Event weight factors and partial luminosities for various choices of electron and positron polarization

Factor and weights for polarised running calculated assuming:

- electron beam polarisation $P_{e^-} = \pm 80\%$
- positron beam polarisation $P_{e^-} = \pm 30\%$
- H-20 running scenario at 250 GeV with total lumionsity of 2 ab^{-1} : 900 fb⁻¹ for (-, +) and (+, -) configurations, 100 fb⁻¹ for (-, -) and (+, -)
- 2 ab^{-1} for unpolarized running (unpol.) to be used for comparison.

	Generated sample			
	eLpR	eRpL	eLpL	eRpR
	$(e_L^- e_R^+)$	$(e_R^- e_L^+)$	$(e_L^- e_L^+)$	$(e_R^- e_R^+)$
Beam	Weight factor			
polarisation	$\frac{(1-P_{e^-})(1+P_{e^+})}{4}$	$(1+P_{e^{-}})(1-P_{e^{+}})$	$\frac{(1-P_{e^-})(1-P_{e^+})}{4}$	$\frac{(1+P_{e^{-}})(1+P_{e^{+}})}{4}$
setting	4	4	4	4
(-, +)	0.585	0.035	0.315	0.065
(+, -)	0.035	0.585	0.065	0.315
(-,-)	0.315	0.065	0.585	0.035
(+, +)	0.065	0.315	0.035	0.585
unpol.	0.25	0.25	0.25	0.25
	Expected H-20 sample luminosities [fb ⁻¹]			
(-,+)	526.5	31.5	283.5	58.5
(+, -)	31.5	526.5	58.5	283.5
(-, -)	31.5	6.5	58.5	3.5
(+, +)	6.5	31.5	3.5	58.5
unpol.	500	500	500	500

Table 1: Weight factors to reweight event samples with a given initial-state helicity and corresponding integrated luminosities for sample normalisation at 250 GeV, for different ILC beam polarisation settings.

Final MC event weight for the analysis should be calculated as:

$$w = \frac{N_{exp}}{N_{gen}} = \frac{\sigma_{gen} \cdot \mathcal{L}_{exp}}{N_{gen}} = \frac{\mathcal{L}_{exp}}{\mathcal{L}_{gen}}$$

where N_{exp} and N_{gen} are expected and generated event numbers for given initial-state helicity, σ_{gen} is the generator level cross section and \mathcal{L}_{gen} is the integrated luminosity corresponding to the generated events sample, $N_{gen} = \sigma_{gen} \cdot \mathcal{L}_{gen}$. \mathcal{L}_{exp} is the expected H-20 integrated luminosity for given initial-state helicity, as given in the Table 1.