

CERN - UNIL

18.06.2026

AGENDA

1. NETWORK

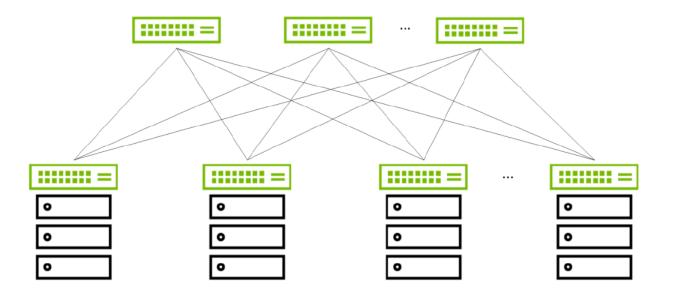
2. VMWARE / ARIA

3. KUBERNETES

4. HPC (DCSR)

NETWORK

NETWORK @ Unil


- Serving 21k + people (incl 17k students)
- Campus
 - 40 buildings
 - o 600 switches
 - 800 wifi antennas
- Datacenters
 - 3 sites on campus
 - o from a network perspective = 1 logical DC

DC Technological stack

- Nvidia Cumulus Linux
- Palo Alto
- F5 BigIP
- Prometheus/Grafana + ElasticSearch/Kibana

patacenter rabric

- Leaf-Spine Topology
 - with 40Gbs uplinks (soon to be 100Gbs)
 - o around 20 switches
- VXLAN + BGP EVPN
 - Overlay/Underlay
 - Allows us to provide extended vlans between Servers our DCs
 - ECMP loadbalancing + redundancy

nvidia cumulus Linux

- In production for 6+ years
- Managed like a Linux system
 - Really easy to automate
 - Generate new config + `systemctl reload ...`
 - Linux best practice and tools are available (syslog, grep,...)

automation philosophy

Goal:

- Shift from repetitive to high value work
- Do more with same resources

How:

- Scale-able architecture
- Standardize services as much as possible
- Ease of automation = requirements for new products

network as code

- Everything in git (code + issue tracking)
 - Mandatory process of PR + review before any change
- Deploying with ansible

Describe desired target state as data structures in yaml

Self-Service: will modify those data structures as well

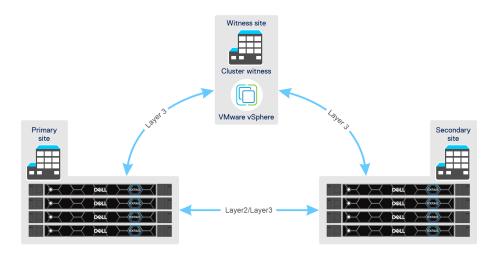
question

Unil

question

Thank you

VMWARE


Arnaud Burkhalter

VIRTUAL MACHINE INFRASTRUCTURE

- Mission: Provide infrastructure to host VMs for the faculties and administrative purpose.
 Don't include VM for research projects which are hosted in dedicated infras (DCSR)
- Hyperconverged Infrastructure VxRail with vSAN
- Stretch clusters
- Main cluster VxRail / vSAN Cluster
 - Hosting all non-research UNIL VMs
 - VMware ESXi
 - 16 Nodes (2 sites x 8 nodes)
 - Cluster Capacity
 - Storage: 670 TB full flash vSAN
 - Memory: 28 TB RAM
 - CPU: 1824 cores
 - 1200 Virtual Machines
 - Linux & Windows Servers

- SAP VxRail / vSAN cluster
 - Dedicated to SAP applications VMs
 - VMware ESXi
 - 6 Nodes (2 sites x 3 nodes)
 - Cluster Capacity
 - Storage: 84 TB full flash vSAN
 - Memory: 12 TB RAM
 - CPU: 384 cores
 - 20 VMs
 - Linux Servers

VIRTUAL MACHINE INFRASTRUCTURE

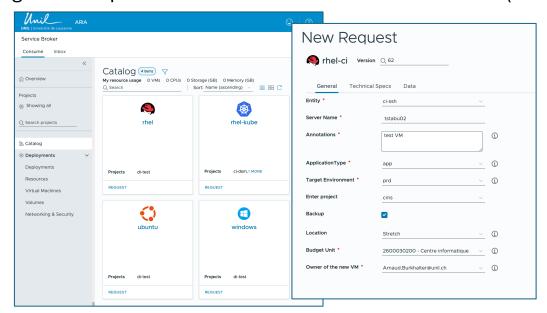
- Some other smaller standard vSphere clusters.
- No VxRail, No vSAN, non-stretched
- DAS01 test Non-stretched
 - Hosting infra test VMs
 - VMware ESXi
 - 2 Nodes
 - Cluster Capacity
 - Storage: 7 TB
 - Memory: 1 TB RAM
 - CPU: 80 cores
 - 37 Virtual Machines
 - Linux & Windows Servers

- DAS02_phone Non-stretched
 - Hosting Avaya phone application VMs
 - VMware ESXi
 - 2 Nodes
 - Cluster Capacity
 - Storage : 5 TB
 - Memory: 255 GB RAM
 - CPU: 40 cores
 - 11 VMs
 - Linux appliances

MAX

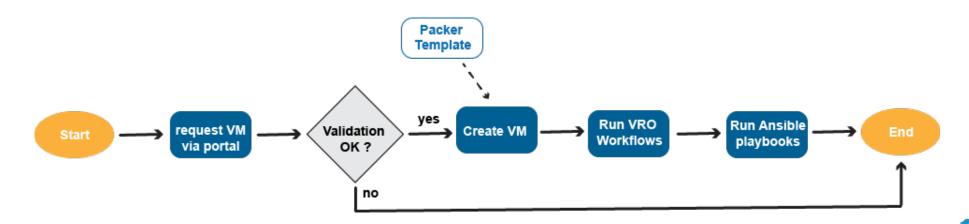
- Hosting Witness VMs
- VMware ESXi
- 1 Node
- Cluster Capacity
 - Storage: 21 TB
 - Memory: 1.3 TB RAM
 - CPU: 64 cores
- 8 VMs
- Host Linux & Windows Servers

VM CREATION - PORTAL



UNIL provide a portal to deploy VM in a fully automated way. The faculty members can create their VM without needed contacting IT.

Based on product Vmware ARIA Automation (previously vRealize Automation)


Portal usage:

- VM request
- VM management: replace the vcenter for the basic tasks on VM (for non-IT users)

VM CREATION - PORTAL

- Template: In ARIA, we use OS Image template, created with HashiCorp Packer.
- VM Creation: ARIA is linked with vCenter for VM creation. Use of YAML to define blueprints.
- <u>VM Creation Customization</u>: Workflow scripting (JavaScript, Python, Node.js) for customization tasks during deployment.
- Post-deployment: call ansible playbook to execute customization tasks.

question

Unil

question

Thank you

KUBERNETES

Mikael Doche Nicolas Montes

KUBERNETES - History

- 2018, The two technologies was neck and neck, and Docker was also more popular at the time
- Beginning of 2019, Docker Swarm was introduced at UNIL for a limited group of users/departments
- In 2020, K8S gained in popularity and was more mature, so, UNIL started digging more into it
- In 2021, due to license limitation and the freeze of features in Docker Swarm, UNIL decided to make the move to K8S
- Mid 2022, Docker instances was moved to Rancher K8S clusters
- Meanwhile, the K8S Infra team beginning redesigning K8S automatic creation workflow
- November 2023, UKS (UNIL Kubernetes Service) was officially launched for UNIL community

KUBERNETES - UKS SOLUTION

UNIL Kubernetes Service (UKS) consist of the following

- Full stack Kubernetes cluster using Rancher API calls
- Cluster nodes up and down scaling support
- CSI driver with CEPH Storage support
- Image Registry using Jfrog Artifactory
- Backup solution with Velero and Cohesity S3 buckets
- Load balancing support using F5 solution
- Firewalling solution using custom automation processes

KUBERNETES - UKS Solution

UNIL provides Kubernetes cluster solution for its community members
Any experienced user/department can create a cluster
Clusters are isolated from the others and are spread into four environments

- Sandbox (AKA BAS)
- Development
- Testing (UAT like)
- Production

Users can manage their clusters as they want and are responsible for the management of various applications running in a cluster

IT department are responsible for maintaining the clusters up to date and for the underling part that compose a cluster, such as VMWare, CEPH Storage, F5 Load balancer, etc.

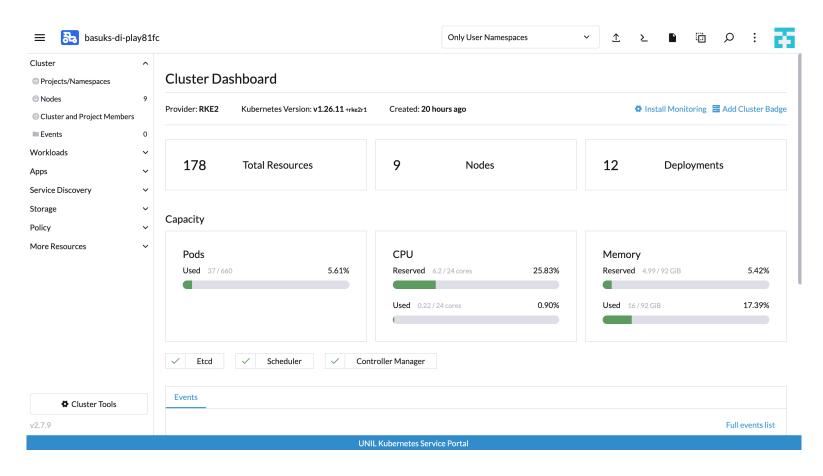
KUBERNETES - SECURITY

- Kubernetes security relies on firewall rules, K8S network policies, Pod Security Admission, rBAC and custom image scanning process using XRay for Artifactory.
- Clusters could be exposed to Internet via Ingresses that are behind firewall and the F5 Load balancer, which limit access, which prevent DOS, DDOS and other network attacks.
- K8S components are automatically updated when a minor releases is available.
- OS Update occur on daily basis.

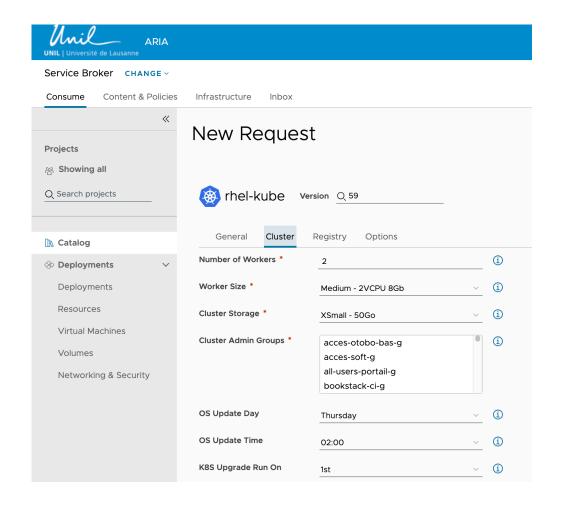
KUBERNETES - used technologies

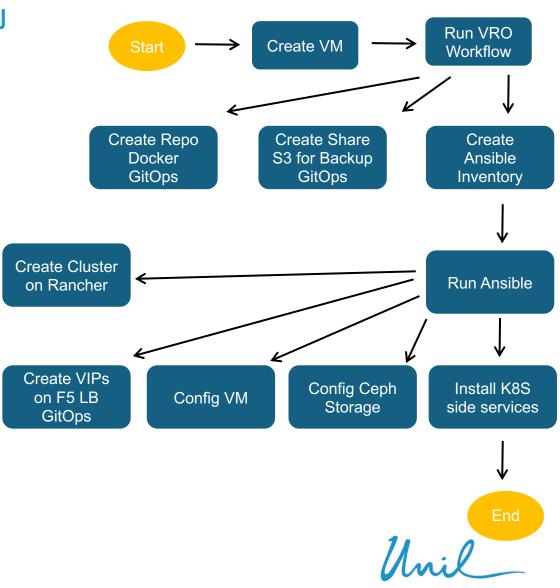
Our Kubernetes clusters relies on those technologies

- Vmware/ARIA (vRealize)
- RedHat
- AWX
- **Artifactory**
- Docker/RKE2
- Rancher
- F5
- Cohesity
- Ceph



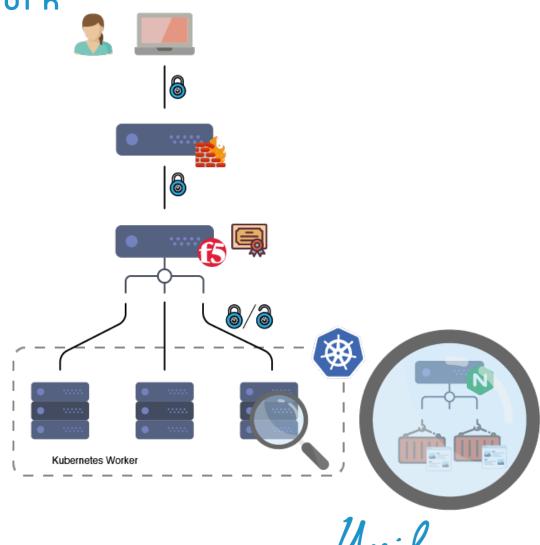
KUBERNETES - Rancher

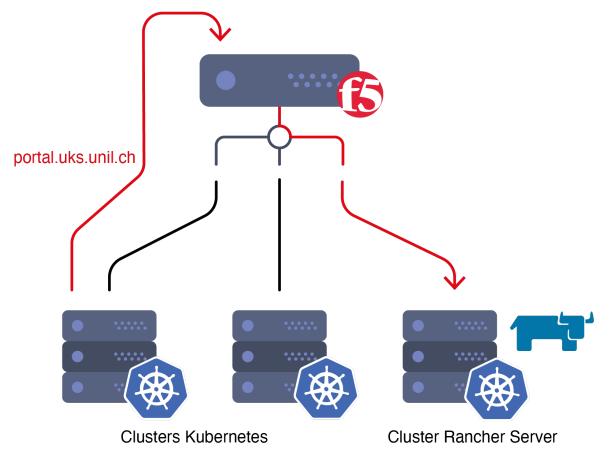



KUBERNETES - Rancher

- Kubernetes web GUI
- Central Multi-cluster management
- Allow easy ACL management including LDAP support
- Paid Suse Rancher support available
- Easy/One click cluster upgrade
- Public clouds integration
 - Openstack
 - Vmware
 - AWS
 - Etc...

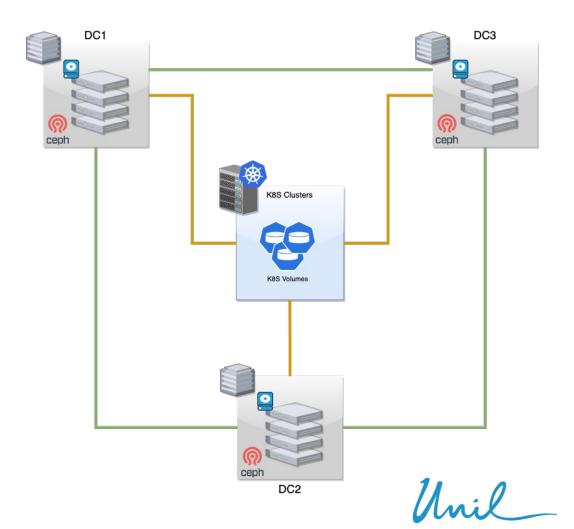
- Third-party tools integration
 - Prometheus/Grafana
 - Istio
 - OPA Gatekeeper
 - NeuVector
 - Etc...
- Rancher continuous delivery that automatically deploy helm chart on managed clusters
 - ceph-csi-cephfs
 - Ingress NGINX or Traefik
 - Velero
 - Etc.


KUBERNETES - CREATION WORKFLOW

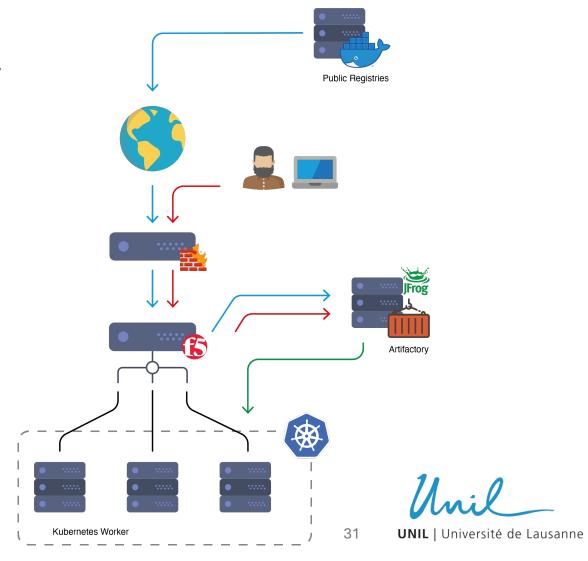

KUBERNETES - Architecture - network

- Ingress traffic are routed through out the F5 Load balancer
- F5 Load balancer send traffic to Kubernetes nodes which could run Nginx or Traefik local ingress system
- Client have two VIPs
 - External VIP which could be accessible from the outside
 - Internal VIP only accessible inside UNIL network
- Currently only HTTP and HTTPS traffic is allowed
- SSL Certificates are automatically generated on the F5 Load balancer

KUBERNETES - Architecture - rancher


- Dedicated K8S cluster for Rancher Server running on top of RKE2 (Rancher Kubernetes Engine v2)
- About 20 clients K8S clusters manager by Rancher Server
- Each client cluster running on top of RKE2 (Rancher Kubernetes Engine v2)
- Client's cluster contacts Rancher Server via the F5 Load Balancer (portal.uks.unil.ch)

Clusters Kubernetes RKE2


кивекиетеs - architecture - storage

- Dedicated CEPH cluster is used as for the Kubernetes backend storage
- CEPH cluster is split across 3 datacenters
- Each DC, has 2 storage nodes (OSD) and 1 monitor
- The manager is a virtual machine that relies on the VXRail VMWare infrastructure
- Each K8S cluster has a dedicated cephfs subvolume
- 104TB available storage / 3 (x3 replicas) = 34TB usable for Kubernetes clusters

KUBERNETES - Architecture - image registry

- Image registry relies on Artifactory from JFrog
- Each cluster has a dedicated cluster image registry
- Cluster registry has two defaults credentials
 - Read Write (DevOps)
 - Read Only (Cluster Deployment)
- User can access the cluster image registry with their user/group LDAP account
- The cluster image registry is automatically linked with the on demand K8S cluster
- Artifactory and cluster image registries are behind F5 Load balancer

question

Unil

question

Thank you

HPC (DCSR)

Division de Calcul et de Soutien à la Recherche (Scientific Computing and Research Support Unit)

Volker Flegel

mission & goals

- Provide support to research projects for all faculties
- Computational resources
 - Storage (NAS, Object Store, Cluster FS, Encrypted Storage, VM datastore)
 - High Performance Computing
 - Secure Computing Environment for sensitive data
 - Virtual Machines (Servers, Desktops)
- Logistical support for research projects
 - Infrastructure support
 - Software optimization & developpment
 - Research Analysis multi-level support
 - Machine Learning
 - Courses & Training

storage resources

Generic storage for research data

- NAS
 - ~5 PB (Isilon)
 - Accessible from Campus
 - Non-sensitive or personal data

- S3 ObjectStore
 - ~1.5 PB (Scality)
 - Accessible worldwide
 - Non-sensitive or personal data
 - Data exchange with external partners
- Tresorit (cloud)
 - External storage partner
 - Sensitive data
 - Encrypted

- Long Term Storage
 - ∞ (StorNext Tape HSM)
 - No direct access
 - Non-sensitive or personal data
 - Archival space for finished projects

computational resources

Virtual Machine Infrastructure

- Virtual Desktop Infrastructure
 - VMware VDI (Horizon)
 - 4 Nodes
 - 128 cores
 - 1 2 TB RAM
 - GPU: Tesla T4, Tesla V100
 - Linux & Windows Desktops
 - Accessible from Campus
 - Non-sensitive or personal data
- Security:
 - NSX-T Network Isolation

- Virtual Server Infrastructure (VSI)
 - VMware ESXi
 - 3 Nodes
 - 128 cores
 - 2 TB RAM
 - Host Linux & Windows Servers
 - User Managed services
 - Expose services Internal or External
 - Non-sensitive data
- Security:
 - NSX-T Network Isolation

- VSI Sensitive
 - VMware ESXi
 - 2 Nodes
 - 64 cores
 - 512 GB RAM
 - Host Linux & Windows Servers
 - User Managed services
 - Expose services Internal or External
 - Sensitive data
- Security:
 - NSX-T Network Isolation

PowerVault

• ~400 TB

computational resources

HPC Infrastructure

- HPC cluster Curnagl
 - Standard HPC
 - 88 Nodes + 8 GPU Nodes
 - 48 cores AMD Epyc
 - 84 nodes: 512 GB RAM, 12 nodes: 1TB RAM
 - GPU: 2x A100 / node
 - Non-sensitive or personal data
 - Slurm scheduler
- Security:
 - Network separation & Firewalled

- HPC cluster Urblauna
 - HPC for sensitive data
 - 16 Nodes + 2 GPU Nodes
 - 48 cores AMD Epyc
 - 1 TB RAM
 - GPU: 2x A100 / node
 - Sensitive data
 - Slurm scheduler
- Security:
 - "Air-gapped" Network separation & Firewalled
 - 2FA
 - Guacamole WebRDP
 - JumpHost for SSH & data upload (SFTP)
 - POSIX Access rights

- OpenStack SENSA
 - Cloud Computing for Medical data
 - 18 Nodes + 4 GPU Nodes
 - 20 52 cores
 - 384 512 GB RAM
 - GPU: 6x A100, 2x RTX2080
 - Research project isolation (Tenants)
 - Tenants managed by DCSR
 - Encrypted Filesystems per Tenant
 - Sensitive / medical data
- Security:
 - "Air-gapped" Network separation & Firewalled
 - 2F4
 - Guacamole WebRDP
 - Encrypted data upload
 - Per Tenant encrypted Filesystems

GPFS (~2 PB) NAS

On login-node

GPFS (~1 PB)

StorNext HSM

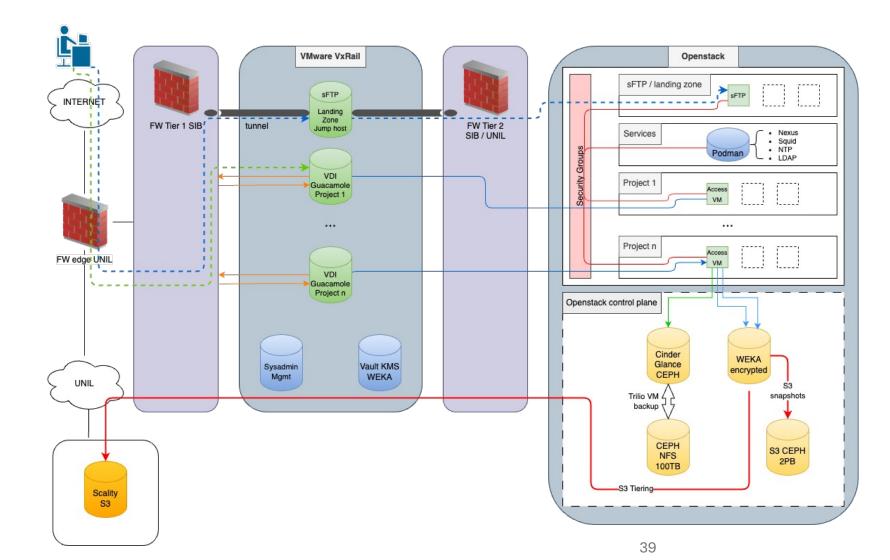
At-rest tape encryption

CEPH

· At-rest encryption

WEKA.io

- At-rest & in-transit per Tenant encryption
- Tiering (S3)


sensa - openstack for sensitive / medical data

Access restrictions

- Allowlists (IP, VPN, ...)
- 2FA / eduID
- Incoming data via transfer requests
- Outgoing traffic only to proxied resources
- · No Admin rights on Tenant or VM

Project level isolation

- Web-RDP service
- Security Group network isolation
- Encrypted storage (in-transit, at rest)

question

Unil

question

Thank you