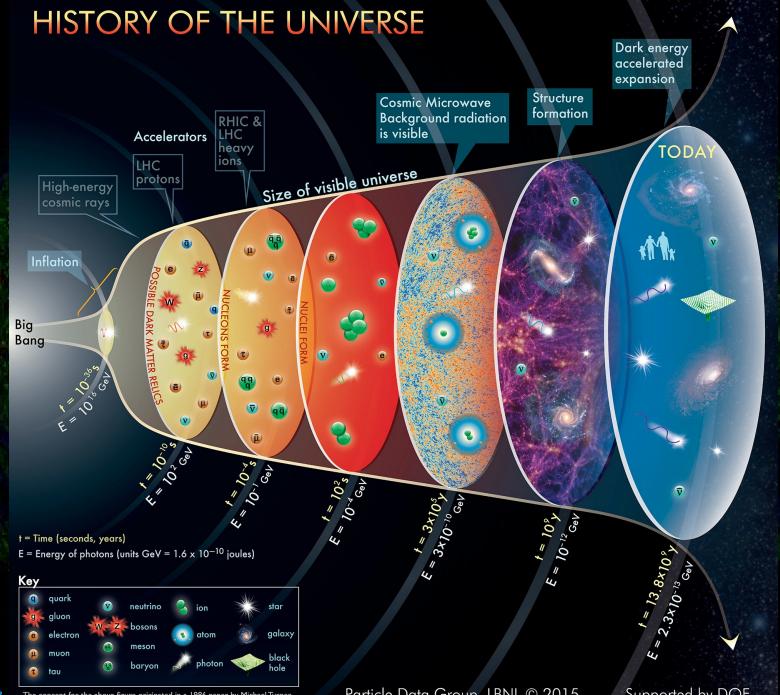
Deceleration parameter

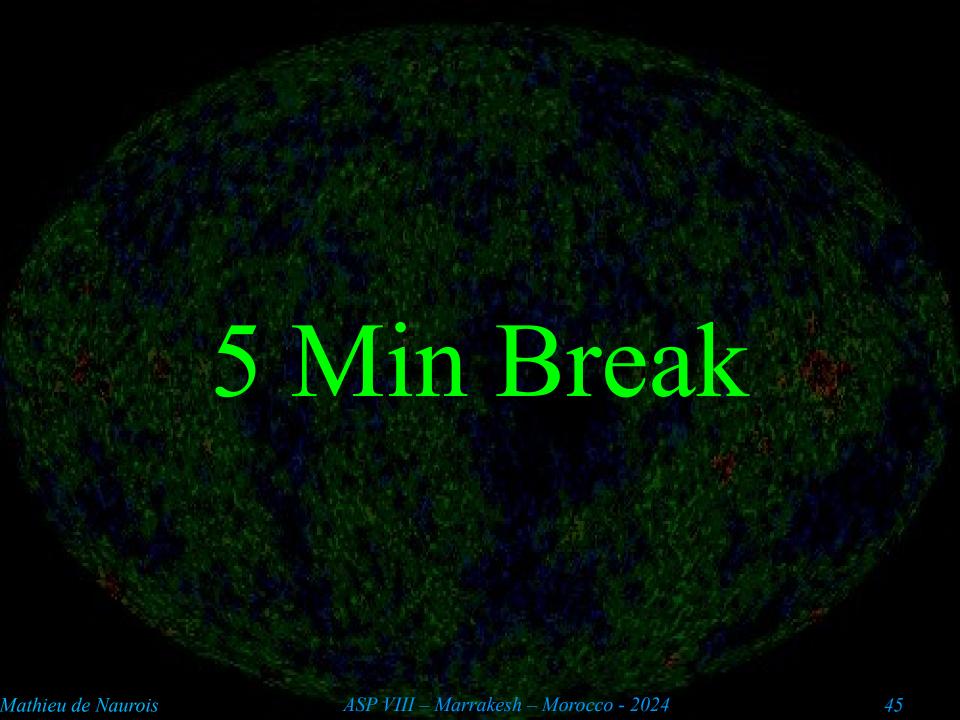
Deceleration parameter


$$q = -\frac{1}{H^2} \left[\frac{\ddot{a}}{a} \right] = \frac{\Omega_m}{2} + \Omega_r - \Omega_{\Lambda}$$

- ☐ Matter and radiation decelerates expansion
- ☐ Cosmological constants accelerates expansion
- ☐ Curvature is neutral
- □ Null deceleration (constant expansion rate universe) if

$$\Omega_m + 2\Omega_r = 2\Omega_{\Lambda}$$


Epochs and Fate


- ☐ Universe starts by a radiation dominated era
- After some times, matters dominates over the radiation and expansion slows down
- \square If $\Omega > 1$ and $\Omega_{\Lambda} \sim 0$, the Universe re-collapses and radiation dominates again
- \square If Ω < 1 and Ω_{Λ} ~ 0, the Universe ends in free expansion governed by curvature
- \square If Ω < 1 and Ω_{Λ} > 0, the Universe ends in accelerated exponential expansion governed by cosmological constant

Take-home message

- Evolution of Universe is given by
 - ☐ General Relativity (conceptual frame)
 - ☐ Curvature of the Universe (different Universes are possibles, specificity of our Universe)
 - Energy content of the Universe, evolving with time
 - Matter
 - ☐ Radiation
 - ☐ Cosmological Constant Dark Energy
- ☐ After 5 min break, Experimental status

