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Physics Requirements on Vertex Detectors 
Performance
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Introduction
Revising physics requirements for EWK/Higgs/top factory

• The detector requirements for a EWK/Higgs/top factor such as te FCC-ee need to be 
extensively revised. This has been the driving idea behind of  the work of  the past 
years.  

• Several reasons:  
- Different experimental environment —> See next talk by M. Boscolo  
- Exquisite precision on EWK measurement at the Z and WW 
- When statistical errors are minuscule the focus is on the control and reduction of systematic 

uncertainties (from acceptance, construction quality, stability…)  
- Huge statistics at the Z allows a unique ad extensive  Flavor program with specific 

reconstruction needs 
- Huge statistics at the Z allows a unique discovery potential for very weakly coupled BSM 

particles that needs to be considered in the detector design 
- A whole program at √s=365GeV for top and Higgs that might have yet different detector needs
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FCC-ee Energy range & luminosity
Producing in a clean environment all the heaviest SM particles
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FCC-ee Energy range & luminosity
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FCC-ee Energy range & luminosity

4

In each detector: 
105 Z/sec, 104 W/hour, 

1500 Higgs/day, 1500 top/day

LEP Data statistics 
accumulated every 2 

minutes!

Never produced 
before at a lepton 

collider!

“Tera-Z”



Extracting detector requirements 

• Choose representative measurements or searches, that are key to 
the physics program and that put constraints on the 
performance of  one, or several, subdetectors  

• Ultimately, which processes set the tightest constraints on a given 
performance metrics will be known only when analyses are 
completed ( interplay of  reconstruction tools, backgrounds etc) 

e+e−
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➤ Reducing major experimental systematics uncertainties 

➤ Extending sensitivities/acceptance

➤ Different detector concepts could make different trade-offs

➤ Multiple detector options allow to diversify the design



Physics that needs an excellent vertex detector
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HIGGS: Jet flavour identification (tagging)  of b-, c-, g-, tau- etc… Measure of Higgs couplings

FLAVOUR: precise reconstruction of PV/SV/TV for flavour physics


e.g.  time dependent CPV measurement, rare decays ,  precise lifetime measurementB → K*ττ τ

Z: Jet flavour identification (tagging)  for HF EWK observables Rb, Rc, AFB, 

W : Jet flavour identification (tagging),  CKM parameters  Vcb Pure WP for calibration

BSM: long lived particle signatures



Range of different performances
From sensors to DAQ

• Tracking 
- Track seeding (depending on the 

tracking system)  
- Track momentum resolution  
- Low momentum track reconstruction: 

how low can we go? 
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• Occupancy/Rate  
• Beam induced 

background  
• Fake tracks mitigation 
• Triggerless readout 

• Timing information 

• Vertexing:  
• Primary interaction vertex 
• Secondary and tertiary (D-meson, 

tau-leptons, flavour tagging)  
• Vertex properties beyond 

resolution: Charge of displaced 
vertex, particle composition 
(interaction with PID)

√s dependence 



Generic requirements
Need to find a middle ground 

• Complete coverage  

• Smallest possible inner radius 

• Exquisite spatial resolution  

• Small occupancy for beam 
related backgrounds
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• Smallest material budget  

• Excellent alignement  

• Effective cooling 

…Needs and constraints can be different at different √s



One word on the context 
Vertex connection with the main tracker & simulatio tools

• “Case studies” allow to evaluate the effect of  different design choices via the 
final measurement uncertainties. 
- Different for different √s  
- Need to consider also tracking  

• Availability of  Delphes with fancy covariance matrix approach* allows to 
properly treat point resolution error and multiple scattering effects from 
material.  
- But no account for fakes and pattern recognition errors (impacting also  DAQ)  
- Vertex design choices can impact significantly also these aspects, but we need 

FullSimulation with complete background treatment and reconstruction: no simple 
solution, trade offs are necessary.   
- These would be related to: granularity, redundancy, hermeticity.  
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Work In 
Progress

* F. Bedeschi



Basics of vertex dectector 

• The tracks impact parameter is driven by the performance of  the Vertex detector that is 
placed closest to the interaction point and provides and very precise position information.  

• Precise Impact parameter is key for the primary and secondary (tertiary) vertex 
reconstruction, for identification of  heavy quarks (b,c) and taus leptons, and for lifetime 
measurements.  

- The asymptotic term a is driven by the single hit resolution, while the multiple scattering contribution 
depends on the material budget.  

- The samples generated in Delphes for the MidTerm report physics studies, considered a beam pipe of 
r=1cm, with the first layer at r=1.2cm and single hit resolution of 3um. Some alternative designs have 
been explored as well to extract specific requirements on the VXD. 
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Impact parameter resolution
Delphes studies
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New studies are in progress with 
FullSimulation and more realistic 
digitization



W,Z,H and top 
Identifying Jets 

• Many crucial physics measurements need to exploit hadronic decays of  
Z,W,H,top (i.e. jets):  
- At different center of mass energies from √s=90 to 365GeV 
- Because of larger BR, in addition to the leptonic final states. i.e. ZH recoil with 

hadronic Z decays, top properties)  
- Clean final state allows measurements “hard” at LHC, i.e. with charm or strange 

jets (H->cc, Vcs) 
- Jet flavour identification helps reduce combinatoric  

• Need pure and efficient reconstruction and tagging of  jet flavor/types 
(“inclusive” tagging): GNN algorithms such as ParticleNetIDEA 
- Final optimisation, based on the measurement uncertainties, needs to take into 

account all the steps including software & analysis
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Flavor tagging principles 
From hadron to lepton colliders

• Bottom and charm tagging:  

- Large lifetime (~1/0.1ps) and decay length (~500 ) 
- Significantly displaced tracks and vertices: 

- Primar vertex reconstruction 
- Secondary and tertiary vertex reco 

- Large track multiplicity (~5 charged), larger than light 
quarks or glues 

- “Soft” non isolated charged lepton inside the jet in 
20/10% of te time for b/c-hadrons decay 

• Note: higher performance on bottom/charm in 
helps classification of  strange, light quarks, 
gluons, etc… 

μm
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Uncertainties on the track IP and 
PV, SV and TV reconstruction are 

inputs to the algorithm 



Dissecting tagger performance
Connecting detector characteristics to macroscopic quantities

• Impact parameter resolution is a major driver for b/c tagging 
- Single point resolution  
- Radial distance of first tracking layer <-> beam pipe radius 
- Number of layers 
- Material budget X/Xo 

• Studies in Delphes with FastCovTracking (and now also in FullSim) to evaluate the dependency from 
point resolution 

- Input:  point resolution 
- Here CDR geometries 

3μm
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At the moment no detailed digitisation 
and clustering available in FullSim for 
the vertex detectors (WIP). Will need 
them for refined optimisation about the 
geometry and placement 

IDEA: light drift chamber  
CLD: all silicon tracker 

https://doi.org/10.1140/epjc/s10052-022-10609-1

DELPHES FULL-SIM

Armin Ilg

https://doi.org/10.1140/epjc/s10052-022-10609-1
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• Impact parameter resolution is a major driver for b/c tagging 
- Single point resolution  
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- Material budget X/Xo
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• New studies  in Delphes 
retraining the tagger: 
- Negligible effect on bottom, 

but visible on charm 

BOTTOM CHARM

Andrea Sciandra
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https://doi.org/10.1140/epjc/s10052-022-10609-1

• The distance of the first vertex 
detector layer to the interaction 
point is the most important 
parameter for IP resolution and 
consequently b and c tagging 
performance.  
- In this study: 3layers, innermost at 1.5 cm 
- Addition 4th layer at 1cm (before change 

of beam pipe radius) 

INITIAL STUDY 

https://doi.org/10.1140/epjc/s10052-022-10609-1
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https://doi.org/10.1140/epjc/s10052-022-10609-1

• New studies retraining Delphes:   
• Innermost layer at 1.2cm 
• Remove 2nd and 4th 

innermost 
• As seen before: charm tagging 

sensitive to the number of pixel 
layers (while bottom not) 

Andrea Sciandra

https://doi.org/10.1140/epjc/s10052-022-10609-1
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Connecting detector characteristics to macroscopic quantities

• Impact parameter resolution is a major driver for b/c tagging 
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- Material budget X/Xo
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Andrea Sciarma



Impact on measurement precision
Bottom and Charm Yukawa coupling

• Charm Yukawa unique precise 
measurement at FCC-ee  

• Dependence of  the final precision on IP 
resolution  
- Need the full analysis, combining several 

final states  
- Bigger effect on the charm Yukawa than on 

bottom:  
- Small S/B ratio  
- Short flight distance of the charm 

requires better resolution to be resolved 
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Factor 2 degradation(improvement) in the IP brings factor 3% 
degradation(improvement) on the measurement: δμ(Hcc) = 2.05 % → 2.64 %



Impact on measurement precision
https://arxiv.org/pdf/2309.13231

• A CEPC study of  the variation of  precision on signal strength 
as a function of  detector parameters, such as material 
budget, single hit resolution and radius of  the 1st layer.  
- Comparison of LCFI+ with ParticleNet: important not to neglect the 

impact of different software 
- ParticleNet has a lower dependence on the geometric parameters.  
- However, both methods have the same order of impact for three 

different geometric parameters.  
- Both identify the inner radius as the most sensitive to flavor 

tagging performance and spatial resolution as the least sensitive 

• Study considers effect on variation of  accuracy of  final 
measurements for various processes

20M. Ruan et al. 



Requirements from flavour physics
Tera-Z unique flavour physics environment

• Z pole run provide extensive opportunities 
not only for EWPO, but also for unique 
flavour physics measurements  
- About 15 times more B0,+ mesons compared 

to Belle II 
- b-quark boost ⟨βγ⟩ ≈ 6 for ultra-clean 

selection
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• Requirements from flavour physics concern several aspects of  the 
detector: vertexing, tracking, particleID, calorimetry 

• Most relevant for vertex detectors are: Modes with neutrinos in the final 
state and taus 



Secondary and tertiary vertices

• Primary vertex in Z->hadron events has typically  and 
 using a beam spot constraint 

• Secondary(Tertiary) vertices resolution in our studies with IDEA spans 
between 10 and 80microsns and depends on many factors:  
- number of tracks in the vertex  
- track momenta  
- angular separation of the tracks  

• Need to determine the processes that would bring strongest 
constraints to estimate the ultimate requirements.  
- these are unique measurements not possible in other types of machines

σx,z = 2 − 3μm
σy ≈ O(0.1)μm
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Requirements from B → K*ττ

•  is an important LFU test in  
transitions  
- BRSM~O(10-7) very small  
- Focus on the 3-prong  decays ( ) 

• Very complex analysis with a very rich signature:  
- 8 visible particles (1K, 7π)  
- 1 secondary vertex and tertiary vertices  
- Many backgrounds & combinatorics: need BDT for 

selection

B → K*ττ b → s

τ 3π + ν
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T. Miralles



Requirements from  (2)B → K*ττ
Exploring different configurations

• Neutrino reconstruction is the 
crucial part. 
-  It depends critically on the precise 

SV/TV precision 
- Need a transverse precision on the 

SV/TV  better than 5um  

• Exploring different configurations:  
- Improvement of Track momentum 

resolution not as crucial as 
improvement in the track IP
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T. Miralles



EWPO Meets Flavour
New synergies 

• Several flavour measurements depend 
crucially on the correct B-hadron 
reconstruction  of  one of  the sides.  
- This could be crucial also for EWPO related to 

flavor (Rb, Rc, asymmetries  etc...) since the large 
Tera-Z statistics allows to use exclusive decays to 
squeeze systematic uncertainties.  

- Explored exclusive b-hadron reconstruction in 
order to have an ultra-pure (≥99.8%) tagger for 
Rb measurement.    

• Ultimate requirements still not defined, but 
very interesting studies getting there 
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L. Roherig



Reducing systematics on Rb
Correlation between  and σ(Rb) Cb

• Main source of  systematics:  
- Hemisphere correlation ∆Cb driven 

by PV determination 
- Various options explored to reduce 

the dependence: improvement in the 
PV precision determination or  
different track selection to overcome 
the PV bias.  

- Studies with CLD FullSim package  
- note only smearing of vertex hits, 

no digitization 
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L. Roherig



Reduce the PV bias on Cb

• With the cut on the luminous region for the PV:  
- the dependence of Cb on the PV resolution is removed 
- the dependence on the flight asymmetry is also removed 

• Still to explore dependence on IP resolution for assignement of  tracks to PV 
important not only for the exclusive tagger, but also for the inclusive ones. 
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L. Roherig
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Lifetime measurement and alignement
Just few words

• Precise measurements of  the mass, the lifetime and the leptonic 
branching fraction of  the tau lepton offer a crucial test of  lepton 
flavour universality (LFU) 
- e.g. potential to measure tau lifetime to sub-10-5  
- Would correspond to flight-distance measurement to a few tens of 

nanometers  
- Relevant systematics from detector:  

- alignement: optimization of detector design with overlapping layers to be 
considered.  

- overall detector lenght: could be measured to 5ppm with techniques 
proposed by Muone. At LEP was 100ppm. 
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M. Dam, A. Lusiani



Occupancy
Beam background

• Dominated by incoerent pair production from these 
processes evaluated with GuineaPig at different √s 
- physics contribution is negligible  
- Compared with different vertex designs present in 

simulation
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A. Ciarma



Occupancy in Vertex 
First comparisons 
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• Seems lower occupancy than previous 
study.  

• Hit rate goes from 170 MHz/cm2 to  O(250 
MHz/cm2 ) with the ultra-light option (larger 
area per module)

A.Ilg



Occupancy and background 
so many questions...

• Need to study the impact of  backgrounds on physics and occupancy 
and DAQ: need digitization and track reconstruction! Work in 
progress. 

• Many questions to answer (also as a function of  √s):   
- What is the impact of the background hits, fakes?  
- Can we reduce background with cuts on clusters?  
- What is the impact of an increased threshold on physics?  
- What is the impact on the data rate?  
- Investigate triggerless acquisition. Or, what can we allow (impact on 

physics) 
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Summary of possible Timing uses
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General considerations on timing

• Few motivations for precise timing measurement have been explored, 
likely this will be expanded significantly next year with the 
FullSimulation:  

• TOF measurements: 
- For PID: e.g. at 2m from the IP, in dedicated layer or in SiW Ecal. To 

compensate the dN/dx ~around 1GeV 
- Determination of mass and lifetime of new massive particles 

• Time measurements in the calorimeters 
- Handles to exploit the shower development in space and time 

-  Possible benefit remains to be studied in detail 
- DR calo: precision timing -> longitudinal segmentation 
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Timing in the Vertex detector 

• Time measurements very close to the IP allows a determination of  
the ”event t0”:  

- Robust reference for the TOF measurements (it is always a Dt!)  
- Width of t0 distribution -> independent determination of the BES 
- (maybe) Exploit correlation between t0 and longitudinal position (within 

the bunch) of the interacting electrons  
- ...and maybe 4D tracking?   

• Possible to achieving precise timing measurements in the innermost 
layer of  the VXD, without compromising heavily the material budget? 
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Vertexing - Preliminary conclusions

• Crucial aspects: 
- single point resolution  
- contribution of multiple scattering dependent on the material  budget of the vertex and 

beam-pipe 
- The radial distance of  the first layer of the vertex detector 

• Examples show that in particular for Flavor Physics, the physics outcome of  
FCC-ee would gain of  having better vertex detector performances than the one 
provided by the baseline detectors considered so far. 
- Engineering studies indicate that the material of the vertex detector layers, compared to 

that of the baseline IDEA detector, can realistically be achieved.  
- It should be noted that these requirements, tighter than the ones presented for a linear 

collider detector, will have to be reached despite the additional constraints set by the 
FCC-ee environment on the readout electronics of the detector
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Next steps for Vertex design optimization

• New design of  the tracker detector (with mechanical structure) implemented in 
FullSimulation will allow:  
- develop realistic digitization model  
- Check performance due to different material distribution. Optimize design.  
- Test realistic effects of beam induced background on the outer tracker (in particular Drift 

Chamber) 
- The plug&play capability of key4hep should facilitate the inclusion of vertex design in 

different proposals for detectors  

• Develop new track (and event) reconstruction strategies   

• Allow to re-evaluate physics performance and connect with overall final 
uncertainties on a measurement with specific hardware characteristics ad 
choices
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Summary table of vertex detector requirements
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• Maybe we can have 
some numbers filled 
by the end of  this 
meeting!



BACKUP
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Requirements from very displaced vertices

• Benchmarks concerning far detached 
vertices up to ~1m (or more!):  
- Ks or Lambdas (relevant for B-physics but 

also for strange-tagging) 
- BSM processes with long lived particles 

(LLP), e.g. HNL, exotic Higgs decays etc.  

• Needs: a large tracking volume, 
“continuous” tracking (that is many 
points/layers) 
- Maybe timing for slow moving particles 

(Work in progress)  
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More on requirements from tau lifetime 
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