Implications of Joint Spectral Analysis from Fermi (GBM, LAT, and LLE) on Phenomenological GRBs Correlations

Tamador Aldowma

Soebur Razzaque, Riccardo Martinelli, Rahul Gupta

Outline

Brief Introduction : GRBs

Joint Spectral Analysis

Fermi GRBs data

Phenomenological Relations

Preliminary results

Brief Introduction

- □ A Gamma-Ray Burst (GRB) is the most energetic explosion yet discovered. Most of the energy is emitted in the keV to GeV range.
- **GRBs** have been detected at a high redshift up to z = 9.2.
- □ High-quality of GRBs data from different satellite instruments are now available (e.g., Fermi, Konus-Wind, INTEGRAL, SWIFT, and other) followed by ground-based optical telescope and gamma-ray telescopes such as H.E.S.S and MAGIC.

Fermi

GBM – LAT

Joint Spectral Analysis

- * Amati relation, relation between the intrinsic peak energy $(E_{i,peak})$ with the total isotropic energy (E_{iso}) over the burst's duration (T_{90}) .
- **Vonetoku relation**, which relates $(E_{i,peak})$ to the peak isotropic luminosity (L_{iso}) .

These parameters are then employed to explore **two phenomenological correlations.**

GRBs have the potential to be used as cosmological "standard candles," as proposed through several correlations, like Type Ia supernovae (SN Ia), which are widely used in cosmology for distance measurements.

Joint Spectral Analysis - Data

Fermi Data: GBM-LAT-LLE

GBM: Gamma-ray Burst Monitor 8 KeV – 40 MeV NaI detectors, the energy range from (K-edge 10 – 30 keV) to (40 – 900 keV), and for BGO detectors, it is 250 – 30000 keV.

LAT: Large Area Telescope $20 \text{ MeV} - \ge 300 \text{ GeV}$

LLE: LAT Low Energy 30 – 100 MeV

• ThreeML*

The Multi-Mission Maximum Likelihood framework (3ML), allows multi-instruments likelihood analysis of astronomical data.

- \circ 3ML Publicly available and supports for the Bayesian analysis approaches.
- Extending data from previous studies:
 - E.g., Dirirsa, F.F, Razzaque, S., and Piron, F. 2018, 2019.
 - Use 26 GRBs Fermi(GBM-LAT) 2008 2017.
 - + GRBs Fermi(GBM-LAT-LLE) 2018 to 2023 in total 42 GRBs.
- Download and selection of data: Two-time interval (T_{90} , peak)
- Fitting the background and conducting unbinned likelihood analysis for both LAT and LLE data, all done by 3ML.

Joint Spectral Analysis – Spectral Models

• **Band Model:** Band D et al, 1993, with indices α , β , and spectral peak energy E_p in keV.

Fit Improvement

$$N_{Band}(E) = A_{Band} \begin{cases} \left(\frac{E}{100 \ keV}\right)^{\alpha} \ exp\left[-\frac{E(2+\alpha)}{E_p}\right] & \text{if } E \leq E_b \\ \left(\frac{E}{100 \ keV}\right)^{\beta} \ exp(\beta-\alpha) \left[-\frac{E_p}{100 \ keV} \frac{\alpha-\beta}{2+\alpha}\right]^{\alpha-\beta} & \text{if } E > E_b, \end{cases}$$

Comptonized Model: Steiner J. F. et al., 2009
With the photon index γ, and the peak energy E_p.

$$N_{Comp} = A_{Comp} \left(\frac{E}{100 \ keV}\right)^{\gamma} \exp\left[-(2+\gamma)\frac{E}{E_p}\right]$$

Joint Spectral Analysis – Spectral Models

Internal Shoch Synchrotron Model (ISSM):

Yassine et al., 2020, with indices α , β , and spectral peak energy E_p in keV. The four parameters of the ISSM—flux normalization, SED peak energy, and asymptotic slopes are like those of the Band function.

GRB090926A

CUTBPL : Broken Powerlaw with exponential cutoff

Joint Spectral Analysis – Spectral Models

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

 10^{-7}

 10^{-8}

 $vf_{\nu}~(erg~cm^{-2}~s^{-1})$

GRB100414A

— Band — CPL

Best fit selection:

Bayesian information criterion – BIC Kass, Raftery et al, 1995.

Model with the lower BIC value is preferred.

To assess improvements, we calculate Δ BIC:

 Δ BIC \geq 6 indicates a significant improvement in the model *Chand et al*, 2018.

Preliminary results – Time integrated

GRBs Names	Instruments	Redshift	T_{90}	Model	α_1, γ	β	$E_p keV$	α_2	kT keV	Flux $(erg \ cm^{-2} \ s^{-1})$	Total flux	$-\log(\mathcal{L})$	BIC	Δ BIC
GRB 090328	GBM+LAT+LLE	0.736	4.352 - 66.049	Band	-1.112 ± 0.020	-2.77 ± 0.04	710_{70}^{-60}	-	-	$5.79^{-0.24}_{0.23} \times 10^{-6}$	$5.79^{-0.24}_{0.23} \times 10^{-6}$	4254	8572	-
GRB 090328	GBM			Band	-1.103 ± 0.018	-4.0 ± 2.3	680 ± 50	-	-	$5.1_{-0.8}^{-0.5} \times 10^{-6}$	$5.1^{-0.5}_{-0.8} \times 10^{-6}$	4060	8171	-

Preliminary results – Peak flux

Phenomenological Relations

^{*} T_{90} : the time to detect 90% of GRBs fluence.

Phenomenological Relations

Preliminary results:

Linear fits for both the Amati and Yonetoku correlations for the joint fit (GBM-LAT-LLE) as well as for the GBM-only fit.

Summary

- We performed joint spectral fits on Fermi GRB data (GBM-LAT-LLE) and compared them with GBM-only fits to assess improvements in the analysis.
- From Δ BIC we identified the best-fit models.
- Using these optimal parameters, we explored the Amati and Yonetoku correlations to determine their potential in cosmological model.
- Our aim is to investigate which of these correlations can be reliably used to prob GRBs as cosmological standard candles.

Thank you

Backup - Machine Learning : Ensemble Model

Machine learning models show that the DNN models with Random forest can obtain a good estimation depend on the MAE and . Numerous efforts have been made to use GRBs as cosmological standard candles through various correlations. Spectral parameters from different fits and instruments have been analysed for many GRBs, particularly "Bright" GRBs. Most correlations rely on luminosity distance, which depends on redshift. With many pseudo-redshifts

True Redshift

Comp flux

8

6

10