Searching for Signatures of Internal Gamma-ray Absorption in High-redshift Blazars

A. Dmytriiev¹, A. Acharyya², M.Böttcher¹

¹ NWU, Potchefstroom, South Africa, ² CP3-origins, SDU, Odense, Denmark

High-Energy Astrophysics in Southern Africa (HEASA) 2024 - Wits Rural Facility

Outline

Introduction to Blazars

- Blazars: what can spectra tell us?
- γ - γ opacity

Searching for Opacity Features in High-z Blazars

- Source selection and data analysis
- Opacity model
- Optical data: target photon field
- Modeling results
- Implications
- 3 Future work and prospects

Summary

Outline

Introduction to Blazars

- Blazars: what can spectra tell us?
- γ - γ opacity

2 Searching for Opacity Features in High-z Blazars

- Source selection and data analysis
- Opacity model
- Optical data: target photon field
- Modeling results
- Implications
- 3 Future work and prospects

Summary

Blazars: phenomenon and properties

Blazars - radio-loud AGN with a jet aligned with the line of sight

- non-thermal emission from radio to γ-rays
- two-bump SED
- highly variable!
 - Flares: flux \nearrow by a factor ~ 10 over short time-scales minutes weeks
 - High states: $t_{\rm var} \sim$ weeks years

Figure: Unified view of an AGN (credit: Urry & Padovani (1995)

Figure: Multi-band light curves of 3C 279 variability.

A. Dmytriiev (North-West University)

Figure: Left: nearly-simultaneous spectral measurements combined across different spectral ranges for two activity states of 3C 279 (credit: Abdo et al. (2010)). Right: multi-band spectral data of Mrk 501 taken during an observational campaign in 2009 (credit: Abdo et al. (2011)).

A. Dmytriiev (North-West University)

- Emitting particle spectra
- Physical conditions in the emitting zone

Figure: Left: nearly-simultaneous spectral measurements combined across different spectral ranges for two activity states of 3C 279 (credit: Abdo et al. (2010)). Right: multi-band spectral data of Mrk 501 taken during an observational campaign in 2009 (credit: Abdo et al. (2011)).

A. Dmytriiev (North-West University)

- Emitting particle spectra
- Physical conditions in the emitting zone
- MWL emission origin

Figure: Left: nearly-simultaneous spectral measurements combined across different spectral ranges for two activity states of 3C 279 (credit: Abdo et al. (2010)). Right: multi-band spectral data of Mrk 501 taken during an observational campaign in 2009 (credit: Abdo et al. (2011)).

A. Dmytriiev (North-West University)

- Emitting particle spectra
- Physical conditions in the emitting zone
- MWL emission origin
- Contributions of different emission components

Figure: Left: nearly-simultaneous spectral measurements combined across different spectral ranges for two activity states of 3C 279 (credit: Abdo et al. (2010)). Right: multi-band spectral data of Mrk 501 taken during an observational campaign in 2009 (credit: Abdo et al. (2011)).

A. Dmytriiev (North-West University)

- Emitting particle spectra
- Physical conditions in the emitting zone
- MWL emission origin
- Contributions of different emission components
- Physical processes / acceleration mechanisms

Fermi-I? Fermi-II? magnetic reconnection?

Figure: Left: nearly-simultaneous spectral measurements combined across different spectral ranges for two activity states of 3C 279 (credit: Abdo et al. (2010)). Right: multi-band spectral data of Mrk 501 taken during an observational campaign in 2009 (credit: Abdo et al. (2011)).

A. Dmytriiev (North-West University)

Different target radiation fields

Depending on location of $\gamma\text{-ray}$ emitting zone in the jet, $\gamma\text{-rays}$ are exposed to different photon fields:

- Accretion disk (UV, $r \lesssim 0.01 \text{ pc}$)
- Broad line region (optical-UV, $r \sim 0.01 0.1 \text{ pc}$)
- Dusty torus (infrared, $r \gtrsim 0.1$ pc)

Figure: Scheme illustrating different AGN components. Credit: Emma Alexander

$\gamma-\gamma$ absorption: theory

 $\gamma + \gamma \rightarrow {\rm e}^- + {\rm e}^+$

Threshold of pair production: $\epsilon_1\epsilon_2\geq 2(1-\mu)^{-1}$, $\mu=\cos\, heta$

Cross-section (angle-dependent):

$$\sigma_{\gamma\gamma}(\epsilon_1,\epsilon_2,\mu) = \frac{3}{16}\sigma_{\mathrm{T}}(1-y^2)\left([3-y^4]\times\ln\left[\frac{1+y}{1-y}\right] - 2y[2-y^2]\right)$$

with $y = \sqrt{1 - 2/(\epsilon_1 \epsilon_2 [1 - \mu])}$

Peak in cross-section at $x = \epsilon_1 \epsilon_2 (1 - \mu) = 4$ ($\epsilon = 2\epsilon_{\rm thr}$), with $\sigma_{\gamma\gamma}^{\rm peak} \approx 0.25\sigma_{\rm T}$

Absorption features due to different target radiation fields

Target photon fields with different spectra induce different absorption features in observed $\gamma\text{-ray}$ spectra

Figure: Opacity features induced by power-law seed photon field (left), BLR field (center) and blackbody (right). Credit: Poutanen & Stern (2010) and Aharonian et al. (2008)

Outline

Introduction to Blazars

- Blazars: what can spectra tell us?
- γ - γ opacity

Searching for Opacity Features in High-z Blazars

- Source selection and data analysis
- Opacity model
- Optical data: target photon field
- Modeling results
- Implications

3 Future work and prospects

Summary

 For high-z sources, the opacity features move to lower energies in the γ-ray spectra

- For high-z sources, the opacity features move to lower energies in the γ-ray spectra
- Interaction with Ly α photons (10.2 eV): $E_{\gamma} \approx 25 \text{ GeV}/(1+z)$

- For high-z sources, the opacity features move to lower energies in the γ-ray spectra
- Interaction with Ly α photons (10.2 eV): $E_{\gamma} \approx 25 \text{ GeV}/(1+z)$
- For z = (3 4): absorption starts from 5 - 6 GeV !

 \rightarrow best *Fermi*-LAT sensitivity !

- For high-z sources, the opacity features move to lower energies in the γ-ray spectra
- Interaction with Ly α photons (10.2 eV): $E_{\gamma} \approx 25 \text{ GeV}/(1+z)$
- For z = (3 4): absorption starts from 5 - 6 GeV !

 \rightarrow best *Fermi*-LAT sensitivity !

• Strong optical/ γ -ray signal \rightarrow high accretion disk luminosity \rightarrow stronger opacity

- For high-z sources, the opacity features move to lower energies in the γ-ray spectra
- Interaction with Ly α photons (10.2 eV): $E_{\gamma} \approx 25 \text{ GeV}/(1+z)$
- For z = (3 4): absorption starts from 5 - 6 GeV !

 \rightarrow best *Fermi*-LAT sensitivity !

Strong optical/γ-ray signal → high accretion disk luminosity
 → stronger opacity

• What can we learn?

- (1) The location of γ -ray production site in the jet
- (2) Distribution of target photon fields within the source
- (3) Emission scenarios
- (4) Constraints on the opacity: how γ -rays avoid absorption?

Source selection

We select 9 γ -ray detected FSRQs with z > 3 (Paliya et al. (2020))

Name	R.A. (deg)	Decl. (deg)	Redshift	R _{mag}	F _{radio} (mJy)
	(8/	γ-Ray-detected blazars			(,)
NVSS J033755-120404	54.48104	-12.06793	3.442	20.19	475.3
NVSS J053954-283956	84.97617	-28.66554	3.104	18.97	862.2
NVSS J073357+045614	113.48941	4.93736	3.01	18.76	218.8
NVSS J080518+614423	121.32575	61.73992	3.033	19.81	828.2
NVSS J083318-045458	128.32704	-4.9165	3.5	18.68	356.5
NVSS J135406-020603	208.52873	-2.10089	3.716	19.64	733.4
NVSS J142921+540611	217.34116	54.10309	3.03	19.84	1028.3
NVSS J151002+570243	227.51216	57.04538	4.313	19.89	202.0
NVSS J163547+362930	248.94681	36.49164	3.615	20.55	151.8

Fermi-LAT data analysis

Analysis: A. Acharyya

- Energy range: 0.1 GeV 1 TeV
- 1.5 bins per decade of energy (6 bins / 4 decades)
- 15 years of data

- Standard selection cuts
- Spectral model:
 4FGL catalog shape
 (power law / logparabola)

Fermi-LAT data analysis

- 2 bins per decade of energy (used for the modeling)

Model for $\gamma\text{-}\gamma$ absorption in the BLR

We use the model and code by Böttcher & Els (2016)

- Full angle-dependent γ - γ absorption cross-section
- **BLR geometry**: a shell with inner and outer radius R_1 and R_2 . Assume $u_{BLR} = const$ everywhere
- Computes **optical depth** τ as a function of γ -ray energy E_{γ} and distance of the emitting zone from the central engine $R_{\rm ez}$

$$u_{\rm BLR} = \int_0^\infty d\epsilon \int_0^\infty dr \ 2\pi \int_{-1}^1 r^2 d\mu \ \frac{j_\epsilon(\mathbf{r})}{4\pi r^2 c} =$$
$$= \frac{1}{2c} \int_0^\infty d\epsilon \ j_\epsilon^0 \int_{-1}^1 d\mu \ D(\mu)$$

$$\begin{aligned} \tau_{\gamma-\gamma}(\epsilon_{\gamma},d) &= \frac{1}{2c} \int_{R_{\rm ez}}^{\infty} dl \int_{-1}^{1} d\mu \int_{0}^{\infty} d\epsilon \; \frac{j_{\epsilon}^{0} D(\mu)}{\epsilon m_{\rm e} c^{2}} \times \\ &\times \; (1-\mu_{i}) \; \sigma_{\gamma-\gamma}(\epsilon_{\gamma},\epsilon,\mu_{i}) \end{aligned}$$

Target radiation field: $u_{\nu,\mathrm{rad}}(u)$

We use a template for BLR spectrum with a **blackbody continuum** (T = 1500 K) and a **set of 4 emission lines** as measured in real optical data. We assume that the total BLR luminosity (sum of 4 lines + continuum) is (always) 10% of $L_{\rm D}$

Luminosity of the accretion disk

We assume that the ${\sf BLR}$ dominates the target radiation field, with the BLR covering fraction 10%

$$u_{
m BLR,tot} = rac{0.1 L_{
m D}}{4 \pi R_{
m BLR}^2 c}$$

 $R_{
m BLR}pprox 0.1~L_{
m D,46}^{1/2}$ pc

e.g. Hayashida et al. (2012)

We adopt L_D from Paliya et al. (2020) – estimates based on broadband SED modeling

Source $\#$	Name (NVSS)	log10($L_{ m D}$ erg s $^{-1}$)
1	NVSS J033755-120404	46.36
2	NVSS J053954-283956	46.70
3	NVSS J073357+045614	46.60
4	NVSS J080518+614423	46.34
5	NVSS J083318-045458	47.15
6	NVSS J135406-020603	46.78
7	NVSS J142921+540611	46.26
8	NVSS J151002+570243	46.63
9	NVSS J163547+362930	46.30

• We use available luminosities of the most prominent optical emission lines

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know $L_{Ly\alpha}$ (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know $L_{Ly\alpha}$ (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies
- We adopt L_{MgII} and $L_{H\beta}$ from an IR study by Burke et al. (2024)

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know $L_{Ly\alpha}$ (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies
- We adopt $L_{\rm MgII}$ and $L_{\rm H\beta}$ from an IR study by Burke et al. (2024)
- We adopt $L_{\rm CIV}$ from Paliya et al. (2021) (except source #3)

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know $L_{Ly\alpha}$ (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies
- We adopt $L_{\rm MgII}$ and $L_{\rm H\beta}$ from an IR study by Burke et al. (2024)
- We adopt $L_{\rm CIV}$ from Paliya et al. (2021) (except source #3)
- For $L_{Ly\alpha}$ (includes N V):

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know $L_{Ly\alpha}$ (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies
- We adopt $L_{\rm MgII}$ and $L_{\rm H\beta}$ from an IR study by Burke et al. (2024)
- We adopt L_{CIV} from Paliya et al. (2021) (except source #3)
- For $L_{Ly\alpha}$ (includes N V):
 - source #1, 2: old measurements from Osmer et al. (1994) only

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know $L_{Ly\alpha}$ (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies
- We adopt $L_{\rm MgII}$ and $L_{\rm H\beta}$ from an IR study by Burke et al. (2024)
- We adopt L_{CIV} from Paliya et al. (2021) (except source #3)
- For $L_{Ly\alpha}$ (includes N V):
 - source #1, 2: old measurements from Osmer et al. (1994) only
 - source #3: prediction derived using scaling as by average ratios of Francis et al. (1991) (as well as for $L_{\rm CIV}$)

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know $L_{Ly\alpha}$ (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies
- We adopt $L_{\rm MgII}$ and $L_{\rm H\beta}$ from an IR study by Burke et al. (2024)
- We adopt L_{CIV} from Paliya et al. (2021) (except source #3)
- For $L_{Ly\alpha}$ (includes N V):
 - source #1, 2: old measurements from Osmer et al. (1994) only
 - source #3: prediction derived using scaling as by average ratios of Francis et al. (1991) (as well as for $L_{\rm CIV}$)
 - source #4, 5: no information at all (and the measured line ratios are inconsistent with Francis et al.)

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know $L_{Ly\alpha}$ (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies
- We adopt $L_{\rm MgII}$ and $L_{\rm H\beta}$ from an IR study by Burke et al. (2024)
- We adopt L_{CIV} from Paliya et al. (2021) (except source #3)
- For $L_{Ly\alpha}$ (includes N V):
 - source #1, 2: old measurements from Osmer et al. (1994) only
 - source #3: prediction derived using scaling as by average ratios of Francis et al. (1991) (as well as for $L_{\rm CIV}$)
 - source #4, 5: no information at all (and the measured line ratios are inconsistent with Francis et al.)
 - source #6, 7, 8, 9: accurate measurement through SDSS DR18

Source #	Name (NVSS)	z	$\log 10(L_{Ly\alpha+NV})$	$log10(L_{CIV})$	$\log 10(L_{MgII})$	$\log 10(L_{H\beta})$
1	J033755-120404	3.442	44.8941	44.268 ± 0.193	44.73 ± 0.09	44.24 ± 0.05
2	J053954-283956	3.104	44.7335	45.091 ± 0.091	44.38 ± 0.04	43.21 ± 0.09
3	J073357+045614	3.01	44.613 ± 0.063	44.412 ± 0.063	44.09 ± 0.02	44.01 ± 0.06
4	J080518+614423	3.033	×	44.743 ± 0.095	44.39 ± 0.03	43.79 ± 0.06
5	J083318-045458	3.5	х	45.220 ± 0.111	44.63 ± 0.01	44.47 ± 0.01
6	J135406-020603	3.716	45.092 ± 0.027	44.552 ± 0.038	44.39 ± 0.06	43.95 ± 0.09
7	J142921+540611	3.03	44.36 ± 0.04	44.241 ± 0.018	44.07 ± 0.09	43.79 ± 0.11
8	J151002+570243	4.313	45.245 ± 0.019	44.857 ± 0.059	44.84 ± 0.09	х
9	J163547+362930	3.615	44.8 ± 0.22	44.305 ± 0.023	44.42 ± 0.02	43.75 ± 0.04

Approach

• We fit each spectrum with a power law or logparabola (4FGL catalog shape)

A. Dmytriiev (North-West University)

Approach

- We fit each spectrum with a **power law** or **logparabola** (4FGL catalog shape)
- We γ-γ absorb each model using the opacity code (with the relevant L_D), while varying the location of the γ-ray production region

Approach

- We fit each spectrum with a power law or logparabola (4FGL catalog shape)
- We γ-γ absorb each model using the opacity code (with the relevant L_D), while varying the location of the γ-ray production region
- Folded model (average over bins):

 $\chi^2 \leq \chi^2_{
m min} + 1$ indicates allowed locations in the jet (1σ)

A. Dmytriiev (North-West University)

Fit results

- 3/9 sources do not have enough statistics
- Of remaining 6 sources, 5 have Lylpha information available
- Lower limit of distance from SMBH (only) for 4/9 sources
- Spectrum of Source #3 is consistent with opacity model

Constraints on the γ -ray production zone location

Source $\#$	Name (NVSS)	${\it R}_{ m BLR}$ (cm)	$R_{ m ez}/R_{ m BLR}$ (1 σ)	(1.65σ)	$\chi^2_ u$ (non-abs)
1	J033755-120404	$4.67 imes10^{17}$	\geq 0.92	\geq 0.48	2.43/2
2	J053954-283956	$6.9 imes10^{17}$	≥ 1.08	≥ 1.06	3.84/2
3	J073357+045614	$6.16 imes10^{17}$	= 0.92	=	5.13/2
4	J080518+614423	_	-	-	_
5	J083318-045458	-	-	-	-
6	J135406-020603	-	_	-	-
7	J142921+540611	-	_	-	-
8	J151002+570243	$6.37 imes10^{17}$	≥ 1.01	\geq 0.92	2.57/2
9	J163547+362930	$4.36 imes10^{17}$	\geq 0.84	NA	0.76/1

A. Dmytriiev (North-West University)

Internal Absorption in High-z Blazars

Oct 2-4, 2024

21/32

Particular case: Source #3

- Spectrum of Source #3 is consistent with opacity model
- An improved χ^2 ($\Delta \chi^2 < 0$) is achieved for the **absorbed model** in the range $R_{\rm ez}/R_{\rm BLR} \ge 0.84$
- The best fit is achieved for $R_{
 m ez}/R_{
 m BLR}=0.92$ ightarrow emitting zone WITHIN BLR

Discussion of results

 The observed cutoff in the γ-ray spectra cannot be distinguished from e.g. cutoff in the particle spectrum → mostly lower limits on the emitting zone location

Implications

Discussion of results

- The observed cutoff in the γ-ray spectra cannot be distinguished from e.g. cutoff in the particle spectrum → mostly lower limits on the emitting zone location
- Very particular location shocked region in the jet consistently in the vicinity of BLR shell

The emitting zone cannot be too far from BLR as well \rightarrow production of γ -rays via IC

23 / 32

Implications

Discussion of results

- The observed cutoff in the γ-ray spectra cannot be distinguished from e.g. cutoff in the particle spectrum → mostly lower limits on the emitting zone location
- Very particular location shocked region in the jet consistently in the vicinity of BLR shell

The emitting zone cannot be too far from BLR as well \rightarrow production of γ -rays via IC

• Source #2 (NVSS J053954-283956) – tighter constraints can be derived (emitting zone close to inner BLR radius)

Implications

Discussion of results

• Second emitting zone?

- full physical modeling required
- correlation between different bands

Hadronic models

- $\textit{p}\text{-}\gamma$ process internal opacity
- Exotic physics, e.g. photon-axion coupling in magnetic field ?

Outline

Introduction to Blazars

- Blazars: what can spectra tell us?
- γ - γ opacity

2 Searching for Opacity Features in High-z Blazars

- Source selection and data analysis
- Opacity model
- Optical data: target photon field
- Modeling results
- Implications

3 Future work and prospects

Summary

Constraining the EBL

- The best-fit χ² for the EBL-deabsorbed intrinsic spectrum for different EBL models (Saldana-Lopez 2021; Finke 2022; Franceschini 2018; ...)
 - limited statistics of the data
 - full physical modeling is preferred
- Statistical approach: spectral index as a function of redshift z
 - limited selection of sources

Figure: (Top): example of de-absorption of an observed γ -ray spectrum using different EBL models (Furniss et al. 2013). Bottom: distribution of observed VHE spectral index of a selection of HBLs as a function of redshift (Sinha et al. 2014)

Internal Absorption in High-z Blazars

Oct 2-4, 2024

26 / 32

Studying internal absorption in other blazars

 Intermediate redshift blazars (z=1-2): an optimal balance between the γ-ray statistics and the opacity feature downshift

A. Dmytriiev (North-West University)

Beyond leptonic models: hadronic scenario

$$\pi^{\pm}
ightarrow \mu^{\pm} +
u_{\mu}(\bar{
u}_{\mu})$$

 $\mu^{\pm}
ightarrow e^{\pm} + \bar{
u}_{\mu}(
u_{\mu}) +
u_{e}(\bar{
u}_{e})$

TXS 0506+056

- IceCube \sim 290 TeV ν (2017) + GeV (*Fermi*-LAT) and VHE (MAGIC) flare
- ν -flare (2014 2015): no γ -ray activity

Assuming **photo-hadron** (rather than *p*-*p*):

 $E_
u^\prime pprox 0.05 E_{
m p}^\prime, \ \ s pprox E_\gamma^\prime E_{
m p}^\prime pprox E_{\Delta^+}^2$

- Target field: X-ray (Böttcher et al. (2022))
- Synchrotron-supported cascade is ruled out (Reimer et al. (2019))
- \Rightarrow Target photons originate outside the jet?
- ! GeV $\gamma\text{-rays}$ absorbed on the target field

Figure: (Top) Fermi-LAT and optical LC of TXS 0506-056. Green – neutrino flare in 2014 – 2015. (Bottom) Simulations of synchrotron-supported cascades to generate the observed neutrino flare flux (credit: Reimer et al. (2019))

Oct 2-4, 2024

Prospects with CTA

The next generation IACT instrument. Operational by 202?

Large Size Telescope (LST) particularly helpful thanks to the low-energy threshold and sensitivity

- Sensitivity \nearrow by a factor of ~ 10
- Northern and Southern site (La Palma and Chile)
- Energy range: \sim 30 GeV \sim 300 TeV
- Substantially better angular, spectral and timing resolution
- → Much tighter constraints on γ-γ opacity, γ-ray production site location and EBL

Figure: Top: CGI rendering of the CTA array view; Bottom: LST in La Palma (credit: ESO/CTA)

Outline

Introduction to Blazars

- Blazars: what can spectra tell us?
- γ - γ opacity

2 Searching for Opacity Features in High-z Blazars

- Source selection and data analysis
- Opacity model
- Optical data: target photon field
- Modeling results
- Implications

3 Future work and prospects

Summary

Summary

- Exploring high-redshift blazars allows to search for γ - γ opacity signatures at lower energies
- We established constraints on the location of the γ -ray production region in the jet for 5 blazars with redshifts z = 3 4.3
- One needs to understand why the γ-ray production (shocked region in the jet) takes place mostly close to the BLR outer boundary
- One of the sources displays a possible γ γ opacity feature at energy ~ 8 GeV. Emitting zone located within the BLR close to the INNER boundary
- Full modeling required leptonic, hadronic, multi-zone models

Promising prospects with CTA

 \Rightarrow ApJ paper in preparation, to be submitted (hopefully) within this month

Thank you!

