
Machine Learning Inference: SOFIE

1

Motivation
▶ Fast Evaluation of Machine Learning models is more and more relevant
▶ ML tools like Tensorflow/PyTorch have functionality for inference

● can run only for their models
● usage in a C++ environment can be cumbersome
● require heavy dependence

▶ A standard for describing deep learning models:
● ONNX (“Open Neural Network Exchange”)
● cannot describe all possible deep learning models (e.g. GNN) fully

▶ ONNXRuntime: an efficient inference engine based on ONNX
● can work in both C++ and Python
● supporting both CPU and GPU
● can be challenging to integrate in the HEP ecosystem

■ control of threads, dependencies, etc..
■ not optimised for single-event evaluation

2

Machine Learning Inference in ROOT

● Input: trained ML model file
■ ONNX: Common standard for ML models
■ Tensorflow/Keras and PyTorch models  

(with reduced support than ONNX)
■ Since 6.32 support message passing GNNs

from DeepMind’s Graph Nets

3

● Output: generated C++ code
■ Easily invokable directly from C++ (plug-and-use)
■ Minimal dependency (on BLAS only)
■ Can be compiled at run time using ROOT Cling

JIT and can be used in Python.

or

SOFIE : System for Optimised Fast Inference code Emit

▶ Extended SOFIE functionality to produce GPU code using SYCL
// generate SYCL code internally
model.GenerateGPU();
// write output header and data weight file
model.OutputGeneratedGPU();

GPU Extension of SOFIE

4

model.hxx
namespace TMVA_SOFIE_Linear_event{

struct Session {

Session(std::string filename ="") {
 if (filename.empty()) filename =
"Linear_event.dat";
 std::ifstream f;
 f.open(filename);
 // read weight data file
 …………………..
}
std::vector<float> infer(float*
tensor_input1){

with SYCL code

#include “Model.hxx”

// create session class

TMVA_SOFIE_Model::Session
ses(“model_weights.dat”);

//—- event loop

for (ievt = 0; ievt < N; ievt++) {

 // evaluate model: input is a C float array

 float * input = event[ievt].GetData();

 auto result = ses.infer(input);

Inference code needs to be linked
against oneAPI MKL libraries and
compiled using SYCL compiler

▶ Minimise overhead of data transfers between
host and device

▶ Manage buffers efficiently, declaring them at
the beginning

▶ Use libraries for GPU Offloading: GPU BLAS
from Intel one API and PortBLAS for other GPUs

▶ Fuse operators when possible in a single kernel
▶ Replace conditional check with relational

functions

SOFIE GNN Support
▶ Since ROOT version 6.32 support inference of GNNs

● parsing available for GNNs built from DeepMind’s Graph Net library
● supporting a LHCb model for full event interpretation (arXiv:2304.08610)

▶ Developed C++ classes for representing GNN structure.
● based on SOFIE RModel and the ROperator classes which  

provide the functionality to generate C++ inference code
▶ Python code (based on PyROOT) for parsing from the Graph Nets models

5

RModel_GNN

https://arxiv.org/abs/2304.08610

ONNX Supported Operators

6

Operators implemented in ROOT CPU GPU

Perceptron: Gemm ✓ ✓

Activations: Relu, Selu, Sigmoid, Softmax, Tanh, LeakyRelu, Swish ✓ ✓

Convolution and Deconvolution (1D, 2D and 3D) ✓ ✓

Pooling: MaxPool, AveragePool, GlobalAverage ✓ ✓

Recurrent: RNN, GRU, LSTM ✓ ✓

 Layer Unary operators: Neg, Exp, Sqrt, Reciprocal, Identity ✓ ✓

 Layer Binary operators: Add, Sum, Mul, Div ✓ ✓

Other Layer operators: Reshape, Flatten, Transpose, Squeeze,
Unsqueeze, Slice, Concat, Reduce, Gather ✓ ✓

 BatchNormalization, LayerNormalization ✓ ✓

Custom operator ✓

• current CPU
support available
in ROOT 6.30

• GPU/SYCL is
implemented in a
ROOT PR

https://github.com/root-project/root/pull/13550/

Benchmarking Time of Inference

7

DNN FastSim CNN 2D CNN 3D Resnet RNN LSTM RNN GRU CMS DDB
Deep Learning Models

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Ti
m

e
re

la
tiv

e
to

 O
N

N
XR

un
tim

e

SOFIE

ONNXRuntime

Ubuntu 20.04 Intel 5000MHz (Batch Size = 1)

CPU event performance of SOFIE vs ONNXRuntime

GPU (SYCL) vs CPU performance
• using a Resnet model with  

varying batch size

CPU time for GNN inference
• varying GNN size (node + edges)

Summary

▶ SOFIE, fast and easy-to-use inference engine for Deep Learning models, is
available in ROOT
● Can be easily integrated with other ROOT tools (RDataFrame) for ML inference in

end-user analysis
● Supporting several ONNX operators and also GNNs
● A prototype implementation for GPU using SYCL has been developed

● plan to extend to CUDA and/or ALPAKA following some interest by
experiments to deploy in their GPU-based trigger system

▶ Future developments according to user needs and received feedback
● aim to support the latest production model of experiments (GNN and transformers)
● models used for fast simulations (GAN and VAE)

8

Other ML Activities

9

RBatchGenerator: Batching ROOT files

Serving tensors to ML training pipelines (ongoing R&D)
▶ Generate batches directly from a ROOT file
▶ As fast as traditional ML software
▶ Scales to very large file sizes
▶ Easy to add to workflow

▶ Working on direct integration with RDataFrame

10

NGT Activities

▶ SFT is hosting common activities of Next Generation Trigger
project
● Support tools for fast ML in FPGA:
■ hls4ml (for DL) and Conifer (BDT)
■ develop new functionality to support experiment needs

● Develop the software infrastructure for hardware-aware
neural network training workflows.
■ enable the development and deployment of hardware-optimal

AI-based real-time algorithms.

11

HLS4ML

12from V. Lonchar at 24th IEEE Real-Time Conference

https://indico.cern.ch/event/940112/contributions/5769668/attachments/2843574/4971299/PS_hawq_codesign_160.pdf

