
Radiochemistry Developments

MUHAMMAD INZAMAM

(PINSTECH, Pakistan Atomic Energy Commission)

- Introduction
- Production of ²²⁴Radium
- ²²⁴Ra/²¹²Pb Generator Production
- Quality and Efficiency
- Conclusion



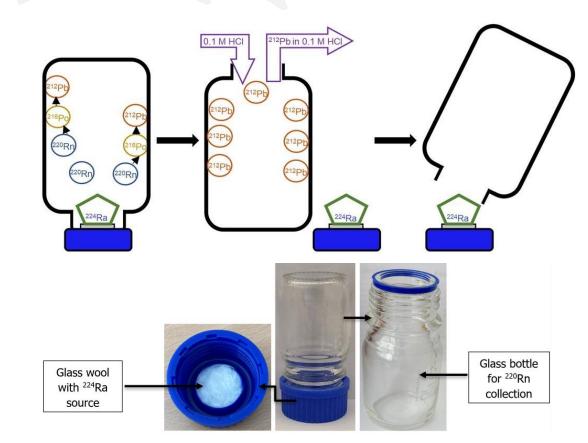
Introduction

- ²²⁴Radium is a pure alpha emitter
- Favorable half life 3.6 day
- Short lived daughter product

Production of ²²⁴Radium

- Several method for the production
 - Radiochemical separation from the Th/U
 - Spallation reaction of thorium by proton irradiation
 - ²²⁸Th/²²⁴Ra Generator

²²⁴Radium/²¹² Lead Generator Production


- There are two methods of ²²⁴Ra/²¹²Pb generator production
 - Collection of emanated radon from radium source
 - Radiochemical separation of using cation exchange resin.

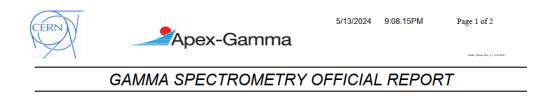
	Ra-224	E(α) = 9.26E-13 J E(β) = 3.73E-16 J	
	Half-life: 3.63 d	E(γ) = 1.66E-15 J	
	Yield: 1.000	ŀ	_
	Rn-220	E(α) = 1.03E-12 J E(β) = 2.33E-18 J	
	Half-life: 55.8 s	E(γ) = 1.00E-16 J	
	Yield: 1.000		_
	Po-216	$E(\alpha) = 1.11E-12 J$ $E(\beta) = 2.35E-20 J$	
	Half-life: 0.15 s	E(γ) = 2.45E-18 J	
	Yield: 1.000	ŀ	
	Pb-212	E(α) = 0 J E(β) = 2.83E-14 J	
	Half-life: 10.64 h	E(γ) = 2.32E-14 J	
	Yield: 1.000	ŀ	
	Bi-212	E(α) = 3.56E-13 J E(β) = 8.03E-14 J E(γ) = 1.66E-14 J	
Half-life: 1.01 h Yield: 0.359		Yield: 0) 0.641
TI-208	E(α) = 0 J E(β) = 9.80E-14 J	Po-212	E(α) = 1.43E-12 J E(β) = 0 J
lf-life: 3.06 min	Ε(γ) = 1.50Ε-12 J	Half-life: 300 ns	Ε(γ) = 0 J
Yie	eld: 1.000 🖕	Yield: 1	.000
	Pb-	208	
	sta	able	

Hal

²²⁴Ra/²¹²Pb Generator by Radon Collection

- ²²⁴Radium is used as source in the generator
- Glass bottle with plastic lid as generator body
- Source adsorbed on the glass wool Collection chamber for radon Decays into ²¹²Pb

Li, R.G., Stenberg, V.Y. and Larsen, R.H. (2022) 'An experimental generator for production of high-purity212pb for use in radiopharmaceuticals', Journal of Nuclear Medicine, 64(1), pp. 173–176


Elution of Generator

- Elution of generator after the establishment of secular equilibrium
- Elution of ²¹²Pb with 0.1M HCl

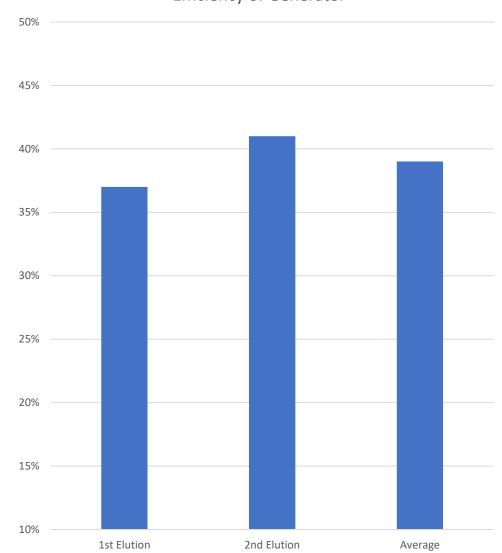
Quality of ²¹²Pb from Generator

- Gamma spec. analysis of the generator
- High Purity Ra-224
- Generator of activity ~700MBq (400Mbq at reception) dispatch to one of partner institute for further labelling and preclinical studies

ANALTSIS:	33423013
ITEM(S):	CR-160543/ MEDICIS - Ra-224 2024-#1/ coton dans fiole en verre/ cyl@336.7cm/ A. DORSIVAL
DETECTOR:	MED01-B22158

ACTIVITY DATE: 5/6/2024 10:59:16AM

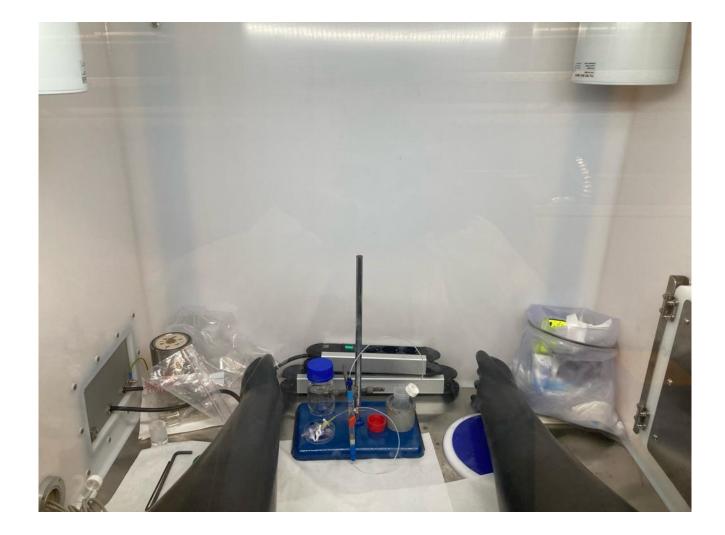
22422676


eighted Mean Activity		Detection Limit (MDA)
(Bq/units)	Unc. (%)	(Bq/units)
1.31E+08	4.11	3.58E+05
3.68E+08	4.29	2.42E+06
3.86E+08	7.01	7.30E+05
8.19E+08	41.98	2.80E+08
6.97E+08	11.46	7.24E+06
1.48E+07	69.85	2.43E+06
	1.31E+08 3.68E+08 3.86E+08 8.19E+08 6.97E+08	(Bq/units) Unc. (%) 1.31E+08 4.11 3.68E+08 4.29 3.86E+08 7.01 8.19E+08 41.98 6.97E+08 11.46

The uncertainties are calculated at 2 sigma (95% confidence level) The detection limit values are calculated using ISO 11929 method with a 5% confidence factors

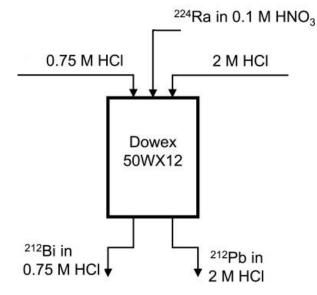
Efficiency of Generator

High Activity Generator


- 700MBq activity was loaded to the generator
- Elution are taken after two days
- Generators are eluted with average efficiency of 39%
- High activity did not damage the generator structure
- Some issue at user end reported trying to solve the issue

Radiation Safety

- All the following steps for generators carried out in Gloves box
 - ²²⁴Ra foil retrieval for target holder
 - Dissolution of the ²²⁴Ra
 - Generator production
 - Elution


No release of radon or any contamination

²²⁴Ra/²¹²Pb Generator by Cation exchange resin

- Generator consist of a glass column
- Cation exchange resin for adsorption of radium source
- Preconditioning of column
- Loading of Barium (Radium analogue), lead and bismuth
- Elution of generator with few ml of HCl

Cold Experiments for Method Development

Tb/Gd separation for Tb-161 which is produced in research reactor by enriched Gd-160

Purification of HSA Sm-153 (removal of Eu formed by the decay of Sm) for clinical use

Conclusion

Production of ²²⁴Ra/²¹²Pb high activity generator

With generator efficiency up to 41%.

Method development, High quality product with safe operation

Good labelling and stability results

