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AR Sco Observations

▶ Marsh et al. (2016)
detected optical and radio
pulsations from the binary
white dwarf (WD) system
AR Scorpii

▶ Orbital period of 3.55
hours and a “pulsar” spin
period of 1.95 min

▶ Constrained the mass of
the WD to ∼ 0.8M⊙ and
the M-dwarf companion to
∼ 0.3M⊙

▶ Stiller et al. (2018)
obtained a
Ṗ = 7.18× 10−13 ss−1
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AR Sco Observations

▶ Optical and UV emission
lines show no indication of
an accretion disc

▶ The optical and UV are
non-thermal emission and
pulsed at the WD spin
period

▶ This gives a light cylinder
radius of
RLC = 5.6× 1011 cm and
an orbital semi-major axis
of a = 8.5× 1010 cm

▶ Buckley et al. (2017)
found that the system
exhibits strong linear
optical polarisation (up to
∼ 40%) and estimated the
WD B-field to be
∼ 500MG Figure: Optical data from Potter and

Buckley (2018)
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Aims
Develop a new general emission model to work for a WD binary scenario:
▶ Solve particle dynamics using the general equations of motion.
▶ Calculate the broadband light curves and spectra at different orbital phases.
▶
▶ Calculate Stokes parameters, PPA, and degree of polarisation at different

orbital phases.
▶ Calibrate our code with the pulsar emission code of Harding and

collaborators.
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Adaptive ODE Solver
▶ Solve Lorentz equation:

dp

dt
= q

(
E+

cp× B√
m2c4 + p2c2

)
. (1)

▶ We investigated higher precision adaptive time step methods.

∆tn+1 = ∆tn

(
TOL

Terr

)− 1
kp
(

TOL

Terr;n−1

)− 1
kp
(

∆tn

∆tn−1

)− 1
kp

. (2)

▶ ∆t is the time step, TOL is the chosen tolerance for the truncation error
Terr, p is the order of the chosen numerical method and k = 8.

▶ We used a limiting function to constrict the new time step.

∆tl = ∆tn

[
1 + κarctan

(
∆tn+1 −∆tn

κ∆tn

)]
. (3)

▶ κ ∈ [0.7, 2.0].
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Calibration of ODE Solver
– Runge-Kutta Fehlberg 4(5): 5 stage.

– DVERK 6(5): 8 stage.

– Prince-Dormand 8(7): 12 stage.

– Adaptive Curtis 10(8): 18 stage.

– Adaptive Hiroshi 12(9): 29 stage.

– Vay Symplectic Scheme.

▶ Use test cases for high B-field, E × B (large E⊥-fields), and RRF scenarios.
▶ Asses accuracy, stability, and computational time of each scheme to

identify best scheme for our use case.
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Radiation-Reaction Force

▶ Use equation from Landau and Lifshitz for general radiation-reaction force:

f =
2e3γ

3mc3

{(
∂

∂t
+ v · ∇

)
E+

1

c
v ×

(
∂

∂t
+ v · ∇

)
H

}
+

2e4

3m2c4

{
E×H+

1

c
H× (H× v) +

1

c
E (v · E)

}
−

2e4γ2

3m2c5
v

{(
E+

1

c
v ×H

)2

−
1

c2
(E · v)2

}
.

(4)

▶ The first term is ∼ 108 − 1010 times smaller than the largest component.

Erad =

∫
Frad · v.dt (5)

▶ Benchmark Results:

Method No-losses RRF

RKF 1.0 1.7323
DV 0.4401 0.8565
PD 0.0706 0.1587
CV 0.0379 0.1259
HR 0.0529 0.1697
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Pitch Angle Evolution

▶ Case a) B = 108 G,
E⊥ = 0.1B,γ0 = 104.

▶ Case b) B = 1011 G,
E⊥ = 0.1B,γ0 = 102.

▶ Green: uniform E × B
scenario.

▶ Cyan: uniform E × B with
RRF scenario.

▶ Red: uniform B-field scenario.

▶ Blue: uniform B-field with
RRF scenario.

▶ Panel a) no visible loss in θp
due to RRF.

▶ Panel b) minor loss in θp due
to RRF.

▶ SR cooling timescale has
relative error of 10−4 − 10−3.
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AE Results

▶ Aristotelian Electrodynamics
velocity (gyro-centric):

vAE
c

=
E× B± (B0B+ E0E)

B2 + E2
0

.

(6)

▶ E · B = E0B0,
E2 + B2 = E2

0 + B2
0 .

▶ FRRF > FL in observer frame
but not particle frame.

γc =

(
3E0R2

c

2|e|

) 1
4

. (7)

▶ θD is the angle between v and
vAE.

▶ Convergence for the radiation
reaction limited regime.

▶ θD ̸= 0 due to gyro-radius.

▶ See Du Plessis et al. (2024)
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Harding and Collaborators’ code

▶ Tracing out the particle
trajectory incorporating
E× B drift from
Kalapotharakos et al.
(2014).

▶ v/c =
E× B/(B2 + E2

0 ) + f B/B.

▶ Solving transport
equations from Harding et
al (2005) to calculate
emission.

▶ dγ/dt = eE∥/mc −
2e4B2p2⊥/3m3c5,

▶ dp⊥/dt = −3cp⊥/2r −
2e4B2p3⊥/3m3c5γ.

▶ For the Harding et al.
2015 and 2021 models
these parameters are
calculated with respect to
the particle trajectory not
the local B-field.

▶ These equations assume super relativistic
particles with small pitch angles,
gyrocentric trajectories, gyro-phase
averaged trajectories an excludes drift
effects.
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Emission Map Calculations

▶ We calibrate with vacuum
retarded dipole- and force-free
fields.

▶ The phase corrections are
given by:

▶ ϕobs =
ϕem − rem × ηem/RLC −∆ϕrot

▶ We use the same curvature-
and synchrotron radiation
calculations.

▶ Use E∥-component to
accelerate particle.

ρc =
1√

(x ′′)2 + (y ′′)2 + (z ′′)2
.

(8)

▶ Figures from Barnard et
al.(2022) for curvature
radiation.
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Divergence and Classical RRF

▶ B and E fields have 3 segments
for the field structures:

▶ Vacuum-retarded dipole
R <= 0.2RLC .

▶ Force-free fields 0.4RLC <= R.

▶ Linear combination
0.2RLC < R < 0.4RLC .

▶ FF coarse grids generated by
Kalapotharakos et al. (2014)
FIDO model.

▶ Test if ∇ · B = 0.

▶ Need to test if we are in the
classical RRF regime:

Eex =
|p× B|
mc

(9)

▶ Eex < ES , where
ES = 4.41× 1013 G.
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Force-Free Fields
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Emission Map Calculations
Skymaps and Spectra

▶ We first compare curvature
radiation since it is least
affected by the E × B-drift
for large E⊥-fields.

▶ This is important since the
traditional curvature,
synchrotron and
synchro-curvature
radiation is derived by
excluding an E -field.

▶ For initial comparison
purposes we use their
gyro-centric trajectory
radius of curvature instead
of our instantaneous radius
of curvature of ρeff .
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General Pitch Angle

▶ Discrepancy in pitch angle
from Harding et al. (2021)
trajectory and radiation
transport equations.

▶ Quantum SR does keep θp
small close to the surface but
θp increases in the extended
magnetosphere due to the
E × B-drift.

▶ Thus we need a general θ with
respect to the E × B drifting
trajectory to calculate the
radiation.

▶ The assumption is that this
trajectory is equivalent to AE
thus we can assume the
’general pitch angle’ as θD .

▶ Due to this changing ’general
pitch angle’ we also investigate
the more general
synchro-curvature radiation.
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Synchrocurvature Radiation

▶ Kelner 2015, Cerutti 2016
synchrocurvature.

Fν(ν) =

√
3e3B⊥
mc2

(
ν

νc

)
F (y) (10)

▶ B⊥ =
√

(E+ β × B)2 + (β · E)2.
▶ ρc;eff = γmc2/eB⊥
▶ Vigano 2015 synchrocurvature

(Harding et al. 2021).

▶ no E-field and standard θp .

Fν(ν) =

√
3e2γy

4πℏρeff[
(1 + z)F (y)− (1− z)K2/3(y)

]
.

(11)

ρc;eff =
ρc

cos2 θp

(
1 + ζ +

rgyr

ρc

)−1

(12)
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Results

See Du Plessis et al. (2024; in prep)
See PhD Thesis to be uploaded to arXiv.
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AR Sco Results

▶ Takata uses rewritten forms of
equations from Harding et al.
(2005).

dγ

dt
=−

P2
⊥
ts

d

dt

(
P2
⊥
B

)
=− 2

B

tsγ

(
P2
⊥
B

)2

(13)

▶ Where ts = 3m3
ec

5/2e4B2.

▶ P⊥ = γβ sin θp .

▶ These equations assume super
relativistic particles with small
pitch angles, gyro-phase
averaged trajectories ,and
exclude any particle drift
effects.

▶ Using a static vacuum dipole
our results agree reasonably
well.

▶ Including an E⊥-field there are
many more mirrors.
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AR Sco Results

▶ Particles are injected into the WD
magnetosphere at the companion.

▶ The particles are magnetically
mirrored close to the WD surface
where they are turned around.

▶ Particles given a standard
power-law energy distribution
f (γ) = K0γ

−p .

▶ A uniform θp distribution is used
to reproduce Takata et al. (2017).

▶ We only follow 1 field line.

▶ The WD E∥-field is screened.

▶ We probed different WD B-field
strengths, α-values, p-values and
including and excluding the
E⊥-field.
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Spectra

▶ The Takata models use ζ = 60◦, α = 60◦, BS ∼ 4× 108 G, γmin = 50,
γmax = 3× 106, excludes E⊥, and p = 2.5 for their 2017 results and
p = 3.0 for their 2019 results.

▶ For all our spectra we included E⊥ except the specified case.
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No E⊥ Emission Maps

See Du Plessis et al. (2024/2025; in prep)
See PhD Thesis to be uploaded to arXiv.
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Future Work

▶ October PhD Submission.

▶ Submit Calibration Paper.

▶ Constrain parameters better and do higher statistic runs with realistic pitch
angle distribution for AR Sco results paper.

▶ Additional AR Sco modelling: Time dependant particle injection, build up
orbital phase resolved emission maps, and probe different injection
scenarios.

▶ Implement polarisation calculations to calculate Stokes parameters.

▶ Calculate fields self consistently to make code full PIC.

▶ Model other sources similar to AR Sco or that require general particle
dynamics namely pulsars or intermediate polars.

▶ Improve computational cost of code: better adaptive time step method,
SIMD operations, GPU processing.

▶ Calculate RRF for QED regime to test high field radiation-reaction limit
close to the stellar surface in pulsars.
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