

CERN DataCenter/Cloud Network

UNIL@CERN: CERN Cloud Network - Daniel Failing - 18.06.2024

Overview

- DataCenter Network
- Cloud Network
- Feature set
- QA

DataCenter/CERN Network

Context – Current network setup Meyrin DC

- Servers connected to
 - ToR or EoR (per density) Ο
- Multiple routed L2 domains
- Spine/Leaf Routers
- BGP+some remaining OSPF in Spine
- Full Dual-Stack IPv4 / IPv6
- Mix of private and public IPs

Servers connected to

- ToR
- Multiple routed L2 domains
- Spine/Leaf Routers
- **BGP** only
- Full Dual-Stack IPv4 / IPv6
- Mix of private and public IPs
 - => Similar to MDC

Context – Current network setup CERN

- Multiple domains
- Routers distributed on different sites
- Different Firewalls + ACL
- All networks directly routable internally
 - Certain private networks

Cloud Network

Cloud Network - Physical Servers for users

- One IPMI network port
- One operating system port, one IP
 - Hypervisors have additional subnet on the same port for VMs
- IPs stay (mostly) during the full time
- Network not managed by Cloud team, using site wide DHCP
 - +PXE for setup with OpenStack Ironic

Cloud Network - Current offering for VMs (Meyrin)

- VMs connect over LinuxBridge
- Separated Subnets / Segmented
 - hidden from user
- Mantra: "Everything in same network"
 - => no E/W isolation

- User perspective:
 - 1 VM, 1 port, all in same public network

New requirements / Old limitations

- Add ability to migrate VMs between hypervisors in different subnets
- New hypervisors can easily host over 100 VMs
 - some performance issues seen in current setup with higher VM count
- LinuxBridge implementation upstream marked experimental / unsupported
- Different teams ask for
 - Private Networks
 - Security Groups (Firewall rules on HV level)
 - Floatings IPs

Cloud Network Setup (New/PDC)

- Open Virtual Network (OVN)
- Open VSwitch (OVS) per Hypervisor
- Central OVN Network DB for configuration
 - Flow rules in local OVS bridge
- DHCP, Metadata for VMs in Hypervisor
- Public networks leaves eth0 directly
- Private networks tunneled to target host

User Facing Features

Different network types in PDC

- Public/Provider network (from start)
 - Keep existing functionality to simplify on-boarding
 - one subnet per 16 servers/2 racks (approx 1000 IPv4 + IPv6)
- Private/Tenant networks (Q2-Q3/2024)
 - Overlay network with OVN
 - Geneve tunnel between hypervisors

Private/Tenant Networks

- Isolated tunneled network creatable by user (Geneve tunnels)
- (Virtual) Routers to connect to other private or public networks
- For now limited to VMs in the setup

Security Groups

- Firewall for VMs on hypervisor level
- Allow certain groups of servers to talk to each other
- Whitelist approach
- Break of current mantra: "Everything can communicate with everything"
- Experience to be gained for large-scale deployment
 - Performance
 - User feedback

Load-Balancing as a Service

- Based on Openstack Octavia
- managed HaProxy in a VM
- Guaranteed fixed (public) IP address
- configurable via API
- centralized monitoring

Beyond / Plans

- Short term:
 - > validating functionality with users
 - scalability test and gain confidence
- Migrate existing setup (old DC) to OVN (~15000 VMs, ~1700 hypervisors)
 - Migration path not straightforward
- Better integration with routers (e.g. BGP, EVPN)
 - Active/Active LBaaS
 - ➢ Floating IPs
 - Even greater flexibility to move VMs

Upstream Network Setups (Quick Summary)

- Network Service: Openstack Neutron
- Support for multiple vendors:
 - LinuxBridge
 - currently in use for other DC, marked experimental now
 - OpenVSwitch (OVS)
 - > widely used
 - Open Virtual Network (OVN)
 - more flexible, widely used and recommended upstream
 - hardware vendor specific drivers
 - > potential vendor lock-in, typically only for hardware switches/routers

Q&A / Discussion

Backup Slides

Load-Balancing as a Service

- Migrated out of TungstenFabric Q4/2023
 - Now based on OpenStack Octavia
- HaProxy in a VM
- Guaranteed fixed (public) IP address
- managed via API
- Users
 - Kubernetes Clusters, OpenShift
 - Windows Terminal Servers, Registry, ...
 - Project with ATS
- Plan: Active/Active LBs in 2024

OVN Components

- OVN Northbound (NB) DB
 - ➢ "Port", "Router", "Switch"
- OVN Southbound (SB) DB
 - ➢ Hypervisor, Flow rules
- OVN northd
 - Translation between NB and SB
- OVN SB Relay
 - Relay/Cache for scaling

OVN Northbound

- Stores global abstract network view
- OVN NB: "Port", "Router", "Switch"

OVN Southbound

- OVN SB: Hypervisor, Flow rules
- Example FlowRule routed packet:
 - packet from port A
 - verify IP/MAC
 - \circ check TTL
 - modify SRC IP
 - check firewall
 - send out port Z

Hypervisor

- OVN Controller + OpenVSwitch (OVS)
- Central OVN Network DB for configuration
 - Flow rules in local OVS bridge
- DHCP, Metadata for VMs in Hypervisor
- Public networks leaves eth0 directly
- Private networks tunneled to target host

