EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS



# The EuPRAXIA Project

a plasma-based accelerator user facility for the next decade Massimo Ferrario (INFN-LNF) On behalf of the EuPRAXIA Collaboration





# Principle of plasma acceleration



proton beam

#### Principle of plasma acceleration

From Maxwell's equations, the electric field in a (positively) charged sphere with uniform density  $n_i$  at location **r** is

$$\vec{E}(r) = \frac{q_i n_i}{3\epsilon_0} r$$

The field is **increasing** inside the sphere Let's put some numbers

$$n_i = 10^{16} \text{ cm}^{-3}$$
  
 $R = 0.5$ 
 $E \approx 10 \frac{GV}{m}$ 



























#### This accelerator fits into a human hair!



# PWFA beam line at SPARC\_LAB







# **A New European High-Tech User Facility**



FEATURE EUPRAXIA

Building a facility with very high field plasma accelerators, driven by lasers or beams  $1 - 100 \,\text{GV/m}$  accelerating field

> Shrink down the facility size mprove Sustainability

Producing particles and photons to support several urgent and timely science cases

**Drive short wavelength FEL** Pave the way for future Linear Colliders



Surf's up Simulation of electron-driven plasma wakefield acceleration, showing the drive electron beam (orange/purple), the plasma electron wake (arev) and wakefield-ionised electrons forming a witness beam (orange).

#### FUROPE TARGETS A USER FACI PLASMA ACCELERATION

Ralph Assmann, Massimo Ferrario and Carsten Welsch describe the status of the ESFRI project EuPRAXIA, which aims to develop the first dedicated research infrastructure based on novel plasma-acceleration concepts.

nergetic beams of particles are used to explore the This scientific success story has been made possible fundamental forces of nature, produce known and through a continuous cycle of innovation in the physics unknown particles such as the Higgs boson at the and technology of particle accelerators, driven for many LHC, and generate new forms of matter, for example at the decades by exploratory research in nuclear and particle future FAIR facility. Photon science also relies on particle physics. The invention of radio-frequency (RF) technology beams: electron beams that emit pulses of intense syn- in the 1920s opened the path to an energy gain of several chrotron light, including soft and hard X-rays, in either tens of MeV per metre. Very-high-energy accelerators were circular or linear machines. Such light sources enable constructed with RF technology, entering the GeV and time-resolved measurements of biological, chemical and finally the TeV energy scales at the Tevatron and the LHC. physical structures on the molecular down to the atomic New collision schemes were developed, for example the scale, allowing a diverse global community of users to mini "beta squeeze" in the 1970s, advancing luminosity investigate systems ranging from viruses and bacteria and collision rates by orders of magnitudes. The invention to materials science, planetary science, environmental of stochastic cooling at CERN enabled the discovery of science, nanotechnology and archaeology. Last but not the W and Z bosons 40 years ago. least, particle beams for industry and health support many However, intrinsic technological and conceptual limits manufacturing to cancer therapy.

THE AUTHORS Rainh Assmann

DESYandINEN Massimo Ferrario societal applications ranging from the X-ray inspection mean that the size and cost of RF-based particle accel- INFN. Carsten of cargo containers to food sterilisation, and from chip erators are increasing as researchers seek higher beam Welsch University energies. Colliders for particle physics have reached a of Liverpool/INFN.

CERN COURIER MAY/IUNE 2023

https://www.eupraxia-facility.org/



# FEL is a well established technology

#### (But a widespread use of FEL is partially limited by its size and costs)









#### X-Rays have opened the Ultra-Small World X-FELs open the Ultra-Small and Ultra-Fast Worlds

#### **Ultra-Small**

**Ultra-Fast** 







# **Animation: DNA replication**





The dynamics and molecular shapes were based on X-ray crystallographic models and other published scientific data sets.

Helicases are enzymes that bind and may even remodel nucleic acid or nucleic acid protein complexes.

There are DNA and RNA helicases. DNA helicases are essential during DNA replication because they separate double-stranded DNA into single strands allowing each strand to be copied.

During DNA replication, DNA helicases unwind DNA at positions called origins where synthesis will be initiated. DNA helicase continues to unwind the DNA forming a structure called the replication fork, which is named for the forked appearance of the two strands of DNA as they are unzipped apart.

The process of breaking the hydrogen bonds between the nucleotide base pairs in double-stranded DNA requires energy. To break the bonds, helicases use the energy stored in a molecule called ATP, which serves as the energy currency of cells.

DNA helicases also function in other cellular processes where double-stranded DNA must be separated, including DNA repair and transcription. RNA helicases are involved in shaping the form of RNA molecules, during all processes involving RNA, such as transcription, splicing, and translation.



# To study single protein structures we need Light





We wish a Static Picture of the acro-molecules involved

Light Required properties

- Short wavelength (X-ray)
- High energy per pulse
- Ultra-short pulse (few femtoseconds)
- Coherence







#### Coulomb Explosion of Lysozyme (50 fs) Single Molecule Imaging with Intense X-rays



Atomic and molecular dynamics occur at the *fsec*-scale

J. Hajdu, Uppsala U.

A Free Electron Laser is a device that converts a fraction of the electron kinetic energy into coherent radiation via a collective instability in a long undulator





$$\lambda_{rad} \approx \frac{\lambda_u}{2\gamma^2} \left( 1 + \frac{K^2}{2} + \gamma^2 \vartheta^2 \right)$$

(Tunability - Harmonics)



#### It's a CHALLENGE: the FEL is extremely sensitive to the beam quality.

 $\begin{array}{c|c} \text{Low (geometric) emittances: } \epsilon_{x,y} < \frac{\lambda_0}{4\pi} & \text{Low emittances} \\ \text{Low relative energy spread } \sigma_{\gamma}: & \sigma_{\gamma} < \frac{1}{2}\rho_{fel} & \text{Low energy spread} \\ \text{where} & \rho_{fel} = \frac{1}{4\pi} \left[ \frac{2\pi^2}{\gamma^3} \left( \lambda_u K \left[ JJ \right] \right)^2 \frac{I_{peak}}{\Sigma_e I_A} \right]^{1/3} \\ \text{Exponential growth} & \text{gain length} & \text{saturation} \\ P(z) = \frac{1}{9}P_0 e^{z/L_g} & L_g = \frac{\lambda_u}{4\pi\sqrt{3}\rho_{fel}} & P_F \sim 1.6 \ \rho_{fel}P_{beam} \end{array}$ 

=> A poor beam quality causes an increase of  $L_g$  and a reduction of  $P_F$ 



# **Required Bunch Energy Stability**

$$E_z(\zeta) = An_p \sqrt{I_d} \zeta$$

$$\frac{\Delta\lambda}{\lambda} \propto \frac{\Delta E}{E} \propto \rho \approx 10^{-3}$$

FEL requirement

$$\left.\frac{\Delta E}{E}\right|_p = \frac{\Delta n_p}{n_p}$$

$$\frac{\Delta E}{E}\Big|_{Q} = \frac{\Delta I_{d}}{2(I_{d})} + \frac{\Delta I_{w}}{2(I_{w})}$$

Bunch charge/length



Driver/Witness separation

# Intense R&D Program on critical components



#### • Electrons (0.1-5 GeV, 30 pC)

**E**<sup><sup>•</sup></sup>**PR**<sup>A</sup>**X**IA

- Positrons
   (0.5-10 MeV, 10<sup>6</sup>)
- Positrons (GeV source)
- Lasers (100 J, 50 fs, 10-100 Hz)
- X-band RF Linac
   (60 MV/m , up to 400 Hz)
- Plasma Targets
- Betatron X rays (1-10 keV, 10<sup>10</sup>)
- FEL light
   (0.2-36 nm, 10<sup>9</sup>-10<sup>13</sup>)



#### Basic beam quality achieved in pilot FEL experiments





EUPRA

#### Seeded UV free-electron laser driven by LWFA

Collaboration Soleil/HZ Dresden, published on Nat. Photon. (2022). https://doi.org/10.1038/s41566-022-01104-w





Wavelength (nm) Wavelength (nm)

FIG. 1. Experimental layout. The electron beam generated in the LPA is first characterized using a removable electron spectrometer and then sent through a triplet of quadrupoles (QUAPEVAs) for beam transport to the undulator and FEL radiation generation. ICTs: Integrated Current Transformers. Non-labelled elements: dipoles (red block), optical lenses (blue), mirrors (greg viried black disks). Inset a: Particle-in-Cell simulation renders of the accelerating structure driven by the haser pulse (red), the electron eavity sheet formed from the plasma medium (light blue) is visible in gregte and the accelerated electron bunch visible in gregte. Electron beam transverse distribution measured at LPA exit (b), at undulator entrance (c) and at undulator exit (d).



# **Distributed Research Infrastructure**





A large collection of the best European know-hows in accelerators, lasers and plasma technologies

Network organization

- Sites (PWFA/LWFA)
- National nodes
- Technology clusters

4 candidates for LWFA

- CLPU, Salamanca
- CNR-INO, Pisa
- ELI ERIC, Prague
- EPAC-RAL, UK



# **Phased Implementation of Construction Sites**

Laser

**RF** Injector

Plasma

Accelerator

Undulator Undulator

**Beamline LB-A: FEL** 



FEL user area 1

FEL user area 2

|         | Laser-driven                                                                     | Beam-driven                                                                                             | INFN (Italy):<br>Facility for beam-d | Beaml<br>riven                | ine BB-A: Radia    | ulater Undulator                   | F           |
|---------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------|--------------------|------------------------------------|-------------|
| Phase 1 | <ul> <li>✓ FEL beamline to 1 GeV</li> <li>+ user area 1</li> </ul>               | <ul> <li>✓ FEL beamline to 1<br/>GeV + user area 1</li> </ul>                                           | plasma accelerato                    | ors<br>Plas<br>Accel          | sma<br>erator      |                                    |             |
|         | ✓ <u>Ultracompact positron</u><br><u>source beamline</u> +<br>positron user area | <ul> <li>✓ <u>GeV-class positrons</u></li> <li><u>beamline</u> + positron</li> <li>user area</li> </ul> | RF<br>Injector Acce                  | RF<br>2lerator                |                    | ICS X-ray source<br>user area (BU3 | ?<br>)      |
| Phase 2 | ✓ <u>X-ray imaging</u>                                                           | ✓ <u>ICS source</u> beamline +                                                                          | laser                                | Plas                          | ma                 | Conversion &                       | Н           |
|         | <u>beamline</u> + user area                                                      | user area                                                                                               | electrons                            | Accele                        | erator             | conditioning                       | Ge          |
|         | ✓ Table-top test beams<br>user area                                              | ✓ HEP detector tests                                                                                    | positrons                            | Beamline BB                   | -B: GeV-class p    | ositrons & HEP detec               | tor         |
|         | ✓ FEL user area 2                                                                | ✓ FEL user area 2                                                                                       | Beamline LB-(                        | <b>C: X-ray imaging – l</b> i | ife sciences & m   | naterials Fa                       | cility      |
|         | ✓ FEL to 5 GeV                                                                   | ✓ FEL to 5 GeV                                                                                          | Plasma                               |                               | Life-science & mai | terials X-                         | lasn        |
| Phase 3 | ✓ High-field physics                                                             | ✓ Medical imaging                                                                                       |                                      |                               | ray imaging use    | r area                             |             |
|         | beamline / user area                                                             | beamline / user area                                                                                    | Beamline                             | LB-B: Positron beam           | n source & table   | e-top test beam                    | Tab         |
|         | ✓ Other future                                                                   | ✓ Other future                                                                                          | Plasma l                             | Injector Plas                 | ima 🔶 Co           | onversion &                        |             |
|         | developments                                                                     | developments                                                                                            |                                      | Accele                        | erator c           | onditioning                        | Ultra<br>sc |
|         |                                                                                  |                                                                                                         |                                      |                               |                    |                                    |             |





- The EuPRAXIA Consortium today: 54 institutes from 18 countries plus CERN
- Included in the ESFRI Road Map
- Efficient fund raising:
- –Preparatory Phase consortium (funding EU, UK, Switzerland, in-kind)
- –<mark>Doctoral Network</mark>
  - (funding EU, UK, in-kind)
- –Eupraxia@Sparc\_LAB (Italy, in-kind)
- –Euaps Project (Next Generation EU)
- –PACRI just approved 10 MEuro (funding EU, Switzerland)

|                      | 1   |                              |           |
|----------------------|-----|------------------------------|-----------|
| EMPA*                | СН  | CERN                         | INT. ORG. |
| EPFL*                | СН  | H. Univ. Jerusalem           | ISR       |
| PSI*                 | СН  | CNR-INO Pisa                 | IT        |
| DESY                 | DE  | ELETTRA Trieste              | IT        |
| FBH Berlin           | DE  | ENEA Frascati                | IT        |
| FHG-ILT Aachen       | DE  | INFN                         | IT        |
| FZ Julich            | DE  | U. Roma Sapienza             | IT        |
| HZ Dresden           | DE  | U. Roma Tor Vergata          | IT        |
| LMU Muenchen         | DE  | IST Lisbon                   | Р         |
| HHU Dusseldorf       | DE  | ALBA Cells                   | SP        |
| GSI-FAIR Darmstadt   | DE  | CLPU Salamanca               | SP        |
| ELI Beamline ERIC    | CZ  | IC London                    | UK        |
| CEA                  | FR  | QU Belfast                   | UK        |
| CNRS                 | FR  | STFC                         | UK        |
| THALES               | FR  | U. Liverpool                 | UK        |
| AMPLITUDE            | FR  | U. Oxford                    | UK        |
| ASA Athens           | GR  | U. Strathclyde               | UK        |
| WIGNER               | HUN | UCLA*                        | US        |
| Uni. Szeged          | HUN |                              |           |
| Uni. Pecs            | HUN |                              |           |
| * associate partners |     | UJT Shanghai (observer)      | CN        |
|                      |     | HZ Jena (observer)           | DE        |
|                      |     | U. Cote d'Azur Nice (observe | FR        |
|                      |     | NTUA Athens (observer)       | GR        |
|                      |     | U. Milano Bicocca (observer) | IT        |
|                      |     | U. Palermo (observer)        | IT        |
|                      |     | NCBJ Otwock (observer)       | PL        |
|                      |     | U. Manchester (observer)     | UK        |



### **Preparatory Phase Main Goals**



- Managerial WP`s
  - **Outreach** to public, users, EU decision makers and industry
  - **Define** legal model (how is EuPRAXIA governed?), financial model, rules, user services and membership extension for full implementation
  - Works with project bodies and funding agencies → Board of Financial Sponsors
- Technical WP's (correspond to Project Clusters):
  - Update of CDR concepts and parameters, towards technical design (full technical design requires more funding)
  - Specify in detail **Excellence Centers and their required funding**: TDR related R&D, prototyping, contributions to construction
  - Help in defining funding applications for various agencies
- Output defined in **milestones & deliverables** with dates



Industry

L. Gizzi, CNR P. Crump, FBH

Strategy

B. Cros, CNRS

A Mostacci U Sapienza



# **Current Candidates for EuPRAXIA Laser Site**





Active participation in EUPRAXIA-PP



- Unique link to multidisciplinary research and technology transfer on site
- Strong link with Pisa University system





# **EUPRAXIA Headquarter and Site 1: EuPRAXIA@SPARC\_LAB**





| and the second s | • · · · • • • • • • • • • • • • • • • • |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |

- Frascati`s future facility
- > 130 M€ invest funding
- Beam-driven plasma accelerator
- Europe`s most compact and most southern FEL
- The world`s most compact RF accelerator (X band with CERN)

### **EuPRAXIA@SPARC\_LAB**









# **High Quality Electron Beams**





Courtesy E. Chiadroni



# World's Most Compact RF Linac: X Band



| $E_{acc} < E_{acc} > [\%]$ |                                |                                         |
|----------------------------|--------------------------------|-----------------------------------------|
| 1                          | E m dosign: dona               |                                         |
| 1.                         | E.m. design. done              |                                         |
| 2.                         | Thermo-mechanical analysis:    | <u> . ( </u>                            |
| _                          | done                           |                                         |
|                            | ス                              |                                         |
| 3.                         | Mechanical design: done        | Pressure distribution                   |
|                            |                                | 1,E-05<br>1,E-06                        |
| 4.                         | Vacuum calculations: done      |                                         |
|                            |                                | 1,6-10<br>1,6-11 -q=1e-1                |
| 5.                         | Dark current simulations: done | 1,E-12<br>0 15 30 45 60 75 90<br>Z [cm] |
| -                          |                                | 10 <sup>e</sup> Downstream Spectrum     |
| 6.                         | Waveguide distribution         | septile.                                |
|                            | simulation with attenuation    | NU2                                     |
|                            | calculations: done             | 0 5 10 15 20 25<br>E(MeV)               |

|          |                                                                  | Valu        | e        |
|----------|------------------------------------------------------------------|-------------|----------|
|          | PARAMETER                                                        | with linear | w/o      |
|          |                                                                  | tapering    | tapering |
|          | Frequency [GHz]                                                  | 11.99       | 42       |
|          | Average acc. gradient [MV/m]                                     | 60          |          |
|          | Structures per module                                            | 2           |          |
|          | Iris radius a [mm]                                               | 3.85-3.15   | 3.5      |
|          | Tapering angle [deg]                                             | 0.04        | 0        |
|          | Struct. length L <sub>s</sub> act. Length (flange-to-flange) [m] | 0.94 (1     | .05)     |
|          | No. of cells                                                     | 112         | 2        |
|          | Shunt impedance R [MΩ/m]                                         | 93-107      | 100      |
|          | Effective shunt Imp. $R_{sh eff}$ [M $\Omega$ /m]                | 350         | 347      |
|          | Peak input power per structure [MW]                              | 70          |          |
|          | Input power averaged over the pulse [MW]                         | 51          |          |
|          | Average dissipated power [kW]                                    | 1           |          |
|          | P <sub>out</sub> /P <sub>in</sub> [%]                            | 25          |          |
| LO<br>L2 | Filling time [ns]                                                | 130         | )        |
| 14       | Peak Modified Poynting Vector [W/µm <sup>2</sup> ]               | 3.6         | 4.3      |
|          | Peak surface electric field [MV/m]                               | 160         | 190      |
|          | Unloaded SLED/BOC Q-factor Q <sub>0</sub>                        | 1500        | 00       |
|          | External SLED/BOC Q-factor Q <sub>E</sub>                        | 21300       | 20700    |
|          | Required Kly power per module [MW]                               | 20          |          |
|          | RF pulse [µs]                                                    | 1.5         |          |
|          | Rep. Rate [Hz]                                                   | 100         | )        |





Courtesy D. Alesini



### **Plasma Module**





Courtesy A. Biagioni, R. Pompili



# **Operating properties**

- Discharges synchronization
  - Lenses synchronized with the beam entrance
  - Central discharge applied
     3 µs before for plasma acceleration
- 10 kV voltage resulting in:
   500 A on the lenses
  - > 250 A in the accelerator









- 5 MeV/3cm acceleration in 19 cm long integrated plasma module with 200 pC driver/50 pC witness
  - 3 cm long accelerator with 200 A ionization current
  - 3 cm long plasma lenses with 500 A ionization current
  - Plasma density inside the accelerator set to 2x10<sup>15</sup> cm<sup>-3</sup>
  - ~150 MV/m accelerating gradient
  - Stability of the accelerated beam

#### 200 consecutive shots taken with accelerated beam





# **Radiation Generation: FEL**





#### Courtesy L. Giannessi



#### **Towards a Plasma Undulator for FEL**

5

#### Ultrahigh brightness beams from plasma photoguns

A. F. Habib,<sup>1,2</sup>.<sup>\*</sup> T. Heinemann,<sup>1,2,3</sup>,<sup>[1]</sup> G. G. Manahan,<sup>1,2</sup> L. Rutherford,<sup>1,2</sup> D. Ullmann,<sup>1,2,4</sup>
P. Scherkl,<sup>1,2</sup> A. Knetsch,<sup>3</sup> A. Sutherland,<sup>1,2,5</sup> A. Beaton,<sup>1,2</sup> D. Campbell,<sup>1,2,6</sup> L. Boulton,<sup>1,2,3</sup>
A. Nutter,<sup>1,2,7</sup> O. S. Karger,<sup>8</sup> M. D. Litos,<sup>9</sup> B. D. O'Shea,<sup>5</sup> G. Andonian,<sup>10,11</sup> D. L. Bruhwiler,<sup>12</sup>
J. R. Cary,<sup>9,13</sup> M. J. Hogan,<sup>5</sup> V. Yakimenko,<sup>5</sup> J. B. Rosenzweig,<sup>10</sup> and B. Hidding<sup>1,2</sup>



FIG. 3. 3D PIC-simulations (VSim) of intense electron beam interaction with a preionized plasma channel of different radii  $r_c$ . The FACET electron driver beam (black) propagates to the right, expels plasma electrons and sets up a nonlinear PWFA blowout as in a) and b), or for a thinner channel generates a wakeless ion channel as in c) and d) that could be used e.g. for light source applications.

- → Neutral plasma creation through ionization laser
- → Blowout of the plasma electrons through the driver beam
  - ◆plasma electrons are expelled from the plasma region toward the neutral gas region
    - •negligible restoring force outside column
    - •negligible accelerating force inside column
    - •linear restoring force inside column
    - E. Chiadroni et al., INFN-CSN5 project "Beta-test" at SPARC\_LAB



## **FEL Beamlines**







High Precision X-Ray Measurements 2023 – F. Villa – The EuPRAXIA@SPARC\_LAB project 39

# **Expected SASE FEL performances**

| Parameter            | Unit    | PWFA          | Full<br>X-band |
|----------------------|---------|---------------|----------------|
| Electron Energy      | GeV     | <b>1-1.2</b>  | 1              |
| Bunch Charge         | рС      | <b>30-</b> 50 | 200-500        |
| Peak Current         | kA      | 1-2           | 1-2            |
| RMS Energy Spread    | %       | 0.1           | 0.1            |
| RMS Bunch Length     | $\mu$ m | 6-3           | 24-20          |
| RMS norm. Emittance  | $\mu$ m | 1             | 1              |
| Slice Energy Spread  | %       | ≤0.05         | ≤0.05          |
| Slice norm Emittance | mm-mrad | 0.5           | 0.5            |

| Parameter                        | Unit                                              | PWFA                      | Full<br>X-band     |  |
|----------------------------------|---------------------------------------------------|---------------------------|--------------------|--|
| Radiation<br>Wavelength          | nm                                                | 3-4                       | 4                  |  |
| Photons per<br>Pulse             | × 10 <sup>12</sup>                                | 0.1- 0.25                 | 1                  |  |
| Photon<br>Bandwith               | %                                                 | 0.1                       | 0.5                |  |
| Undulator Area<br>Length         | m                                                 | 30                        |                    |  |
| ho(1D/3D)                        | $\times 10^{-3}$                                  | 2                         | 2                  |  |
| Photon<br>Brilliance per<br>shot | s mm <sup>2</sup> mrad <sup>2</sup> )<br>bw(0.1%) | 1-2 ×<br>10 <sup>28</sup> | $1 \times 10^{27}$ |  |

In the Energy region between Oxygen and Carbon K-edge 2.34 nm – 4.4 nm (530 eV -280 eV) water is almost transparent to radiation while nitrogen and carbon are absorbing (and scattering)



Coherent Imaging of biological samples protein clusters, VIRUSES and cells living in their native state Possibility to study dynamics ~10 <sup>11</sup> photons/pulse needed

#### Courtesy C. Vaccarezza/L. Giannessi

Courtesy F. Stellato, UniToV



# **AQUA beamline scientific case**



#### **Experimental techniques and typology of samples**

**Coherent** imaging

X-ray spectroscopy

Raman spectroscopy



(Large) Viruses Organelles Bacteria/Cells Metals Semiconductors Superconductors Magnetic materials Organic molecules

**Photo-fragmentation of molecules** 

Courtesy F. Stellato



# **ARIA beamline scientific case**



#### **Defining experimental techniques and typology of samples (and applications)**

#### Photoemission Spectroscopy

Photoelectron Circular Dichroism

Raman spectroscopy

Photo-fragmentation of molecules Time of Flight Spectroscopy

Courtesy F. Stellato





paragine  $\lambda_{\text{laser}}$  weet



Statering Source Annual Stater

Gas phase & Atmosphere (Earth & Planets) Aerosols (Pollution, nanoparticles) Molecules & gases (spectroscopies, time-of-flight) **Proteins** (spectroscopies) Surfaces ablation & deposition)

Momentum-imaging

ion TOF spectrometer a EuPRAXIA@SPARC\_LAB project 42

High Precision X-Ray Measurements 2020



### **Cost Review**





| ITEM                              | Expected Cost |
|-----------------------------------|---------------|
| LINAC                             | 17.614.540    |
| Plasma                            | 2.287.000     |
| RF Power                          | 15.760.000    |
| FEL Line Aqua                     | 15.425.000    |
| FEL Line ARIA                     | 4.476.000     |
| Beam Line & User end station AQUA | 6.670.000     |
| Beam Line & User end station ARIA | 5.590.000     |
| Building & Hi Tech utilities      | 53.945.500    |
| тот                               | 121.768.040   |



# EuPRAXIA@SPARC\_LAB baseline updating







CNR-INO

PNRR #

Finanziato dall'Unione europea NextGenerationEU

Milano

INFN

UNITV

INFN-LNF

CNR-ISM







EuAPS: EuPRAXIA Advance Photon Sources - Principal Investigator: M. Ferrario,

- Infrastructure Manager: C. Bortolin,
- Management and Dissemination: A. Falone

#### Research

The **EuPRAXIA Advanced Photon Sources** (**EuAPS**) project, led by INFN in collaboration with CNR and University of Tor Vergata, foresees the construction of a laserdriven "betatron" X Ray user facility at the LNF SPARC\_LAB laboratory. EuAPS includes also the development of high power (up to 1 PW at LNS) and high repetition rate (up to 100 Hz at CNR Pisa) drive lasers for EuPRAXIA. EuAPS has received a financial support of 22.3 MEuro from the PNRR plan on "creation of a new RI among those listed in NPRI with medium or high priority" and has received the highest score for the action 3.1.1 of the ESFRI area "Physical Sciences and Engineering".

#### A. Cianchi (Uni ToV)

Betatron Radiation Source



P. Cirrone (INFN-LNS)



#### L. Labate (CNR-INO)



High Repetition Rate Laser Beamline

#### M. Ferrario et al. INFN-23-12-LNF (2023)

PRA

Potenza

INFN-LNS

Advanced Photon Source









#### **Betatron Radiation Source at SPARC\_LAB**





Courtesy J. Vieira, R. Fonseca/GoLP/IST Lisbon



Finanziato dall'Unione europea NextGenerationEU











Finanziato dall'Unione europea NextGenerationEU









Figure 3.3: Calculated betatron radiation spectra in a plasma column with density of  $7 \times 10^{18} \text{ cm}^{-3}$ . The electron energy is 15 MeV, and oscillation amplitudes are (a) 0.1  $\mu$ m, (b) 0.5  $\mu$ m, and (c) 1.6  $\mu$ m. (d) shows the case of a 100 MeV electron with an oscillation amplitude of 1.6  $\mu$ m.

1) Ultrafast - laser pulse duration tens of fs useful for time resolved experiments (XFEL tens of fs, synchrotron tens to 100 ps). 2) Broad energy spectrum - important for X-ray spectroscopy. 3) High brightness - small source size and high photon flux for fast processes. 4) Large market - 50 synchrotron light sources worldwide, 6 hard XFEL's and 3 soft-ray ones (many accelerators operational and some under construction).

# **EUPRAXIA** Betatron X Rays: Compact Medical Imaging

J.M. Cole et al, "Laser-wakefield accelerators as hard x-ray sources for 3D medical imaging of human bone". Nature Scientific Reports 5, 13244 (2015)



#### Physics & Technology Background:

- Small EuPRAXIA accelerator  $\rightarrow$  small emission volume for betatron X rays.
- Quasi-pointlike emission of X rays.
- Sharper image from base optical principle.
- Quality demonstrated and published, but takes a few hours for one image.
- Advancing flux rate with EuPRAXIA laser by factor > 1,000!

#### Added value

Sharper images with outstanding contrast

**Identify smaller features** (e.g. early detection of cancer at micron-scale – calcification)

Laser advance in EuPRAXIA → fast imaging (e.g. following moving organs during surgery)

Ultra-compact source of hard X rays  $\rightarrow$  exposing from various directions simultaneously is possible in upgrades



#### From European Strategy for Particle Physics Accelerator R&D Roadmap (2022)



#### High-gradient plasma and laser accelerators

Panel members: R. Assmann<sup>e,f,\*\*</sup> (Chair), E. Gschwendtner<sup>a</sup> (Co-Chair), K. Cassou<sup>c</sup>, S. Corde<sup>z</sup>,
 L. Corner<sup>i</sup>, B. Cros<sup>aa</sup>, M. Ferrario<sup>f</sup>, S. Hooker<sup>bb</sup>, R. Ischebeck<sup>g</sup>, A. Latina<sup>a</sup>, O. Lundh<sup>cc</sup>, P. Muggli<sup>dd</sup>,
 P. Nghiem<sup>b</sup>, J. Osterhoff<sup>e</sup>, T. Raubenheimer<sup>w,ee</sup>, A. Specka<sup>ff</sup>, J. Vieira<sup>gg</sup>, M. Wing<sup>hh</sup>
 Associated members: C. Geddes<sup>p</sup>, M. Hogan<sup>w</sup>, W. Lu<sup>v</sup>, P. Musumeci<sup>ii</sup>



EUROPEAN STRATEGY FOR PARTICLE PHYSICS



- Development of Plasma Sources for High-Repetition Rate, Multi-GeV Stages
- High Average Power, High Efficiency Laser Drivers and Schemes
- Staging of Electron Plasma Accelerators Including In- and Out-Coupling
- High Transformer Ratio in PWFA for High Efficiency and Low Energy Spread
- Polarised Electrons
- Positron Bunch Acceleration

# **ESPP Roadmap Update – Plasma Accelerators**



# HALHF: A Hybrid, Asymmetric, Linear Higgs Factory



# Eupraxia Workshop 22-27 September 2024 Elba Island, Tuscany, Italy

EuPRAXIA\_PP Annual Meeting

- Workshop on "EuPRAXIA@SPARC\_LAB machine upgrade and " additional beam lines"
- Outreach Workshop
- https://agenda.infn.it/event/41613/

# Conclusions



- Plasma accelerators have advanced considerably in beam quality, achieving FEL lasing.
- EuPRAXIA is a design and an ESFRI project for a distributed European Research Infrastructure, building two plasma-driven FEL's in Europe.
- EuPRAXIA FEL site in Frascati LNF-INFN is sufficiently funded for **first FEL user operation in 2028**.
- Second EuPRAXIA FEL site will be selected in next 6 months, among **4 excellent candidate sites**.
- Concept today works in design and in reality. Expect (solvable) problems in stability for 24/7 user operation. Facility needed to demonstrate!
- Paves the way to Linear Collider
- Additional fund raising is continuosly going on



# Thank for your attention



#### **EuPRAXIA Organisation Chart**

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS



# **New Proposal Just Accepted (score 14.4/15) : PACRI**



• HORIZON-INFRA-2024-TECH-01-01: R&D for the next generation of scientific instrumentation, tools, methods, solutions for RI upgrade

**EúPRA** 

|                                    |                                                                                              |                     | -                                             |                                                        |            |
|------------------------------------|----------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------|--------------------------------------------------------|------------|
| • Dead line 12 March 2024          | #     Partner     Acronym       1     Elettra - Sincrotrone Trieste SOpA(Coordinator)     ST |                     |                                               | Load Partic                                            |            |
|                                    | 2 European Organization for Nuclear Research                                                 | CERN Work Package 7 |                                               | Work Package Title                                     | Short Name |
|                                    | 3 Istituto Nazionale Fisica Nucleare                                                         | INFN                | 110.                                          |                                                        |            |
|                                    | 4 University of Liverpool                                                                    | ULIV                |                                               |                                                        |            |
| Target Budget - 10 MEuro           | 5 Thales-MIS                                                                                 | Th-MIS              | 1                                             | Coordination and project management                    | ELETTRA    |
| * Target Duuget ~10 MILUIO         | 6 Scandinova Systems AB                                                                      | SCND                | SCND 2 Scientific and industrial exploitation |                                                        |            |
|                                    | 7 VDLETG Technology & Development BV                                                         | VDL                 | 2                                             |                                                        | OLIV       |
|                                    | 8 COMEB                                                                                      | COMEB               | 3                                             | Plasma accelerator theory and simulations              | IST        |
|                                    | 9 United Kingdom Research and Innovation                                                     | UKRI                | 4                                             | High repetition rate plasma structures                 | INFN       |
|                                    | 10 Consiglio Nazionale delle Ricerche                                                        | CNR                 |                                               |                                                        |            |
|                                    | 11 Extreme Light Infrastructure ERIC                                                         | ELIERIC             | 5                                             | Plasma acceleration diagnostics and instrumentation    | CNRS       |
| 25 Members                         | 12 Centre National de la Recherche Scientifique CNRS                                         | CNRS                | 6                                             | High officioncy PE generator                           | Thales-MIS |
| 20 Members                         | 13 Thales LAS France SAS                                                                     | Th-LAS              | 0                                             |                                                        |            |
| +                                  | 14 Amplitude                                                                                 | Amplitude           |                                               |                                                        |            |
|                                    | 15 Centro de LÁSERES Pulsados                                                                | CLPU                | 7                                             | High repetition rate modulator                         | Scandinov  |
| 1 Associated partner               | 16 Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für<br>Hoechstfrequenztechnik            | FBH                 | 8                                             | X-band RF Pulse Compressor (BOC)                       | INFN       |
|                                    | 17 Associacao do instituto superior Tecnico para a Investidação e                            | IST                 | 9                                             | RF tests and validation                                | CERN       |
|                                    | Desenvolvimento                                                                              |                     | 10                                            | High repetition rate high power Ti:Sa amplifier module | UKRI       |
| 9 Universities and Scientific Labs | 18 Università degli Studi di Roma La Sapienza                                                | USAP                |                                               |                                                        |            |
|                                    | 19 Heinrich-Heine-Universitaet Duesseldorf                                                   | UDUS                | 11                                            | Efficient kHz laser driver modules for plasma          | a CNR      |
| +                                  | 20 Deutsches Elektronen-Synchrotron DESY                                                     | DESY                |                                               |                                                        |            |
|                                    | 21 The Chancellor, Masters and Scholars of the Univ. of Oxford                               | UOX                 | 12                                            | High-rep rate pump sources for laser drivers           | ELI-ERIC   |
| 7 Industries                       | 22 Ludwig-Maximilians-Universitaet Muenchen                                                  | LMU                 |                                               |                                                        |            |
|                                    | 23 GSI Helmholtz Centre for Heavy Ion Research                                               | GSI                 | 13                                            | Prototype of high average power optical compressor     | Thales-LA  |
|                                    | 24 Università degli Studi di Roma Tor Vergata                                                | UTOR                |                                               |                                                        |            |
|                                    | 25 SourceLAB                                                                                 | SourceLAB           | 14                                            | Laser Driver System Architecture, transport and        | CNRS       |
|                                    | 26 Paul Scherrer Institut (Associated partner)                                               | PSI                 |                                               | engineering                                            |            |

#### **Plasma Accelerators for Compact Research Infrastructures**





The objective of the **PACRI** project is to develop innovative breakthrough technologies, increasing their Technology Readiness Level (TRL) for electron accelerators while taking energy consumption, resource efficiency, costs, and environmental impact into due account. This includes the following draft non-exclusive goals:

- **developing high rep-rate plasma modules,** as required for the EuPRAXIA project, extending its scientific domain from high average brightness radiation sources up to high energy physics;
- developing key laser components required to upscale high-power high repetition rate Laser technology as required by the EuPRAXIA and ELI Research Infrastructure.
- **improving the performance of normal conducting technology for X-band linac drivers,** extending them to the kHz regime, with focus on efficiency and energy consumption;
- supporting development towards compact linear colliders and nuclear physics facilities;
- developing compact advanced undulator modules, in order to reduce the overall size of the future FEL facilities.
- supporting the availability of compact X-ray facilities (FELs, ICSs, Betatron) to serve a larger number of users in many scientific fields, industry and society;