

Optical spectroscopy and imaging of blazars for the Cherenkov Telescope Array Observatory

High Energy Astrophysics in Southern Africa Conference: 2 – 4 October 2024

Eli Kasai on behalf of the Redshift Task Force for the Cherenkov Telescope Array Observatory <u>eli.kasai@cta-consortium.org</u> | University of Namibia

CTAO

OUTLINE

- Overview of z-Task Force
- Sample selection and observing strategy
- z-measurement and est. of total blazar emission
- Optical spectroscopy and imaging results
- Why blazar redshift measurements for CTAO
- Summary

2-4 October 2024

Overview of CTAO Redshift Task Force: Telescopes

2-4 October 2024

High Energy Astrophysics in Southern Africa

Overview of CTAO Redshift Task Force: Observations

Telescope	Diameter (m)	Instrument	λ coverage (Å) /Filter (CW (Å))	λ / Δλ / FWHM (Å)	Targets observed	
SALT	11	RSS	4500 – 7500	~ 1000	38	
GTC	10.4	OSIRIS	3650 - 10000	~ 1000	1 (DDT)	
KECK-II	10	ESI	3900 – 10000	~ 10000	29	
ESO/VLT	8.2	FORS2	5000 - 10000	~ 1000	39	
ESO/NTT	3.5	EFOSC2	3860 - 8070	~ 500	18	
SHANE-3m	3.0	KAST double (B)	3500 - 5600	~ 1000	10	
SHANE-3m	3.0	KAST double (R)	5400 - 8000	~ 1500	42	
GEMINI	8.0	GMOS	i (7481)	886	2	
SOAR	4.1	SAM	i (7481)	886	6	
NOT	2.5	ALFOSC	i (7481)	886	17	
LESEDI	1.0	Sibonise	R (6470)	1090	44	
TJO	0.8	MEIA	R (6470)	1090	30	
REM	0.6	REMIR/ROSS	r, H (6231, 16500)	842, 2000	44	

2-4 October 2024

High Energy Astrophysics in Southern Africa

Sample selection and observing strategy

Credit: D. J. Thompson et al. 2012

2-4 October 2024 High Energy Astrophysics in Southern Africa

- Fermi-LAT blazars from 3FHL catalogue (10 GeV – 2 TeV) with no redshift info
- Includes blazar candidates of unknown type (BCUs)
- CTAO blazars are expected to also emit in the energy range covered by the 3FHL catalogue
- Gammapy Monte Carlo simulations performed to estimate 5-sigma detection observation time
- Initial sample: 165 sources that can be detected under 30 hours at 5-sigma; New sample: 200+ 3FHL sources

Sample selection and observing strategy cont'd...

Flowchart from Kasai et al. 2023b

2-4 October 2024

3FHL blazars

High Energy Astrophysics in Southern Africa

BL Lac redshift measurement difficulties

Piranomonte et al. A&A, 470, 787

- Thermal features are weak and often not measurable
- Probability of a successful measurement difficult to guess. Some remedies:
 - High S/N spectra

Search for absorption systems along the LOS

- Detection of host galaxies in imaging
- Spectroscopy in optical low state

High Energy Astrophysics in Southern Africa

CTAO

Redshift measurement & estimation of total blazar CTAO emission

- Search for stellar absorption features of host galaxy
- As blazar hosts are usually luminous ellipticals (<u>Urry et al. 2000</u>), we expect:
 - 1. CaHK doublet
 - 2. CalG
 - 3. Mgb
 - 4. NaID
- Also search for emission lines: [O II], [O III], Hα and [N II]
- Requirement for convincing z measurement is minimum of two different features yielding same z value
- To estimate total blazar emission, model observed spectrum using power law and elliptical galaxy template combinations to derive best-fit model

2-4 October 2024 High Energy Astrophysics in Southern Africa eli.kasai@cta-consortium.org

Spectroscopy results – paper I

 $z = 0.3043 \pm 0.0004$

 $z = 0.2110 \pm 0.0002$

Spectra of 1RXS J015658.6-530208 (left) and 1RXS J020922.2-522920 (right), both taken with SALT/RSS during November and December of 2019, respectively. Goldoni et al. A&A, 650, 106 (2021)

2-4 October 2024 High Energy A

High Energy Astrophysics in Southern Africa

Spectroscopy results – paper II

 $z = 0.8126 \pm 0.0002 \mid R_{C,B} = 19.0 \pm 0.1$

Spectra of PMN J2321-6438, taken with SALT/RSS during September and October of 2020, respectively. Kasai et al. MNRAS, 518, 2675 (2023)

CTAO

- Interpretation: • z ~ 0.812 if [OII] • z ~ 0.349 if [OIII]
- Broad absorption feature at 5000 Å not consistent with above interpretation
- Broad absorption feature consistent with a Mg II intervening system at z ~ 0.79
- PG1300 (*R* ~ 1800) observation to verify

٠

Spectroscopy results – paper III

 $z = 0.3171 \pm 0.0002$

 $z = 0.6045 \pm 0.0002$

Spectra of SUMMS J1130.5-780105 (left) and PKS 1424+240 (right), observed during January 2021, March 2022, and during April 2022, respectively. D'Ammando et al. A&A, 683, 222 (2024)

2-4 October 2024

High Energy Astrophysics in Southern Africa

Key results of spectroscopy papers I, II & III

Item	Paper I	Paper II	Paper III				
Authors & publisher details	Goldoni <i>et al</i> . A&A, 650, 106 (2021)	Kasai <i>et al</i> . MNRAS, 518, 2675 (2023)	D'Ammando <i>et al</i> . A&A, 683, 222 (2024)				
Redshifts measured	11/19	14/25	12/24				
Success rate (%)	59	56	54				
z range	0.1116 < <i>z</i> < 0.482	0.0838 < <i>z</i> 0.8125	0.2223 < <i>z</i> < 0.7018				
z tentative	0.421	0.320	0.6622				
Lower limits (LL)	0.449, 0.868, (0.618)	0.3821, 0.6293	0.6185, 0.6347				
Median redshift	0.21 (0.23 incl. LL)	0.37 (0.38 incl. LL)	0.39 (>0.42 incl. LL)				
Host galaxy M_{R}	-22.6 ± 0.4	-22.6 ± 1.0	-22.9 ± 0.6				
Combined median redshift: $z_m = 0.30$							

Imaging results – paper I

Example of 10 runs with the "Kormendy" method for the source J0045.3+2127. Nilsson et al., A&A, (2024)

- Sample: 17 CTAO potential blazars with NOT in *I*-band
- Imaging redshifts determined for 9 blazars
- Two redshift determination methods were employed:
 - 1. Using host galaxy magnitude $m_{\rm h}$:
 - $m M = m_1 M_1 + K(z_0) + E(z_0)$
 - $m M = 5 \log D_{\rm L} + 5.0$
 - z_1 obtained from D_L
 - Repeat using z_1 in bullet 1 to obtain z_2 , ...
 - 2. Using both m_h and effective radius (Kormendy relation Samir et al. 2020):
 - $\langle \mu \rangle = (3.75 \pm 0.04) * \log(\frac{R_{\text{eff}}}{1 \text{ kpc}}) + (16.40 \pm 0.04)$
 - $\langle \mu \rangle = \mathbf{m} + 2.5 \log(2\pi (r_{\text{eff}} / 1 \operatorname{arcsec})^2) K(z) + E(z) 10 \log(1 + z)$
 - Both methods yield consistent *z* measurements within uncertainty limits

Imaging results – paper I cont'd...

Comparison of z-spec and z-imag. Blue: Nilsson+ 2024 results; Grey: earlier results

3FHL name	Z	M_R	r _{eff} (kpc)	$\log(M_{BH}/M_{\odot})$	ref
J0045.3+2127	0.4253	-23.3 ± 0.1	9.5 ± 1.1	8.7	1
J0148.2+5201	0.437	-23.1 ± 0.1	4.5 ± 1.1	8.6	1
10005 5 1 1257	0.2239	-20.7 ± 0.1	5.7 ± 1.8	8.0	$\left 1 \right $
J0905.5+1557{	0.644	-23.4 ± 0.2	11.0 ± 3.5	8.7	\int^{1}
J2031.0+1936	0.3665	-22.6 ± 0.1	9.1 ± 1.5	8.5	2
J2245.9+1545	0.5966	-23.6 ± 0.3	16.0 ± 3.3	8.8	2

To estimate black hole masses:

- We use luminosity BH mass relations:
 - $\log(M_{bh}/M_{sol}) = -0.38(\pm 0.06)(M_{R} + 21) + 8.11(\pm 0.11)$ (Graham 2007)
 - $\log(M_{\rm BH}/M_{\rm sol}) = \alpha(M_{\rm I} M_{\rm 0}) + \beta$ (Jiang et al. 2011)
- \circ Both correlations agree to within 0.1 dex
- Spec-z ref in column 6: o (1): Paiano et al. 2020 | (2): Kasai et al. 2023

Why blazar redshift measurements for CTAO?

Gamma-ray emission modelling

2-4 October 2024

High Energy Astrophysics in Southern Africa

Why blazar redshift measurements for CTAO?

EBL density & IGMF, LIV, ALP theory constraints

Credit: J. Biteau & M. Meyer

Why blazar redshift measurements for CTAO?

EBL density & IGMF, LIV, ALP theory constraints

Credit: J. Biteau & M. Meyer

- New simulations of blazar candidates detectable with CTAO at 5-sigma in under 30 hours completed -> increased sample size.
- We continue observations and publications: our fourth spectroscopy paper is in preparation.
- A web database containing our observational results will be made public in the near future.
- We have begun stellar population studies as ancillary science with some of our high S/N spectra.
- Feel free to contact me if you are keen on joining us.

Backup slide – SPS ancillary science: preliminary analysis of PKS 0548-322

CTAO