
Ceph

Enrico Bocchi CERN IT

Meeting with UNIL 18 June 2024, Geneva

What is Ceph?

- Distributed Storage System, Open Source
- Reliable storage out of unreliable components:
 - Runs on commodity hardware (IP networks, HDDs/SSDs/NVMes)
 - Favors data consistency and correctness over performance and availability
- Elastic and self-healing:
 - Scale up or out online and under load (or similarly shrink)
 - Automatic recovery from HW failures, res-establishing desired redundancy

Our Cluster Fleet

Application		Size (raw)	Version
RBD (OpenStack Cinder/Glance, krbd)	Production, HDDs	24.5 PB	Pacific, Quincy
Prod	duction, full-flash (EC 4+2)	643 TB	Pacific
HyperConverged (HVs with flash storage, EC 2+2)		265 TB	Quincy
CephFS (OpenStack Manila, K8s/OKD PVs, HPC)	Production, HDDs	12.6 PB	Pacific, Quincy
	Production, full-flash	1.2 PB	Pacific
HyperConverged (HVs with flash storage, EC 4+2)		220 TB	Quincy
RGW + RBD Backup (2nd location)	Production (4+2 EC)	28.7 PB	Pacific
RGW Multi-Site	Pre-Production (4+2 EC)	4.2 PB	Reef
CERN Tape Archive (CTA)	Tape DB and Disk Buffer	235 TB	Pacific

A Brief Service History

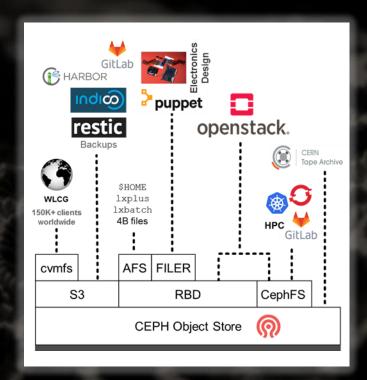
- 2013: 300TB proof of concept, 3 PB in production for RBD
- 2014-15: Erasure coding, RADOS striper
- 2016-17: 3PB to 6PB with no downtime
- 2018: S3 + CephFS in production
- 2019: Optimizing CephFS for HPC applications
- 2020: Backup cluster in 2nd location (S3)
- 2021: RBD Storage Availability Zones, HW expansion
- 2022: 17 clusters ~65PB, CephFS physical move with 0-downtime
- 2023: kernelRBD in production,
 - Explorations in Business Continuity / Disaster Recovery
- 2024: New Data Centre!

A Brief Service History

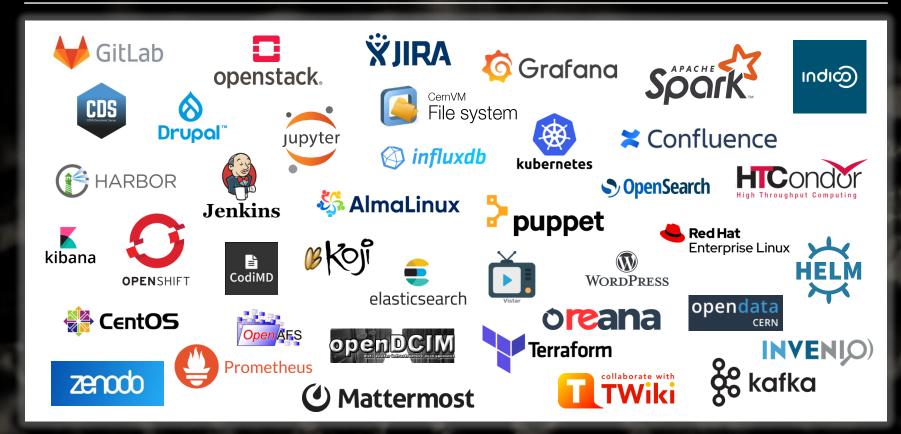
2024: New Data Centre!

Applications of Ceph at CERN

IT Services:


- Cloud Infrastructure: OpenStack, K8s, OpenShift
- Code repositories, Container Registries, GitOps, Agile Infra
- Monitoring: Open Search, Kafka, Grafana, InfluxDB, Kibana
- Document Repositories // Web: Indico, Drupal, WordPress
- Analytics: HTCondor, Slurm, Jupyter Notebooks, Apache Spark

Other Storage:


NFS Filers, AFS, CVMFS, CERN Tape Archive

Physics Experiments and End-Users:

- Accelerator Complex Monitoring
- Microelectronics Design
- Engineering and Beams

Applications of Ceph at CERN

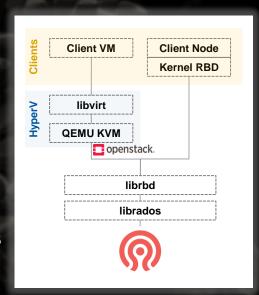
Provisioning of Ceph Storage to Users

- Self-Service administration of laaS: Storage, Compute, Network, ...
- OpenStack is the entry point for compute and storage resources:
 - Cinder volumes and Glance images on Ceph RBD
 - Keystone as vault for Object Storage keypairs
 - Manila FileShares on CephFS
- Container orchestrators build on top of OpenStack:
 - Container Storage Interface Drivers for RBD and CephFS
 - Declaration of Storage Classes and PVCs propagates to OpenStack + Ceph

Block Storage

- Reliable, flexible, virtualized block storage:
 - First Ceph-based storage entering production, oldest cluster is 11vo and rockin'
 - Different QoS (BW + IOps),
 Media types (HDD/SSD),
 Availability zones

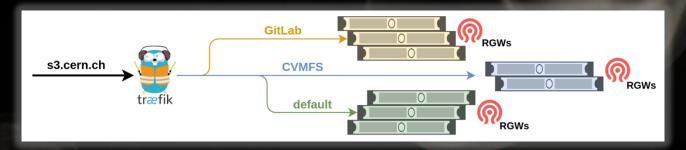
- Block devices for OpenStack VMs:
 - Provisioned through libvirt + QEMU + librdb


Volume Type	QoS	Pool Type	Azs
standard	80MB/s, 100 IOps	Ov Danlings	3 Zones
io1	120MB/s, 500 IOps	3x Replicas	
io2	300MB/s, 1000 IOps	EC 4+2	
io3	300MB/s, 5 IO per GB (min 500, max 2000)	Full-Flash	
ср1	80MB/s, 100 IOps	3x Replicas	Diesel-
cpio1	120MB/s, 500 IOps	ox Replicas	backed

- Each CERN user has a quota of 10 volumes, 250 GB (+20 cores, 20 GB RAM)
- Tenants for projects can request additional quota + specialized types

Block Storage

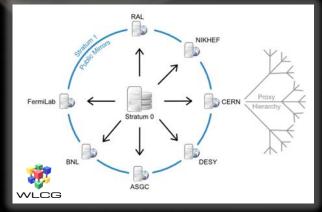
- Backend to build other Storage services on top:
 - Virtualization of AFS Disks
 - ✓ Currently biggest single consumer of RBD
 - NFS "Filers"
 - ✓ NFS exports of RBD with ZFS on top.


- Recent addition of kernel-RBD:
 - Makes Ceph RBD usable by bare-metal nodes
 - Allows for mapping RBD images as devices
 - Client isolation with namespaces and cephx keys
 - Cannot throttle clients (OpenStack Cinder does)
 - Nothing prevents mapping an image on multiple nodes

Object Storage

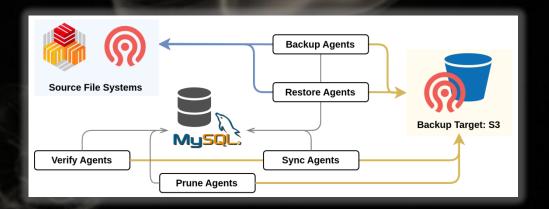
- Main production cluster: s3.cern.ch
 - 4+2 EC for data, 3x replicas for Bucket Indices
 - Exposed via 10 load-balanced IPs (round-robin DNS) with Traefik frontend
 - 16 active RadosGWs clustered into groups of users/apps

- Second S3 cluster for backups (~5 Km away):
 - ~2000 OSDs, 25 PiB raw (4+2 EC)
 - Backup for File Systems (CephFS, CERNBox, ...) via cback, s3-to-s3, and RBDs
 - Fully decoupled from s3.cern.ch Not a 2nd zone


Object Storage: What for

- Cloud native applications:
 - GitLab artifacts, Container Registries,
 Mattermost, Indico materials, ML workflows, ...
 - Prometheus Monitoring

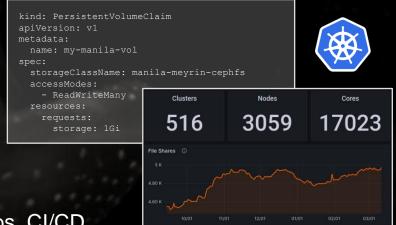
Accelerator complex monitoring "LHC Page1"


- Software distribution via CVMFS
 - Repositories of scientific software
 - Distributed over HTTP (and cached),
 POSIX mounted at /cvmfs on workers

Object Storage: What for

- File system backups with cback:
 - Backup orchestration tool for File Systems
 - Based on Restic, with the addition of horizontally-scalable agents
 - Centralized queue to keep track of waiting, in-progress, completed jobs
 - Used to backup CERNBox (Sync & Share service) and (some) CephFS
- Source: (virtually) Any mounted file system
- Destination: Ceph S3

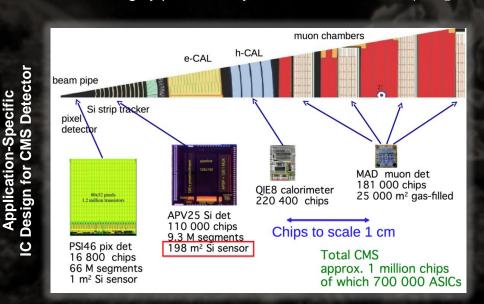
- ~40k daily backup jobs
- 1.4+ B files processed per day
- 6.8+ PB backed up to S3

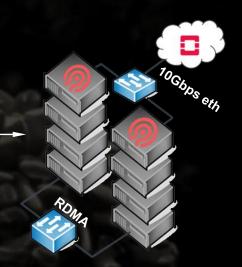

Ceph File System

- First production cluster started operation in 2018:
 - 4.2 PB on HDDs, with metadata on SSDs 3.5k subvols, 3k+ clients, 350+M files
 - 1 FS, 4 active MDS (+ 4 stand-by), no snapshots
 - Explicit pinning of subdirs to an MDS

 (+ a few selected users on dedicated MDS)
- 2nd flash cluster added in 2020:
 - 0.8 PB on SATA SSDs (data + meta) 300+ subvols, 500+ clients, 220+M files
 - 1 FS, 1 active MDS (maybe going to multi-active in the future), no snapshots
- Other 4 CephFS clusters for diverse use cases:
 - 2x HPC scratch space and working directories (with standby-replay) for MPI clusters
 - 1x DFS replacement (CephFS kernel mount + SMB export, no vfs_ceph)
 - 1x general purpose, with snapshots

Ceph File System: What For


- Persistent Storage for K8s + OKD:
 - Web-hosting (including home.cern!),
 Jira, TWiki, OpenSearch, CodiMD, ...
 - CSI-enabled clusters create/expand/ mount shares by defining k8s resources



- GitLab: On-premise instance for Code Repos, CI/CD, Software Building (rpmci), Pages, Terraform, ...
- LinuxSoft / Linux at CERN:
 - Repos to distribute packages to all Linux nodes at CERN 600k+ RPMs per day
 - Software building through koji (including ceph) ~500 builds per month

CephFS: A Short HPC Digression

- CERN's "Software Defined HPC":
 - Compute is MPI scheduling with HTCondor + Slurm
 - Storage is CephFS on 2 clusters
 - ✓ General-purpose via OpenStack Manila
 - ✓ Full-flash storage on HPC compute nodes → HyperConverged
 - ✓ Highly parallel, fully-consistent POSIX FS (LazyIO is an option)

HyperConverged Setup

- > Intel Xeon E5 2630, 128GB
- 4x 960GB Intel S3520 → OSDs
- > RDMA + 10 Gbps Ethernet
- CephFS on Quincy 17.2.15
- → 1 active MDS (+1 stand-by)
- 3 replicas, rack-aware

