

CERN Detector Seminar - 24 May 2024

Requirements and R&D status of the detectors to operate at the EIC were presented at the Detector Seminar series in August 2020 by Thomas Ullrich

A long path forward in the last 4 years
 → today seminar

ePIC and CERN

- This seminar is particularly timely as, following the application by ePIC, on 6 March 2024, the Research Board confirmed the positive recommendation of the Recognized Experiments Committee
- Wide synergies CERN / EIC including physics and detector topics:
 - EIC-LHC synergy Workshop, CERN, 21-22 June 2022
 - EIC-LHC synergy Workshop, DESY, 14-15 Dec. 2023
 - CERN EP R&D Day 2021, CERN, 11-12 Nov. 2021
 - Session 3 : EIC R&D
 - CERN/EIC PID R&D meeting, CERN, 25 April 2023
 - ITS3 MAPS adopted in the ePIC detector
 - with contributions to the development
 - EIC in CERNCOURIER
 - and more opportunities …

INFN

The ePIC context: the physics scope and the EIC project The ePIC detector

Detector Seminar, CERN, 24 May 2024

The EIC Project in a nutshell

- Enable the ultimate QCD exploration
 - By a high-luminosity polarized electron-ion collider: the EIC
 - By a detector highly integrated with the collider and capable to cope with the overall EIC physics scope, ePIC
- Status : approved project progressing towards its realization at BNL
- Key ingredients : the ample community supporting the EIC and the long dedicated effort path

THE INTERNATIONAL COMMUNITY: the EIC-User Group

The EIC User Group: https://eicug.github.io/

Formed in 2016 -

- 1487 members
- 40 countries
- 6 world regions
- 292 institutions

As of May 10, 2024

NORTH RACIFIC OCEAN NORTH SOUTH SOUT

Among the main Achievements: The Yellow Report (2020)

Institutions

Annual EICUG meeting 2016 UC Berkeley, CA

2016 UC Berkeley, CA 2016 Argonne, IL 2017 Trieste, Italy 2018 CUA, Washington, DC 2019 Paris, France 2020 Miami, FL 2021 VUU, VA & UCR, CA 2022 Stony Brook U, NY 2023 Warsaw, Poland 2024 Lehigh U., PA

The ePIC Collaboration

The community dedicated to the EIC science mission by the realization of the ePIC detector

Warsaw, July 2023

INFN

The ePIC Collaboration

THE PATH TO THE EIC PROJECT

INFN

THE PATH TO THE EIC PROJECT

Fresh news

Major Nuclear Physics Facilities for the Next Decade Report of the NSAC Facilities Subcommittee accepted on April 26, 2024, by NSAC

"The EIC will be a new world-leading DOE facility at the forefront of scientific discovery. The Subcommittee ranks the EIC as (a) absolutely central in its potential to contribute to world-leading science in the next decade."

"Concerning readiness of the facility for construction, we rank the EIC in category (a) ready to initiate construction."

In short words:

Investigate with precision the universal dynamics of gluons to understand the emergence of hadronic and nuclear matter and their properties

In terms of major open questions:

How does the **spin** of the nucleon arise?

How do quarks and gluons interact with a nuclear medium?

How do the **confined hadronic states** emerge?

How does the **mass** of the nucleon arise?

How do the quark-gluon interactions create **nuclear binding**?

How are the quarks and gluon distributed in space and momentum inside the nucleon and nuclei?

What are the emergent properties of **dense system of gluons**?

REQUIREMENTS

- Access to gluon dominated region and wide kinematic range in x and Q²
- Access to spin structure and 3D spatial and momentum structure
- Accessing the highest gluon densities $(Q_s^A)^2 \sim cQ_o^2 \left(\frac{A}{x}\right)^{1/3}$
- Studying observables as a function of x, Q², A, hadronic flavour, ...

THE EIC COLLIDER PROVIDES

- Large center-of-mass energy range: √s = 21 -140 GeV
- Polarized electron, proton and light nuclear beams ≥ 70%
- Nuclear beams, the heavier the better (from H to U)
- High luminosity (100 x HERA): 10³³⁻³⁴ cm⁻² s⁻¹

The EIC Collider

Usage of RHIC tunnel and RHIC p/ion complex

- spanning a wide kinematical range
 - ECM: 20 141 GeV
- High luminosity
 - up to 10³⁴ cm⁻² s⁻¹
- highly polarized e (~ 70%) beams
- highly polarized light A (~70%) beams
- wide variety of ions: from H to U
- Number of interaction regions: up to 2

The EIC Collider

4 critical ingredients for HIGH LUMINOSITY

Strong Hadron Cooling

- Work continues on Strong Hadron Cooling, both the Coherent electron Cooling (<u>CeC</u>) approach and a backup solution based on a ring cooler
- · Both approaches were reviewed in summer, no show stoppers found in either one

Bunches and beam crossing rates

Species	р	е	р	е	р	е	р	е	р	е
Beam energy [GeV]	275	18	275	10	100	10	100	5	41	5
\sqrt{s} [GeV]	14).7	10	4.9	63	.2	44	.7	28	.6
No. of bunches	29	90	11	60	11	60	11	60	11	60
Species	Au	е	Au	е	Au	е	Au	е		
Beam energy [GeV]	110	18	110	10	110	5	41	5		
\sqrt{s} [GeV]	89	.0	66	.3	46	.9	28	.6		
No. of bunches	29	0	11	60	11	60	110	50		

Up to a beam crossing rate at the IR every 10ns

a challenge for the collider and the experiment !

The EIC Collider

MORE unique aspects

BEAM POLARIZATION

ABOUT e POLARIZATION

ION SPECIES

The existing RHIC <u>ion sources &</u> <u>ion acceleration chain</u> provides already **today** all ions needed at EIC

	lon F	Pairs Community
	Zr-Zr, Ru-Ru	(2018) (2016)
Enormous	d-Au	(2016)
versatility! is a unique	h-Au	(2015)
capability!	p-Au Cu-Au	(2015) (2012)
	U-U	(2012)
"Annes	Cu-Cu	(2012)
	D-Au	(2008)
	Cu-Cu	(2005)
	Con Dr. O	/ · ·

on average, every bunch refilled in 2.2 min

ABOUT p/ light ion POLARIZATION

Detector Seminar, CERN, 24 May 2024

The EIC schedule

16

The ePIC context: the physics scope and the EIC project The ePIC detector

Detector Seminar, CERN, 24 May 2024

Ultimate QCD exploration

 \rightarrow

REQUIREMENTS

ePIC detector

- Large coverage (-3.5 < η < 3.5) for wide phase-space reach
- Excellent EM-calorimetry with PID support for e/π separation
- Fine resolution tracking by low mass detectors

Fine p_T resolution

- Extended PID systems for hadron identification
- *H*-calorimetry to attempt TMD assessment with jets (new world-wide), as tail chatter, for μ identification
- Extend acceptance at extremely small scattering angles
- Fine vertex resolution by tracking

ePIC DETECTOR CHALLENGES

1.0

0.0

-0.5

- Small β*
 - → quads near to IP
 - → 9.5 m to host the central detector
- Asymmetry beam energies
 - → Asymmetric detector design
- Far detectors highly integrated with the storage rings
- Synchrotron radiation background
 - \rightarrow solenoid axis aligned with e beam
 - \rightarrow p/ion beams follow a helical path in the CD solenoid
- Other physical backgrounds
 → beam-gas scattering
- Crab crossing
 - → Vertex smearing to be removed with timing information fast timing in the range ~30 40 ps
- Bunch crossing rate and crossing time
 - \rightarrow Up to a bunch crossing every 10 ns
 - \rightarrow The whole bunch crossing takes ~ 3 ns

9.5m							
rates in kHz	5x41 GeV	5x100 GeV	10x100 GeV	10x275 GeV	18x275 GeV	Vacuum	
Total ep	12.5 kHz	129 kHz	184 kHz	500 kHz	83 kHz		
hadron beam gas	12.2kHz	22.0kHz	31.9kHz	32.6kHz	22.5kHz	10000Ahr	
	131.1kHz	236.4kHz	342.8kHz	350.3kHz	241.8kHz	100Ahr	
electron beam gas	2181.97 kHz	2826.38 kHz	3177.25 kHz	3177.25 kHz	316.94 kHz	10000Ahr	
DIS eA	kHz	kHz	kHz	1	1		
hadron beam (Au) gas	7.36kHz	10.3kHz	10.3kHz	1	1	10000Ahr	
	79.1kHz	110.7kHz	110.7kHz	1	1	100Ahr	

700

INFN

Detector

THE COMPLETE ePIC DETECTOR

ePIC Central Detector (CD)

Very naturally organized in:

- Backward endcap
- Barrel
- Forward endcap

subsystems

The ePIC solenoid

Parameter	Value
Coil length	3512 mm
Warm bore diameter	2840 mm
Cryostat length	< 3850 mm
Cryostat outer diameter	< 3540 mm

Parameter	Value		Comment		
Central Field B ₀	2.0 T	Reference fi		eld	
Lowest operating field	0.5 T		lue: 1.7 T		
Field Uniformity in FFA	12.5 % ± 100 cm around center 80 cm radius < 0.1 (mrad@30GeV/c) < 10 T/A/mm ² From Z = 180 cm to 280 cm		Magnetic Field		
Projectivity in RICH Area			r _{C)} Properties		

Parameter	Value	Comment
B5300 (B @ Z= -5300 mm)	< 10 G	Strav field
B7400 (B @ Z= 7400 mm)	< 10 G	requirement is based on IR
B3400 (B @ R= 3400 mm)	< 10 G	magnet location

Detector Seminar, CERN, 24 May 2024

TRACKING IN ePIC CD

Detector Seminar, CERN, 24 May 2024

Si TRACKING IN ePIC CD

• Inner Barrel (IB)

- Three layers, L0, L1, L2,
- Radii of 36, 41, 120 mm
- Length of 27 cm
- X/X₀ ~ 0.05% per layer
- Curved, thinned, wafer-scale sensor

• Outer Barrel (OB)

- Two layers, L3, L4
- · Radii of 27 and 42 cm
- X/X $_0$ ~0.25% and ~0.55%
- · More conventional structure w. staves
- Electron/Hadron Endcaps (EE, HE)
 - Two arrays with five disks
 - $X/X_0 \sim 0.25\%$ per disk
 - More conventional structure

• Lengths for L2—L4 increase so as to project back to z = 0; disk radii adjust accordingly

INFN

Detector Seminar, CERN, 24 May 2024

SENSORS FOR CALORIMETRY IN ePIC

SiPM sensors for all Calorimeters in ePIC

- SiPMs recently introduced in calorimetry
- direct experience is coming from the applications in GlueX, STAR and sPHENIX
- these colleagues now at work for ePIC calorimetry

Relevant SiPM features for ePIC calorimetry

- Cost-effective technology
- Operation in magnetic field
- Wide **dynamic range** with tuned parameters for the different calorimeters
- Low noise with appropriate thresholding
- Effect of the radiation
 - Not new, already addressed for STAR and sPHENIX
 - Further irradiation campaigns ongoing

Rad Dose and Neutron Flux

Detector Seminar, CERN, 24 May 2024

ECal in backward endcap: PbWO₄

- Consolidated technology
 - Finest energy resolution
 New challenge: preserving the resolution with SiPMs
- Fine granularity

٠

<section-header><section-header>

ECal in the barrel: hybrid architecture

- Internal layers: imaging
 - SENSOR : Astropix (derived from ATLASpix3, design for NASA AMEGO-X mission)
 - New: active interposing layers
- External and interposing layers:
 - **Pb/Sci** (validated: KLOE, GlueX, ...)

Performance based on simulations

ECal in forward endcap: W/SciFi

- Pioneered by UCLA
 - sPHENIX EMCal: 25k towers
- Good resolution
- High granularity for π^0
- e/h~1 for jets
 - → ideal to operate in duet with the forward endcap HCal

Optimization of light collection: BEMC Super-

BEMC Superblocks, UV LED Map

Detector Seminar, CERN, 24 May 2024

HADRON CALORIMETRY IN ePIC CD

Backward and barrel:

Steel/scintillator sampling calorimetry -CONSOLIDATED TECHNOLOGY

- Identification of neutral hadron jets, especially at low x
- Tail catcher for e/m calorimeter
- μ identification

Barrel Hcal

Forward endcap

- Original design inspired by CALICE development:
- "SiPM on TILE"
- High granularity insert at high η
- Jet energy measurement
- DIS kinematics reconstruction "Hadronic method"
- muon ID

HADRON CALORIMETRY IN EPIC CD

The <u>double</u> role of PID in ePIC CD

Support electron identification, which cannot be provided by ECals only in DIS experiments with electron beams (see HERMES, JLab)

The different physics channels require π contamination in the electron sample down to 10⁻⁴

35

Here performance areas are with

PID IN ePIC CD

reference to $3 \sigma \pi/K$ separation Momentum [GeV/c] 108 DIS 107 10⁶ Imaging Cherenkov 10⁵ by dRICH 104 (gas) Imaging 10 Cherenkov 10³ Imaging by Cherenkov dRICH Imaging Cherenkov by dRICH hpDIRC by pfRICH 10² (aerogel) hpDIRC 10 ToF by HRPPDs ToF by ToF by AC-LGADs AC-LGADs -4 -3 -2 -1 0 2 3 5 4 pfRICH Eta **AC-LGADs**

CHERENKOV PID IN ePIC CD

-400

37

200 400 600 Sensor plane X. (mm

hpDIRC

CHERENKOV PID IN ePIC CD

separation [s.d.]

Cherenkov imaging PID in the barrel:

High performance DIRC (hpDIRC)

High performance thanks to focalization and fine photosensor pizelization

Photek MAPMT 253

A further option: **HRPPDs**

LaK33B

CHERENKOV PID IN ePIC CD

Cherenkov imaging PID in the forward endcap:

Dual radiator RICH (dRICH)

Detector Seminar, CERN, 24 May 2024

PHOTOSENSORS for CHERENKOV PID IN ePIC

For pfRICH (option for hpDIRC) : **HRPPDs by INCOM**

 \rightarrow large-size (12 x 12 cm²) MCP-PMTs, pixelized

For dRICH : SiPMs at -30°C

\rightarrow Robust R&D for the validation

Studies of radiation damage on SiPM

Detector Seminar, CERN, 24 May 2024

Silvia DALLA TORRE

ToF PID IN ePIC CD

Detector Seminar, CERN, 24 May 2024

Silvia DALLA TORRE

FAR FORWARD DETECTORS

Exclusive /diffractive reactions driving the design of FF area -> reconstruction of particles outside of the central detector acceptance

✓ protons at wide range of p_T^2 ✓ protons with different rigidity ✓ neutrons and photons

	Particles	Angle [mrad]		Distance from IP
B0-tracker	Charged particles Photons (tagged)	5.5 - 20		ca 6-7 m
Off-momentum	Charged particles	0-5.0	0.4< xL< 0.65	ca 23-25 m
Roman Pots	Protons Light nuclei	0*-5.0	0.6 < xL< 0.95	ca 27-30 m
ZDC	Neutrons Photons	0-4.0 (5.5)		ca 35 m

THE ePIC FAR FORFWARD DETECTORS

Detector Seminar, CERN, 24 May 2024

43

- > This area is designed to provide coverage for the low-Q² events (photoproduction, $Q^2 < \sim 1 GeV^2$). Need to measure a scattered electron position/angle and energy
- > And luminosity detector (ep -> e'p γ bremsstrahlung photons)

THE ePIC FAR BACKWARD DETECTORS

Low Q2 taggers

- High rate capability
- Fine tracking pixelization

.

٠

- Tracking Timepix4 Hybrid (ASIC+Si tracker) - FRONTIER APPLICATION
- Calorimetry SciFi's
- Timepix4 wide experience accumulated with the different timepix versions

CALORIMETRY - Synergy with forward **ECal**

A COHEREENT EFFORT FOR ASIC FES IN ePIC

H2GCROC / CALOROC (derived from the CMS HGCROC)

- For all calorimeter SiPMs in ePIC
 - A discreate component approach still under consideration for the backward Ecal (PbWO₄)

EICROC (derived from the CMS HGCROC)

- Pixelized AC-LGAD (RP, OMD, fToF)
- An option for the hpDIRC and the pfRICH (MCP-PMTs)

SALSA

(following the experience with SAMPA)

- Cylindrical MICROMEGAS
- μ**Ř-WELL**
 - ALCOR (following the development for the DARKSIDE cryogenic experiment)

dRICH SiPMs

FCFD (CFD within ASIC FE)

- Strip AC-LGAD (ToF, luminosity PS)
- An option for the hpDIRC and the pfRICH (MCP-PMTs)

TECHNOLOGIES: WORLD FIRST AT ePIC

Detector Seminar, CERN, 24 May 2024

TECHNOLOGIES: Main synergies with CERN

TRACKING

Streaming read-out

Cherenkov PID

LHCb, COMPASS/AMBER, DRD4 / ePIC :

Aerogel, gas radiators, photosensors

And more ...

The EIC is a unique project, the word only one approved for the ultimate understanding of QCD

Most likely, the only novel high energy collider in the next 15-20 years

- The EIC project is approved and progressing according to schedule
- The ePIC Collaboration for the project detector ePIC is working and highly committed
 - The ePIC detector design is dictated by the physics scope
 - A number of established and novel technologies needed to match this scope
 - Relevant synergies with CERN in physics (not discussed today) and in detector technologies
 - Exciting perspectives in front of us designing, building, operating ePIC and progressing in physics with our detector

THANK YOU

