

Test result of MBXF2 in CD1

Michinaka SUGANO, Kento SUZUKI, Tatsushi NAKAMOTO KEK

On behalf of CERN-KEK Collaboration for D1 Construction for HL-LHC WP3 meeting, 5 June 2024

Japanese contribution to HL-LHC: D1 magnets

- Beam separation dipole (D1) by KEK
 - Design study of D1 for HL-LHC within the framework of the CERN-KEK collaboration since 2011.
 - 150 mm single aperture, 35 Tm (5.6 T x 6.3 m), Nb-Ti technology.
 - Development of 2-m long model magnets (3 units) at KEK
- Deliverables for HL-LHC
 - 1 full-scale prototype cold mass (LMBXFP)
 - 6 series cold masses (LMBXF1-6)

7 units x 7-m long cold masses

Design parameters

Large-aperture single layer coil

 \rightarrow Mechanical support of a coil is challenging

Current status of each series production magnet

- 1. MBXF1
 - Cold mass was completed and transported to KEK in March, 2024.
 - A shipping company to be determined by bidding in July. We expect the cold mass will be delivered to CERN in September.
- 2. MBXF5
 - Test result of CD1 was reported in WP3 meeting on Nov 8th, 2023.
 - CD2 was postponed due to the malfunction of the He refrigerator in KEK.
- 3. MBXF2
 - Test result of CD1 is reported in this slide.
- 4. MBXF3
 - The magnet assembly in Hitachi is almost completed. The magnet will be delivered to KEK in August.

Test program of MBXF2 in CD1

- Period: May 7th 31st
- Hi-pot test at NOC
- System check
- Training
 - Up to the ultimate current (13.231 kA)
- Magnetic field measurement
 - z-scan to evaluate field integral
 - DC-loop at the magnet center
- Other items
 - Current holding test for 4h at the ultimate
 - Fast ramp test at ±30 A/s
 - Measurement of joint resistance
 - RRR measurement

Dual operation of refrigerators

20 m long LHe transfer line connecting #2 and #4 systems.

#4 Refrigerator/Liquefier for Test Stand

- 180 L/h, 2400 L dewar
- Manufactured by Teisan/Air Liquide in 1987
- New cold box in 2007

#2 Liquefier (Primary)

- 400 L/h, 5000 L dewar
- LINDE LR280 in 2014
- Mandatory to supply LHe to users at KEK.
- During CD1 of MBXF5, we had trouble with the warm turbine of #4 refrigerator.
- Cooling test of dual operation of the #4 refrigerator and #2 liquefier was conducted before this magnet test. Sufficient total liquefaction ability of 490 L/h was confirmed.
- MBXF2 could be cooled down to 1.9 K with such a dual operation.

Quench protection

- Quench detection
 - Voltage threshold: 0.1 V, detection time: 10 msec
- Quench protection heaters
 - 2 strips x 4 circuits
- Varistor (Metrosil)
 - 3 kA x 5 units
 - Validated in cold test of MBXF1
 - Healthiness is monitored by the Rogowski coils

QPH

Varistor

Hi-pot test, system check

- Hi-pot test at NOC
 - Criterion: Leak current < 10 μA
 - Coil GND: 1.3 kV, 30sec
 - QPH GND: 2.3 kV, 30sec
 - Between QPH strips: 2.3 kV, 30sec

→ Passed

- System check
 - The soundness of varistors was confirmed by signals from Rogowski coils in shutdown test and training quench at any current.

Training

- Relatively long training in MBXF2
 - 10 quenches to the nominal current
 - 18 quenched to the ultimate current
 - Quench current never decreased during training.
- The current holding test at the ultimate current for 4h was successful.
- Fast ramp test with ± 30 A/s was also done.
- Training memory will be checked in CD2.

Quench start location

					Red: Successful localization	•
Run No.	Quench number	Quench current (A)	Top/ Bottom coil	Long. position	Quench antenna	
013	1	9383	В	LE	1, 2, <mark>3</mark>	-
014	2	9925	В	LE	1, 2, 3	
015	3	10327	Т		1, 2, 3, 4, 5, 6	
016	4	10480	В		1, 2, 3, 4, 5, 6, 7, 8	
019	5	11243	Т	LE	1, 2, 3	-
020	6	11563	В	LE	2	
021	7	11572	Т	LE	2 , 3	
022	8	11780	В	LE	1, <mark>2</mark> , 3, 4, 5	
023	9	11832	Т		1, 2, 3, 4, 5, 6, 7	
024	10	11878	В		1, 2, 3, 4, 5, 6, 7	
025	11	12493	Т	LE	1, 2 , 3	
026	12	12529	В	LE	1, 2 , 3	
027	13	12628	В	RE	9, 10, 11	
028	14	12790	В	RE	9, 10, 11	
029	15	12860	Т	LE	1 , 2, 3	X (mr
030	16	13054	В	LE	1, 2 , 3	
031	17	13119	Т	RE	11	
032	18	13234	В	RE	11	

- The coil at which quench initiated changed almost alternately.
 - Training started with quenches at LE which is a common nature of D1 magnet.
- The last quench occurred a few seconds after the ultimate current was reached.
- A voltage spike appeared at the onset of a balance voltage at quenches at high current, suggesting wire motion.

Quench antenna analysis

- In any magnets, training started from the LE side
- The first RE-side quench emerged in the latter part of training with a detection delay of ~40ms.
- Longer detection delay in quenches at RE would be due to quench start location in the low field region.

Vertical magnetic field measurement system

- Field quality of MBXF5 at room temperature / 1.9 K using the KEK's vertical measurement system
 - Rotating coil (PCB):
 - 3 sets of radial coils
 - Long coils (500 mm) for integral measurement
 - Short coils (50 mm) for fine search
 - Scanning capability
 - Stepping motor and Magnescale®
 - 10-m-shaft to cover the fulllength of the magnet

Measured Items

Z-scan

- Warm, before cooling
- I = 3 kA, before training
- *I* = [687, 1k, 3k, 5k, 7k, 9k, 10k, 11k, 12.11k, 11k, 10k, 9k, 7k, 5k, 3k,1k, 687] A, after training and machine cycle (see below)
- DC loop at 1.9 K
 - Rotating coil position is fixed at the magnet center (z=0)

DC loop – comparison with calc.

- Central field quality was measured by the long coil (L=500) positioned at the longitudinal magnet center (z=0)
- Measured curves are reproducible by the calc. (Roxie2D)

Integral Measurement – comparison with calc.

FQ Summary (integral) so far

Good reproducibility was confirmed among the series production magnets.

FQ Summary and Expectation

b3		Prediction based on Opera3D (for series)	MBXF1	MBXF5	MBXF2
Horizontal warm after yoking			1.96	1.00	-0.08
	Central		4.06		
Horizontal warm	SS average		3.04	TBD	TBD
	Integral		-7.55		
Vertical in KEK	SS average		2.90	1.82	0.29
cryostat, warm	Integral		-7.55	-8.61	-9.98
Vertical in KEK	Central	-2.74	1.19	-0.62	-2.70
cryostat, 12.11kA	Integral	-4.72	-4.15	-5.49	-6.81
CERN (prediction)	Central	3.74	7.67	5.86	3.78
	Integral	-1.55 / +1.40	1.97	0.63	-0.69

b5		Prediction based on Opera3D (for series)	MBXF1	MBXF5	MBXF2
Horizontal warm after yoking			-2.34	-2.84	-3.00
	Central		-2.31		TBD
Horizontal warm	SS average		-2.49	TBD	
	Integral		-2.63		
Vertical in KEK	SS average		-2.43	-2.61	-3.27
cryostat, warm	Integral		-2.51	-2.72	-3.22
Vertical in KEK	Central	0.55	1.25	1.00	-0.10
cryostat, 12.11kA	Integral	0.63	1.39	1.18	0.53
CERN (prediction)	Central	0.77	1.47	1.21	0.11
	Integral	0.89	1.66	1.45	0.80

Measured field quality of MBXF2 with CERN cryostat agreed with OPERA3D simulation.

Joint resistance

• Joint resistance across the splice: 0.481 n Ω < 1 n Ω \rightarrow OK

Summary

- CD1 test was conducted for MBXF2. The results are summarized as follows.
 - Hi-pot test at NOC \rightarrow passed
 - Training: 10 quenches to nominal, 18 quenches to ultimate
 - Successful current holding for 4h at ultimate
 - Fast ramp with ± 30 A/s up to ultimate \rightarrow OK
 - Joint resistance < 1nΩ
 - Good and reproducible field quality was confirmed in magnetic field measurement. Measured field quality of MBXF2 with CERN cryostat agreed with OPERA3D simulation.
- CD2 will start on June 9th.

Summary of training

Red: Successful localization

Run No.	Quench number	Quench current (A)	Top/ Bottom coil	Long. position	Quench antenna	Detection delay (ms)	Quench integral from quench (MA ² s)
013	1	9383	В	LE	1, 2, <mark>3</mark>	-43.0	21.6
014	2	9925	В	LE	1, 2, 3	-45.5	23.7
015	3	10327	Т		1, 2, 3, 4, 5, 6	-38.1	24.2
016	4	10480	В		1, 2, 3, 4, 5, 6, 7, 8	-38.0	24.8
019	5	11243	Т	LE	1, 2, 3	-32.4	26.1
020	6	11563	В	LE	2	-31.1	26.6
021	7	11572	Т	LE	2 , 3	-32.4	27.1
022	8	11780	В	LE	1, <mark>2</mark> , 3, 4, 5	-31.9	27.4
023	9	11832	Т		1, 2, 3, 4, 5, 6, 7	-31.3	27.7
024	10	11878	В		1, 2, 3, 4, 5, 6, 7	-32.3	27.8
025	11	12493	Т	LE	1, <mark>2</mark> , 3	-27.8	28.4
026	12	12529	В	LE	1, <mark>2</mark> , 3	-28.5	28.9
027	13	12628	В	RE	9, 10, <mark>11</mark>	-47.2	32.1
028	14	12790	В	RE	9, 10, <mark>11</mark>	-43.4	31.9
029	15	12860	Т	LE	1 , 2, 3	-35.0	30.7
030	16	13054	В	LE	1, 2 , 3	-25.1	29.0
031	17	13119	Т	LE	11	-38.6	31.9
032	18	13234	В	RE	11	-38.7	31.9

HL-LHC PROJEC

FQ Summary Table - SS averaged & Integral for MBXF2

in KEK cryostat

Warm

n	SS (average)		Total	
	an	bn	an	bn
1		-0.028Tm	-9.031	-0.032Tm
2	-0.075	-0.389	-0.548	-0.306
3	-0.158	0.288	1.878	-9.98
4	0.657	-0.624	0.488	-0.371
5	-0.06	-3.265	-0.201	-3.222
6	0.155	-0.017	0.101	0.064
7	-0.025	0.1	0.142	-0.254
8	0.075	0.003	0.078	0.004
9	0.011	0.105	0.01	-0.311
10	0.091	-0.019	0.132	-0.034
11	0.039	-0.007	0.055	-0.199
12	0.144	-0.357	0.125	-0.331
13	0.107	-0.796	0.084	-0.855
14	0.136	-0.586	0.15	-0.571
15	0.025	-1.162	0.047	-1.112
16	0.055	-0.379	0.07	-0.37
17	-0.052	-0.583	-0.037	-0.579
18	-0.002	0.233	-0.032	0.249
19	-0.004	0.339	-0.018	0.288
20	0.006	0.024	0.028	0.061

SS (average) Central Total n bn bn an an an bn -5.58 T -35.017Tm 1 2.033 -30.794Tm -7.951 2 -0.504 0.372 -0.543 -0.279 -1.123-0.1373 -0.061 -2.699-0.2241.722 1.894 -6.8130.623 0.037 -0.116 0.396 4 0.564 0.133 0.064 5 -0.103 -0.043 0.187 -0.1950.526 0.217 0.009 0.177 -0.1170.129 -0.06 6 7 0.058 -0.304 0.018 -0.299 0.186 -0.65 8 0.191 0.004 0.098 0.141 0.077 0.156 9 0.040 0.534 0.019 0.547 -0.003 0.081 10 0.101 -0.013 0.068 0.01 0.052 0.008 11 0.013 0.103 0 0.015 0.034 -0.17312 0.002 -0.090 0.023 -0.367 0.024 -0.337 13 -0.013 -0.669 -0.023 -0.867 -0.006 -0.879 14 -0.062 -0.179-0.004 -0.68 0.021 -0.658 15 -0.024 -1.131-0.016 -1.3 -0.014 -1.257 -0.030 -0.143 -0.4710.029 -0.453 16 0.01 17 -0.002 -0.766 0.01 -0.658 0.008 -0.628 18 0.037 0.062 0.012 0.264 0.009 0.247 19 0.003 0.350 -0.002 0.377 0.015 0.369 20 -0.010 0.021 -0.006 0.019 -0.007 0.011

1.9 K, 12.11 kA

Field quality specified in Acceptance criteria

EDMS No. 2045899

	Systematic	uncertainty	random	lower limit	upper limit
b ₂	0.000	0.200	0.200	-0.800	0.800
b₃	0.000	0.727	0.727	-2.900	2.900
b4	0.000	0.126	0.126	-0.500	0.500
b₅	0.000	0.365	0.365	-1.500	1.500
b ₆	0.000	0.060	0.060	-0.240	0.240
b7	0.000	0.165	0.165	-0.660	0.660
b8	0.000	0.027	0.027	-0.110	0.110
b9	0.000	0.065	0.065	-0.260	0.260
b 10	0.000	0.008	0.008	-0.030	0.030
b 11	0.000	0.019	0.019	-0.076	0.076
a2	0.000	0.200	0.200	-0.800	0.800
a 3	0.000	0.727	0.727	-2.900	2.900
a4	0.000	0.126	0.126	-0.500	0.500
a 5	0.000	0.365	0.365	-1.500	1.500
a 6	0.000	0.060	0.060	-0.240	0.240
a 7	0.000	0.165	0.165	-0.660	0.660
<i>a</i> ₈	0.000	0.027	0.027	-0.110	0.110
a 9	0.000	0.065	0.065	-0.260	0.260
a 10	0.000	0.008	0.008	-0.030	0.030
a 11	0.000	0.019	0.019	-0.076	0.076

Table I. Target table for multipole errors at nominal field, R_{ref} = 50 mm, in 10⁻⁴ units of main field

Results of coil size measurement

Magnet	Coil	Total average (MPa)	Max value (MPa)	Min value (MPa)	Standard deviation (MPa)
	LPT-1	112	116	106	2.0
	LPB-1	110	113	108	1.4
MBXF5	LT-1	122	125	119	1.5
	LB-1	122	125	118	1.8
MBXF1	LT-2	117	120	114	1.3
	LB-2	125	128	112	1.6
MBXF2	LT-3	123	127	119	1.9
	LB-3	117	122	114	1.9
MBXF3	LT-4	117	124	112	2.9
	LB-4	129	136	124	2.9

Estimation of a2 and a4 by an MP shift model

 δ_{MP}^{sim} was estimated from the measured coil-size asymmetry, assuming no friction between the cables and collar. The measured skew quadrupole is largest in MBXF3, but still within 5 units