AEGIS spot size optimization with SIMPA Lajos Bojtár 17/05/2024

Introduction

- Build up a model with the SIMPA tracking code for AEGIS.
- Previously this code was used for the H- source line and gave very nice results.
- SIMPA is a tracking code able to model accurately any element with realistic fields.
- Can include any static magnetic or electric field in the model.
- It naturally includes all fringe fields in the tracking.
- It handles the beam region as a whole and not the usual element by element method.
- Individual elements in the line can be still scaled.
- It is symplectic, meaning the tracking is physically valid even at very long tracking. This feature is important mostly for rings, less for transfer lines.

Steering and optics optimization

- Tracked 1000 particles with the operational settings for the AEGIS line elements with both solenoid ON.
- The results showed that the beam is smeared into a spiral in the solenoid, because the steering was not optimal. This is expected when the steering is not optimal.
- To obtain a more realistic value of the beam size with the actual settings in the line, optimized the spot size at s = 24.552 [m] using the last 4 steering elements.
- Made a second optimization using the last 4 steering elements + the last 4 quadrupoles.

Comparison I.

• Here is a comparison of the two results. The optimization with corrector+quads gave a much smaller beam size .

RMS area for correctors only = 1.28E-6 [m²]

RMS area for correctors+quads = 2.95E-7 [m²]

Comparison II.

- It is quite possible that the reality is better than the picture shows for the correctors only case, if the initial conditions are not very accurate.
- The previous picture used the theoretical values for the initial conditions.
- Repeated the procedure with the measured initial conditions. See Yann's quad scan here: https://logbook.cern.ch/elogbook-server/GET/showEventInLogbook/4049476

RMS area for correctors only = 1.54E-6 [m²]

RMS area for correctors+quads = 6.36E-07 [m²]

Beam trajectory

There are many optimal settings with nearly the same spot sizes.

Optics comparison

• The optics calculated by SIMPA agrees well with MAD-X before the static deflector, but deviates significantly after the deflector in the V plane.

Deflector model comparison

Model of the static deflector in good agreement between MAD-X and SIMPA when the beam is on the ideal orbit. There is some deviation when it is not.

Comparison with measured beam size

- The initial condition used in the SIMPA model was based on the quad scan by Yann.
- Current vertical emittance seems to be 25 % bigger.

A	В	С	D	E	F	
SEM	sigma H	sigma H <u>simpa</u>	sigma V	sigma V <u>simpa</u>	scaled <u>simpa</u>	V
Ine00.bsgw.0008	1.7	1.7	2.9	2.1	2.625	
lne00.bsgw.0015	1.7	1.7	3.6	2.9	3.625	
lne00.bsgw.0025	3.8	4.1	1.9	1.5	1.875	
lne00.bsgw.0038	3.2	3	1.2	1	1.25	
lne00.bsgw.0045	2.3	2.2	2.8	2.1	2.625	
lne00.bsgw.0109	1.8	2.3	2.7	2	2.5	
lne00.bsgw.0120	2.6	2.6	1.9	1.9	2.375	
Ine00.bsgw.0207	4	3.4	2.6	2.3	2.875	
lne00.bsgw.0225	5.5 ???	5.5	10	7.6	9.5	

Some optimum setting found by SIMPA

"lne.zqmd.0208_38.bin":-2835.9312265175463}, {"lne.zcv.0208_38.bin":98.15918495041664}, {"lne.zch.0208_38.bin":-410.24567844875276}, {"lne.zqmf.0209_38.bin":3628.3932971074937}, {"lne.zqmd.0214_38.bin":-2622.342776211465}, {"lne.zcv.0214_38.bin":780.105205149325}, {"lne.zch.0214_38.bin":601.0603066645382}, {"lne.zqmf.0215_38.bin":-261.11884470731593}, {"lne.zdshr.0220_38.bin":9650.0}, {"aegis-s1_38.bin":1.0}, {"aegis-s2_38.bin":1.0}] {"Ine.zqmd.0208_38.bin":-3190.2226467250625}, {"Ine.zcv.0208_38.bin":-451.46290095151556}, {"Ine.zch.0208_38.bin":-717.4738085235948}, {"Ine.zqmf.0209_38.bin":1727.9768856371322}, {"Ine.zqmd.0214_38.bin":-4157.15651030464}, {"Ine.zcv.0214_38.bin":11.417047165458222}, {"Ine.zch.0214_38.bin":387.2978422733484}, {"Ine.zqmf.0215_38.bin":1801.5611411534906}, {"Ine.zdshr.0220_38.bin":9650.0}, {"aegis-s1_38.bin":1.0},

Steering is not the same in SIMPA yet, it is unlikely that gives the optimum !

- Do the same optimization with the real machine using H-.
- The last 4 quads and the last 4 corrector were optimized.
- I used CMA-ES genetic algorithm with 300 V initial sigma for all variables.
- Initial conditions were the operational settings.
- It should converge about 2000 iterations. With H- it will take about 10 hours machine time.
- Need to monitor losses somehow during the optimization.

References

- L. Bojtár. Efficient evaluation of arbitrary static electromagnetic fields with applications for symplectic particle tracking. Nuclear Instruments and Methods A, 948:162841, 2019.
- L. Bojtár. Frequency analysis and dynamic aperture studies in a low energy antiproton ring with realistic 3d magnetic fields. Phys. Rev. Accel. Beams, 23:104002, Oct 2020.
- L. Bojtár. Efficient Representation of Realistic 3D Static Magnetic Fields for Symplectic Tracking and First Applications. In Proc. IPAC'22.
- https://simpa-project.web.cern.ch
- D. Barna, Design and Optimization of Electrostatic Deflectors for ELENA, doi: 10.18429/JACoW-IPAC2015-MOPJE043