Machine Learning Inference: SOFIE
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Motivation

» Fast Evaluation of Machine Learning models is more and more relevant
» ML tools like Tensorflow/PyTorch have functionality for inference
e can run only for their models
e usage in a C++ environment can be cumbersome
e require heavy dependence
» A standard for describing deep learning models:
e ONNX (“Open Neural Network Exchange”) @
e cannot describe all possible deep learning models (e.g. GNN) fully
» ONNXRuntime: an efficient inference engine based on ONNX ONNX
e can work in both C++ and Python
e supporting both CPU and GPU

e can be challenging to integrate in the HEP ecosystem ONNX
m control of threads, dependencies, etc.. RUNTIME
® not optimised for single-event evaluation



flachine Learning Inference in ROOT

SOFIE : System for Optimised Fast Inference code Emit

e Input: trained ML model file e Output: generated C++ code
®  ONNX: Common standard for ML models ®  Easily invokable directly from C++ (plug-and-use)
m  Tensorflow/Keras and PyTorch models B Minimal dependency (on BLAS only)
(with reduced support than ONNX) B Can be compiled at run time using ROOT Cling
B Since 6.32 support message passing GNNs JIT and can be used in Python.
from DeepMind’s Graph Nets Outputs
1. Weight File

Input: Trained ML Model
(.onnx, .pt, .hb)

2. C++ header file 3



// generate SYCL code internally
model.GenerateGPU();

// write output header and data weight file

model.OutputGeneratedGPU() ;

model.hxx

namespace TMVA_ SOFIE_Linear_event{
struct Session {

Session(std::string filename ="") {
if (filename.empty()) filename =
"Linear_event.dat";
std::ifstream f;
f.open(filename);
// read weight data file

std::vector<float> infer(float*
tensor_inputl) {

with SYCL code

SYCL.

» Extended SOFIE functionality to produce GPU code using SYCL

Minimise overhead of data transfers between
host and device

Manage buffers efficiently, declaring them at
the beginning

Use libraries for GPU Offloading: GPU BLAS
from Intel one API and PortBLAS for other GPUs
Fuse operators when possible in a single kernel
Replace conditional check with relational
functions

vy v v Vv

#include “Model.hxx”
// create session class

TMVA_SOFIE_Model::Session
ses (“model_weights.dat”);

//— event loop

for (ievt = 0; ievt < N; ievt++) {
// evaluate model: input is a C float array
float * input = event[ievt].GetData();

auto result = ses.infer(input);

Inference code needs to be linked
against oneAPI MKL libraries and
compiled using SYCL compiler



» Since ROOT version 6.32 support inference of GNNs
e parsing available for GNNs built from DeepMind’s Graph Net library
e supporting a LHCb model for full event interpretation (arXiv:2304.08610)

» Developed C++ classes for representing GNN structure.

e based on SOFIE RModel and the ROperator classes which l
provide the functionality to generate C++ inference code
» Python code (based on PyROOT) for parsing from the Graph Nets models ;

RModel_GNN_2
€ .
—} RModel_GNN —} ¢



https://arxiv.org/abs/2304.08610

Operators implemented in ROOT CPU GPU

1x3x224x224

Perceptron: Gemm v v
e Activations: Relu, Selu, Sigmoid, Softmax, Tanh, LeakyRelu, Swish v e
- Convolution and Deconvolution (1D, 2D and 3D) v e
Maxbool Pooling: MaxPool, AveragePool, GlobalAverage v v
Recurrent: RNN, GRU, LSTM v v
scale (64)
i§f§’<§4> Layer Unary operators: Neg, Exp, Sqgrt, Reciprocal, Identity 4 4
) _ + current CPU
Layer Binary operators: Add, Sum, Mul, Div v v support available
Other Layer operators: Reshape, Flatten, Transpose, Squeeze, in ROOT 6.30
— Unsqueeze, Slice, Concat, Reduce, Gather 4 4
:c?:;)(&l) . . . . ° GPU/SYCL iS
mean (00 BatchNormalization, LayerNormalization v v implemented in a
ROOT PR
Custom operator v


https://github.com/root-project/root/pull/13550/

CPU event performance of SOFIE vs ONNXRuntime

Ubuntu 20.04 Intel 5000MHz (Batch Size = 1)

Time relative to ONNXRuntime

GPU (SYCL) vs CPU performance

+ using a Resnet model with
varying batch size

FastSim CNN 2D

CNN 3D

Deep Learning Models

Time/event (ms)
- = N N
o w o w

v

[

Il sore

== ONNXRuntime

RNNLSTM RNN GRU CMS DDB

Platform
mm Intel CPU w/ MKL BLAS
== NVIDIA GPU w/ portBLAS

11.92 10.56

—
32

I8 .

Batch Size

CPU time for GNN inference

Time/evt(s)

Time/evt(s)

« varying GNN size (node + edges)

o
@
&

o
w
[RERARRARRER

0.25

-2| —@— SOFIE Intel MKL

—@— SOFIE Intel OpenBlas

—f=— Graph-Nets Intel (Eigem)

& NERRLNRRRR

o e L
2000 4000 6000

P I
8000 10000
GNN size (nodes+edges)

o
w

o

—@— SOFIE MacOS M1

—af=— Graph-Nets MacOS M1

R T S A S S S N
2000 4000 6000

P IR Y
8000 10000
GNN size (nodes+edges)



Summary

» SOFIE, fast and easy-to-use inference engine for Deep Learning models, is
available in ROOT

e Can be easily integrated with other ROOT tools (RDataFrame ) for ML inference in
end-user analysis

e Supporting several ONNX operators and also GNNs
e A prototype implementation for GPU using SYCL has been developed

e plan to extend to CUDA and/or ALPAKA following some interest by
experiments to deploy in their GPU-based trigger system

» Future developments according to user needs and received feedback
e aim to support the latest production model of experiments (GNN and transformers)
e models used for fast simulations (GAN and VAE)



Other ML Activities



Serving tensors to ML training pipelines (ongoing R&/
» Generate batches directly from a ROOT file

P As fast as traditional ML software

P Scales to very large file sizes

» Easy to add to workflow
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NGT Activities

» SFT is hosting common activities of Next Generation Trigger
project
e Support tools for fast ML in FPGA:
B his4dml (for DL) and Conifer (BDT)
B develop new functionality to support experiment needs

e Develop the software infrastructure for hardware-aware
neural network training workflows.

B enable the development and deployment of hardware-optimal
Al-based real-time algorithms.



HLS4ML

high level synthesis for machine learning
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\/y from V. Lonchar at 24th IEEE Real-Time Conference 12



https://indico.cern.ch/event/940112/contributions/5769668/attachments/2843574/4971299/PS_hawq_codesign_160.pdf

