Searches for new exotic scalars at the ILC Analysis of the scalar particle S decay channel into two τ leptons

Kamil Zembaczyński

Under the supervision of: Aleksander Filip Zarnecki

Faculty of Physics, University of Warsaw

May 29, 2024

Introduction

Exotic scalar production in scalar-strahlung process is considered.

 $Z
ightarrow q\overline{q}$ and $S
ightarrow au^+ au^-$ is assumed.

Look for hadronic (4 jets), semi-leptonic (3 jets and lepton) and leptonic (2 jets and 2 leptons) final states.

ILC H-20 running scenario at 250 GeV.

Events pre-selection

Only events without isolated photons and with appropriate number of jets were accepted.

Events divided into 5 categories.

category	isolated	tight	loose
	leptons		
hadronic	zero	4 jets including	4 jets, 1 with $ au$ -tag
		2 with $ au$ -tag	and other lightest jet
			as second $ au$ - tag jet
semi-	one	3 jets including	3 jets with no $ au$ -tag,
leptonic		1 with $ au$ -tag	lightest jet as $ au$ - tag
			jet
leptonic	two	two jets	
		without $ au$ -tag	

< 1 k

∃ →

S mass reconstruction

Assumption of high τ boost and their collinearity to jets for reconstructing S mass. From transverse momentum balance:

$$\overline{p}_{T} = E_{\nu_{1}} \cdot \overline{n}_{1} + E_{\nu_{2}} \cdot \overline{n}_{2}$$

Example for $e_L^-e_R^+$ polarisation and tight event selection. Signal for scalar mass of 50 GeV.

Kamil Zembaczyński (UW)

Searches for new exotic scalars at the ILC

4/7

BDT

Separate BDT for each polarisation and event category (hadronic, semi-leptonic or leptonic)

Example for $e_L^-e_R^+$ polarisation and tight hadronic event selection. Signal for scalar mass of 50 GeV normalized to 1% of SM cross section.

95% C.L. limits on the production cross section

in units of the SM cross section for Higgs-strahlung process (with given scalar mass)

ILC H-20 running scenario at 250 GeV

Backup - other variables

Other variables used in Gradient Boosted Decision Trees (BDT):

- Z invariant mass
- Z transverse momentum
- recoil mass
- total energy
- y₂₃ and y₃₄ angle variables from clustering algorithm
- azimuthal distance of two au candidates
- polar angle of Z
- τ emission angle in S rest frame with respect to S momentum direction