Searching for Signatures of Internal Gamma-ray Absorption in High-redshift Blazars

 ${\sf A.\ Dmytriiev}^1$, A. Acharyya 2 , M.Böttcher 1

¹ NWU, Potchefstroom, South Africa, ² CP3-origins, SDU, Odense, Denmark

High-Energy Astrophysics in Southern Africa (HEASA) 2024 – Wits Rural Facility

Outline

[Introduction to Blazars](#page-2-0)

- [Blazars: what can spectra tell us?](#page-3-0)
- γ - γ [opacity](#page-9-0)

2 [Searching for Opacity Features in High-z Blazars](#page-12-0)

- [Source selection and data analysis](#page-13-0)
- **[Opacity model](#page-21-0)**
- [Optical data: target photon field](#page-23-0)
- [Modeling results](#page-35-0)
- **•** [Implications](#page-41-0)
- 3 [Future work and prospects](#page-45-0)

[Summary](#page-50-0)

Outline

[Introduction to Blazars](#page-2-0)

- [Blazars: what can spectra tell us?](#page-3-0)
- γ - γ [opacity](#page-9-0)

[Searching for Opacity Features in High-z Blazars](#page-12-0)

- **[Source selection and data analysis](#page-13-0)**
- [Opacity model](#page-21-0)
- [Optical data: target photon field](#page-23-0)
- [Modeling results](#page-35-0)
- [Implications](#page-41-0)
- [Future work and prospects](#page-45-0)

[Summary](#page-50-0)

Blazars: phenomenon and properties

Blazars – radio-loud AGN with a jet aligned with the line of sight

- **O** non-thermal emission from radio to γ -rays
- two-bump SED
- **•** highly variable!
	- Flares: flux \nearrow by a factor ∼10 over short time-scales minutes – weeks
	- High states: $t_{\rm var}$ \sim weeks years

Figure: Unified view of an AGN (credit: Urry & Padovani (1995)

Figure: Left: nearly-simultaneous spectral measurements combined across different spectral ranges for two activity states of 3C 279 (credit: Abdo et al. (2010)). Right: multi-band spectral data of Mrk 501 taken during an observational campaign in 2009 (credit: Abdo et al. (2011)).

- Emitting particle spectra \bullet
- Physical conditions in the emitting zone \bullet

Figure: Left: nearly-simultaneous spectral measurements combined across different spectral ranges for two activity states of 3C 279 (credit: Abdo et al. (2010)). Right: multi-band spectral data of Mrk 501 taken during an observational campaign in 2009 (credit: Abdo et al. (2011)).

- Emitting particle spectra \bullet
- Physical conditions in the emitting zone \bullet
- \bullet MWL emission origin

Figure: Left: nearly-simultaneous spectral measurements combined across different spectral ranges for two activity states of 3C 279 (credit: Abdo et al. (2010)). Right: multi-band spectral data of Mrk 501 taken during an observational campaign in 2009 (credit: Abdo et al. (2011)).

- Emitting particle spectra \bullet
- Physical conditions in the emitting zone \bullet
- MWL emission origin .
- Contributions of different emission components \bullet

Figure: Left: nearly-simultaneous spectral measurements combined across different spectral ranges for two activity states of 3C 279 (credit: Abdo et al. (2010)). Right: multi-band spectral data of Mrk 501 taken during an observational campaign in 2009 (credit: Abdo et al. (2011)).

- Emitting particle spectra \bullet
- Physical conditions in the emitting zone
- MWL emission origin .
- Contributions of different emission components
- **•** Physical processes / acceleration mechanisms

Fermi-I? Fermi-II? magnetic reconnection?

Figure: Left: nearly-simultaneous spectral measurements combined across different spectral ranges for two activity states of 3C 279 (credit: Abdo et al. (2010)). Right: multi-band spectral data of Mrk 501 taken during an observational campaign in 2009 (credit: Abdo et al. (2011)).

Different target radiation fields

Depending on location of γ -ray emitting zone in the jet, γ -rays are exposed to different photon fields:

- \bullet Accretion disk (UV, $r \le 0.01$ pc)
- \bullet Broad line region (optical-UV, $r \sim 0.01 0.1$ pc)
- O Dusty torus (infrared, $r \geq 0.1$ pc)

Figure: Scheme illustrating different AGN components. Credit: Emma Alexander

$\gamma - \gamma$ absorption: theory

 γ + γ \rightarrow e^{-} + e^{+}

Threshold of pair production: $\epsilon_1\epsilon_2\geq 2(1-\mu)^{-1},\quad \mu=\cos\,\theta$

Cross-section (angle-dependent):

$$
\sigma_{\gamma\gamma}(\epsilon_1,\epsilon_2,\mu) = \frac{3}{16}\sigma_{\rm T}(1-y^2)\left([3-y^4]\times \ln\left[\frac{1+y}{1-y}\right] - 2y[2-y^2]\right)
$$

with $y=\sqrt{1-2/(\epsilon_1\epsilon_2[1-\mu])}$

Peak in cross-section at $x=\epsilon_1\epsilon_2(1-\mu)=$ 4 $(\epsilon=2\epsilon_{\rm thr})$, with $\sigma_{\gamma\gamma}^{\rm peak}\approx 0.25\sigma_{\rm T}$

Absorption features due to different target radiation fields

Target photon fields with different spectra induce different absorption features in observed γ -ray spectra

Figure: Opacity features induced by power-law seed photon field (left), BLR field (center) and blackbody (right). Credit: Poutanen & Stern (2010) and Aharonian et al. (2008)

Outline

[Introduction to Blazars](#page-2-0)

- [Blazars: what can spectra tell us?](#page-3-0)
- γ - γ [opacity](#page-9-0)

2 [Searching for Opacity Features in High-z Blazars](#page-12-0)

- [Source selection and data analysis](#page-13-0)
- **[Opacity model](#page-21-0)**
- [Optical data: target photon field](#page-23-0)
- [Modeling results](#page-35-0)
- **•** [Implications](#page-41-0)

[Future work and prospects](#page-45-0)

[Summary](#page-50-0)

• For high-z sources, the opacity features move to lower energies in the γ -ray spectra

- **•** For high-z sources, the opacity features move to **lower energies** in the γ -ray spectra
- Interaction with Ly α photons (10.2 eV): $E_{\gamma} \approx 25 \text{ GeV}/(1+z)$

- For high-z sources, the opacity features move to **lower energies** in the γ -ray spectra
- Interaction with Ly α photons (10.2 eV): $E_{\gamma} \approx 25 \text{ GeV}/(1+z)$
- For $z = (3 4)$: absorption starts from $5 - 6$ GeV !

 \rightarrow best Fermi-LAT sensitivity !

- **•** For high-z sources, the opacity features move to **lower energies** in the γ -ray spectra
- Interaction with Ly α photons (10.2 eV): $E_{\gamma} \approx 25 \text{ GeV}/(1+z)$
- For $z = (3 4)$: absorption starts from $5 - 6$ GeV !

 \rightarrow best Fermi-LAT sensitivity !

• Strong optical/ γ -ray signal \rightarrow high accretion disk luminosity \rightarrow stronger opacity

- **•** For high-z sources, the opacity features move to **lower energies** in the γ -ray spectra
- Interaction with Ly α photons (10.2 eV): $E_{\gamma} \approx 25 \text{ GeV}/(1+z)$
- For $z = (3 4)$: absorption starts from $5 - 6$ GeV !

 \rightarrow best Fermi-LAT sensitivity !

• Strong optical/ γ -ray signal \rightarrow high accretion disk luminosity \rightarrow stronger opacity

What can we learn?

- (1) The location of γ -ray production site in the jet
- (2) Distribution of target photon fields within the source
- (3) Emission scenarios
- (4) Constraints on the opacity: how γ -rays avoid absorption?

Source selection

We select 9 γ -ray detected FSRQs with $z > 3$ (Paliya et al. (2020))

Fermi-LAT data analysis

Analysis: A. Acharyya

- Energy range: 0.1 GeV 1 TeV
- -1.5 bins per decade of energy (6 bins / 4 decades)
- 15 years of data
- Standard selection cuts
- Spectral model: 4FGL catalog shape (power law / logparabola)

Fermi-LAT data analysis

– 2 bins per decade of energy (used for the modeling)

Model for γ - γ absorption in the BLR

We use the model and code by Böttcher & Els (2016)

- **•** Full angle-dependent γ - γ absorption cross-section
- **BLR geometry:** a shell with inner and outer radius R_1 and R_2 . Assume $u_{\text{BLR}} = \text{const}$ everywhere
- **•** Computes optical depth τ as a function of γ -ray energy E_{γ} and distance of the emitting zone from the central engine R_{ex}

$$
u_{\text{BLR}} = \int_0^\infty d\epsilon \int_0^\infty dr \ 2\pi \int_{-1}^1 r^2 d\mu \ \frac{j_\epsilon(r)}{4\pi r^2 c} = \\ = \frac{1}{2c} \int_0^\infty d\epsilon \ j_\epsilon^0 \int_{-1}^1 d\mu \ D(\mu)
$$

$$
\tau_{\gamma-\gamma}(\epsilon_{\gamma}, d) = \frac{1}{2c} \int_{R_{\rm ez}}^{\infty} dl \int_{-1}^{1} d\mu \int_{0}^{\infty} d\epsilon \frac{j_{\epsilon}^{0} D(\mu)}{\epsilon m_{\rm e} c^{2}} \times \\ \times (1 - \mu_{i}) \sigma_{\gamma-\gamma}(\epsilon_{\gamma}, \epsilon, \mu_{i})
$$

Target radiation field: $u_{\nu \text{rad}}(\nu)$

We use a template for BLR spectrum with a **blackbody continuum** ($T = 1500$ K) and a set of 4 emission lines as measured in real optical data. We assume that the total BLR luminosity (sum of 4 lines + continuum) is (always) 10% of L_D

Luminosity of the accretion disk

We assume that the BLR dominates the target radiation field, with the BLR covering fraction 10%

$$
u_{\rm BLR,tot}=\frac{0.1L_{\rm D}}{4\pi R_{\rm BLR}^2 c}
$$

 $R_{\rm BLR} \approx 0.1\; L_{\rm D,46}^{1/2}\;$ pc

e.g. Hayashida et al. (2012)

We adopt L_D from Paliya et al. (2020) – estimates based on broadband SED modeling

We use available luminosities of the most prominent optical emission lines

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know $L_{\text{Lv}\alpha}$ (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know $L_{\text{Ly}\alpha}$ (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies
- We adopt L_{MgII} and $L_{\text{H}\beta}$ from an IR study by Burke et al. (2024)

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know L_{Lva} (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies
- We adopt L_{MgII} and $L_{\text{H}\beta}$ from an IR study by Burke et al. (2024)
- We adopt L_{CIV} from Paliya et al. (2021) (except source $\#3$)

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know L_{Lva} (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies
- We adopt L_{MgII} and $L_{\text{H}\beta}$ from an IR study by Burke et al. (2024)
- We adopt L_{CIV} from Paliya et al. (2021) (except source $\#3$)
- For $L_{\text{Lv}\alpha}$ (includes N V):

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know L_{Lva} (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies
- We adopt L_{MgII} and $L_{\text{H}\beta}$ from an IR study by Burke et al. (2024)
- We adopt L_{CIV} from Paliya et al. (2021) (except source $\#3$)
- For $L_{\text{Lv}\alpha}$ (includes N V):
	- source $\#1$, 2: old measurements from Osmer et al. (1994) only

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know L_{Lva} (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies
- We adopt L_{MgII} and $L_{\text{H}\beta}$ from an IR study by Burke et al. (2024)
- We adopt L_{CIV} from Paliya et al. (2021) (except source $\#3$)
- For $L_{\text{Lv}\alpha}$ (includes N V):
	- source $\#1$, 2: old measurements from Osmer et al. (1994) only
	- $-$ source $\#3$: prediction derived using scaling as by average ratios of Francis et al. (1991) (as well as for L_{CIV})

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know $L_{\text{Ly}\alpha}$ (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies
- We adopt L_{MgII} and $L_{\text{H}\beta}$ from an IR study by Burke et al. (2024)
- We adopt L_{CIV} from Paliya et al. (2021) (except source $\#3$)
- For $L_{\text{Lv}\alpha}$ (includes N V):
	- source $\#1$, 2: old measurements from Osmer et al. (1994) only
	- $-$ source $\#3$: prediction derived using scaling as by average ratios of Francis et al. (1991) (as well as for L_{CIV})
	- $-$ source $\#4$, 5: no information at all (and the measured line ratios are inconsistent with Francis et al.)

- We use available luminosities of the most prominent optical emission lines
- Ly α (1216 Å) + N V (1240 Å), C IV (1549 Å), Mg II (2798 Å) and H β (4861 Å)
- Need to know $L_{\text{Ly}\alpha}$ (+N V) very accurately \rightarrow induces opacity features at lowest γ -ray energies
- We adopt L_{MgII} and $L_{\text{H}\beta}$ from an IR study by Burke et al. (2024)
- We adopt L_{CIV} from Paliya et al. (2021) (except source $\#3$)
- For $L_{\text{Lv}\alpha}$ (includes N V):
	- source $\#1$, 2: old measurements from Osmer et al. (1994) only
	- $-$ source $\#3$: prediction derived using scaling as by average ratios of Francis et al. (1991) (as well as for L_{CIV})
	- source $\#4$, 5: no information at all (and the measured line ratios are inconsistent with Francis et al.)
	- source $\#6$, 7, 8, 9: accurate measurement through SDSS DR18

Approach

We fit each spectrum with a power law or logparabola (4FGL catalog shape)

Approach

- We fit each spectrum with a power law or logparabola (4FGL catalog shape)
- We γ - γ absorb each model using the opacity code (with the relevant L_{D}), while varying the location of the γ -ray production region

Approach

- We fit each spectrum with a **power law** or **logparabola** (4FGL catalog shape)
- We γ - γ absorb each model using the opacity code (with the relevant L_D), while varying the location of the γ -ray production region
- **•** Folded model (average over bins):

 $\chi^2 \leq \chi^2_\text{min} + 1$ indicates allowed locations in the jet (1σ)

Fit results

- 3/9 sources do not have enough statistics
- Of remaining 6 sources, 5 have Ly α information available
- Lower limit of distance from SMBH (only) for 4/9 sources
- $-$ Spectrum of Source $#3$ is consistent with opacity model

Constraints on the γ -ray production zone location

Particular case: Source #3

- Spectrum of Source $#3$ is consistent with opacity model
- An improved χ^2 $(\Delta \chi^2 < 0)$ is achieved for the \bf{a} bsorbed model in the range $R_{\rm ez}/R_{\rm BLR} > 0.84$
- The best fit is achieved for $R_{\text{ez}}/R_{\text{BLR}} = 0.92 \rightarrow$ emitting zone WITHIN BLR

• The observed cutoff in the γ -ray spectra cannot be distinguished from e.g. cutoff in the particle spectrum \rightarrow mostly lower limits on the emitting zone location

- The observed cutoff in the γ -ray spectra cannot be distinguished from e.g. cutoff in the particle spectrum \rightarrow mostly lower limits on the emitting zone location
- Very particular location shocked region in the jet consistently in the vicinity of BLR shell

The emitting zone cannot be too far from BLR as well \rightarrow production of γ -rays via IC

- The observed cutoff in the γ -ray spectra cannot be distinguished from e.g. cutoff in the particle spectrum \rightarrow mostly lower limits on the emitting zone location
- Very particular location shocked region in the jet consistently in the vicinity of BLR shell

The emitting zone cannot be too far from BLR as well \rightarrow production of γ -rays via IC

• Source $#2$ (NVSS J053954-283956) – tighter constraints can be derived (emitting zone close to inner BLR radius)

- **•** Second emitting zone?
	- full physical modeling required
	- correlation between different bands
- **•** Hadronic models
	- $-p-\gamma$ process internal opacity
- **Exotic physics, e.g. photon-axion** coupling in magnetic field ?

Outline

[Introduction to Blazars](#page-2-0)

- [Blazars: what can spectra tell us?](#page-3-0)
- γ - γ [opacity](#page-9-0)

[Searching for Opacity Features in High-z Blazars](#page-12-0)

- **[Source selection and data analysis](#page-13-0)**
- [Opacity model](#page-21-0)
- [Optical data: target photon field](#page-23-0)
- [Modeling results](#page-35-0)
- [Implications](#page-41-0)

3 [Future work and prospects](#page-45-0)

[Summary](#page-50-0)

Constraining the EBL

- The best-fit χ^2 for the <code>EBL-deabsorbed</code> intrinsic spectrum for different EBL models (Saldana-Lopez 2021; Finke 2022; Franceschini 2018; ...)
	- limited statistics of the data
	- full physical modeling is preferred
- **Statistical approach:** spectral index as a function of redshift z
	- limited selection of sources

Figure: (Top): example of de-absorption of an observed γ-ray spectrum using different EBL models (Furniss et al. 2013). Bottom: distribution of observed VHE spectral index of a selection of HBLs as a function of redshift (Sinha et al. 2014)

Studying internal absorption in other blazars

• Intermediate redshift blazars $(z=1-2)$: an optimal balance between the γ -ray statistics and the opacity feature downshift

Figure: Left: typical spectrum of BLR. Right: γ - γ absorption cross-section (relative to σ_T) on BLR photon field for different energies of γ-rays. Credit: Poutanen & Stern (2010)

(Poutanen & Stern (2010))

Beyond leptonic models: hadronic scenario

$$
\begin{aligned} \pi^{\pm} &\rightarrow \mu^{\pm} + \nu_{\mu}(\bar{\nu}_{\mu}) \\ \mu^{\pm} &\rightarrow e^{\pm} + \bar{\nu}_{\mu}(\nu_{\mu}) + \nu_{e}(\bar{\nu}_{e}) \end{aligned}
$$

TXS 0506+056

– IceCube \sim 290 TeV ν (2017) + GeV (Fermi-LAT) and VHE (MAGIC) flare – ν -flare (2014 – 2015): no γ -ray activity

Assuming **photo-hadron** (rather than $p-p$):

 $E'_\nu \approx 0.05 E'_{\rm p}, ~~~~\textit{s} \approx E'_\gamma E'_{\rm p} \approx E^2_{\Delta^+}$

- **Target field: X-ray** (Böttcher et al. (2022))
- Synchrotron-supported cascade is ruled out (Reimer et al. (2019))
- Target photons originate outside the jet?
- GeV γ -rays absorbed on the target field

Figure: (Top) Fermi-LAT and optical LC of TXS 0506+056. Green – neutrino flare in 2014 – 2015. (Bottom) Simulations of synchrotron-supported cascades to generate the observed neutrino flare flux (credit: Reimer et al. (2019))

Prospects with CTA

The next generation IACT instrument. Operational by 202?

Large Size Telescope (LST) particularly helpful thanks to the low-energy threshold and sensitivity

- Sensitivity \nearrow by a factor of ~ 10
- Northern and Southern site (La Palma and Chile)
- Energy range: \sim 30 GeV \sim 300 TeV
- Substantially better angular, spectral and timing resolution
- Much tighter constraints on $\gamma-\gamma$ opacity, γ -ray production site location

 $\frac{1}{2}$ Figure: Top: CGI rendering of the CTA array view; Bottom: LST in La Palma (credit: ESO/CTA)

Outline

[Introduction to Blazars](#page-2-0)

- [Blazars: what can spectra tell us?](#page-3-0)
- γ - γ [opacity](#page-9-0)

[Searching for Opacity Features in High-z Blazars](#page-12-0)

- **[Source selection and data analysis](#page-13-0)**
- [Opacity model](#page-21-0)
- [Optical data: target photon field](#page-23-0)
- [Modeling results](#page-35-0)
- [Implications](#page-41-0)

[Future work and prospects](#page-45-0)

4 [Summary](#page-50-0)

Summary

- Exploring high-redshift blazars allows to search for γ - γ opacity signatures at lower energies
- **O** We established constraints on the location of the γ -ray production region in the jet for 5 blazars with redshifts $z = 3 - 4.3$
- \bullet One needs to understand why the γ -ray production (shocked region in the jet) takes place mostly close to the BLR outer boundary
- One of the sources displays a possible $\gamma \gamma$ opacity feature at energy ∼ 8 GeV. Emitting zone located within the BLR close to the INNER boundary
- Full modeling required leptonic, hadronic, multi-zone models

• Promising prospects with CTA

ApJ paper in preparation, to be submitted (hopefully) within this month

Thank you!

