

Fast Simulation of Calorimetry showers (FastSim)

- <u>Piyush Raikwar</u>, Peter Mckeown, Anna Zaborowska EP-SFT, CERN

ML4EP meeting

16.05.2024

Particle showers

Inside different detectors at LHC

Energy scoring

A detector agnostic mesh is constructed to contain the largest shower. (ParO4 example)

- The mesh aligns with the direction of incident particle.
 - The direction, i.e., the angles are recorded.

4

Generative model

High

Quality

Samples

Variational Autoencoders, Normalizing Flows

Denoising Diffusion

Models

Mode

Coverage

Diversity

Generative

Adversarial

Networks

Fast

Sampling

We use a diffusion model for higher accuracy and higher diversity.

Generative reverse denoising process

As for the architecture, we apply transformer blocks.

- A generalized architecture that works with any type of data, e.g., text, images, audio, etc.
- Models long-range dependencies (Attention mechanism).

Results

- Cell energy distribution harder to get
- Marginal profiles are relatively easy

What's different?

- Development of machine learning models for fast shower simulation is computationally expensive.
- Moreover, designing model for each experiment requires dedicated expertise.

Make FastSim easily available without access to ML expertise.

- 1. Generic energy scoring mesh
 - Collect energy irrespective of the detector geometry.
- 2. Generalizable ML model
 - **Train once** on very large & diverse datasets to learn rich representations.
 - Then adapt to new detectors, quickly.

Transformer

- Proposed for sequence-to-sequence tasks.
- I/O is any type of sequences.
- Encoder-Decoder blocks.
- Positional embeddings.
- Attention: Dynamically focus on important parts in the input.
- Multi-headed attention.

Energy scoring

A detector agnostic mesh is constructed to contain the largest shower. (Par04 example)

- The mesh aligns with the direction of incident particle.
 - The direction, i.e., the angles are recorded.
- The size of the cells can vary across detectors according to its X₀ & R_M, but the number of cells remains constant¹.

Experiments

- 1. Training on single geometry
 - Par04 (CaloChallenge¹), simplistic cylindrical geometry
 - $\circ \qquad 1M \text{ samples}$
- 2. Joint training on multiple geometries
 - Par04 and Open Data Detector (ODD, realistic geometry)
 - 1M samples each
 - Geometry condition one hot encoding
- 3. Adaptation on FCCeeALLEGRO
 - Checkpoint from 2
 - Baseline training from scratch
 - 100K, 200K, 400K samples in each case

Note: The results are preliminary

1. Training on single geometry

Par04

- Good accuracy with diffusion models
- Even cell energy

2. Joint training

46000

47000

48000

 E_{dep}

49000

50000

51000

•

- Ó

log10(E//MeV)

log10(E//MeV)

Angle conditioning

 $\phi = 0.0, \theta = 1.57$

Transverse profiles - Par04

Transverse profile, γ , Par04, 50GeV, $\phi=0.2$, $\theta=2.1$ Transverse first moment, γ , Par04, 50GeV, $\phi=0.2$, $\theta=2.1$ Transverse second moment, γ , Par04, 50GeV, $\phi=0.2$, $\theta=2.1$ -- Geant4 - Geant4 - Geant4 0.16 2.5---- Single training Single training → Single training 0.14 2.00.12 E > (MeV)0.10 Entries 1.2 80.0 Entri V 1.0 0.06 0.04 10^{-2} 0.50.02 0.0 0.00 2 5 25 30 35 40 45 50 Ó 2 4 Ó. 3 4 20 $< r^2 > (mm^2)$ r(ID) < r > (mm)Transverse profile, γ , Par04, 50GeV, $\phi=0.2$, $\theta=2.1$ Transverse first moment, γ , Par04, 50GeV, $\phi=0.2$, $\theta=2.1$ Transverse second moment, γ , Par04, 50GeV, $\phi=0.2$, $\theta=2.1$ - Geant4 - Geant4 - Geant4 0.16 2.5 ---- Single training ---- Single training Single training Joint training Joint training Joint training 0.14 -2.00.12 E > (MeV)0.10 Entries 1.5 Entrie V 1.0 0.06 0.04 10^{-2} 0.5 0.02 0.0 0.00 20 25 35 40 45 50 0 9 6 0 2 3 4 5 30 $< r^2 > (mm^2)$ r(ID) < r > (mm)

Single geometry training

Joint training

Joint training - ODD

Energy deposited, γ , ODD, 50GeV, $\phi=0.0, \theta=1.57$

0.0175

Future work

- [WIP] Initial architecture tuning
- [WIP] ONNX/LibTorch conversion and integrating with Par04
- [GSoC project] Optimization of the diffusion process (Distillation, DDIM, etc.)
- Pretraining on more geometries (hence generating around 4M samples)
 - Par04 SiW
 - Par04 SciPb
 - Par04 PbWO₄
 - Open data detector (ODD)
 - FCCee CLD
 - FCCee ALLEGRO

